

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb210-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagram (64-Pin TQFP/QFN)

4.2 Data Memory Space

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the "PIC24F Family Reference Manual", Section 45. "Data Memory with Extended Data Space (EDS)" (DS39733). The information in this data sheet supersedes the information in the FRM.

The PIC24F core has a 16-bit wide data memory space, addressable as a single linear range.

The data space is accessed using two Address Generation Units (AGUs), one each for read and write operations. The data space memory map is shown in Figure 4-3.

The 16-bit wide data addresses in the data memory space point to bytes within the Data Space (DS). This gives a DS address range of 64 Kbytes or 32K words. The lower 32 Kbytes (0x0000 to 0x7FFF) of DS is compatible with the PIC24F microcontrollers without EDS.

The upper 32 Kbytes of data memory address space (0x8000 - 0xFFFF) are used as an EDS window.

The EDS window is used to access all memory region implemented in EDS, as shown in Figure 4-4.

The EDS includes any additional internal data memory not accessible by the lower 32-Kbyte data address space and any external memory through EPMP. For more details on accessing internal extended data memory, refer to the "*PIC24F Family Reference Manual*", Section 45. "Data Memory with Extended Data Space (EDS)" (DS39733). For more details on accessing external memory using EPMP, refer to the "*PIC24F Family Reference Manual*", Section 42. "Enhanced Parallel Master Port (EPMP)" (DS39730). In PIC24F microcontrollers with EDS, the program memory can also be read from EDS. This is called Program Space Visibility (PSV). Table 4-2 lists the total memory accessible by each of the devices in this family.

The EDS is organized as pages, with a single page called an EDS page that equals the EDS window (32 Kbytes). A particular EDS page is selected through the Data Space Read register (DSRPAG) or Data Space Write register (DSWPAG). For PSV, only the DSRPAG register is used. The combination of the DSRPAG register value and the 16-bit wide data address forms a 24-bit Effective Address (EA). For more information on EDS, refer to **Section 4.3.3 "Reading Data from Program Memory Using EDS"**.

TABLE 4-2: TOTAL MEMORY ACCESSIBLE BY THE DEVICE

Devices	Internal RAM	External RAM Access Using EPMP	Program Memory Access Using EDS	
PIC24FJXXXGB210	96 Kbytes (30K + 66K ⁽¹⁾)	Yes (up to 16 MB)	Yes	
PIC24FJXXXGB206	96 Kbytes (30K + 66K ⁽¹⁾)	Yes (up to 64 KB)	Yes	

Note 1: The internal RAM above 30 Kbytes can be accessed through the EDS window.

FIGURE 4-10: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS LOWER WORD

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION TO ACCESS HIGHER WORD

Г	-	-	-	1			
Interment Secures	Vector	IVT	AIVT	Interrupt Bit Locations			
interrupt Source	Number	Address	Address	Flag	Enable	Priority	
ADC1 Conversion Done	13	00002Eh	00012Eh	IFS0<13>	IEC0<13>	IPC3<6:4>	
Comparator Event	18	000038h	000138h	IFS1<2>	IEC1<2>	IPC4<10:8>	
CRC Generator	67	00009Ah	00019Ah	IFS4<3>	IEC4<3>	IPC16<14:12>	
CTMU Event	77	0000AEh	0001AEh	IFS4<13>	IEC4<13>	IPC19<6:4>	
External Interrupt 0	0	000014h	000114h	IFS0<0>	IEC0<0>	IPC0<2:0>	
External Interrupt 1	20	00003Ch	00013Ch	IFS1<4>	IEC1<4>	IPC5<2:0>	
External Interrupt 2	29	00004Eh	00014Eh	IFS1<13>	IEC1<13>	IPC7<6:4>	
External Interrupt 3	53	00007Eh	00017Eh	IFS3<5>	IEC3<5>	IPC13<6:4>	
External Interrupt 4	54	000080h	000180h	IFS3<6>	IEC3<6>	IPC13<10:8>	
I2C1 Master Event	17	000036h	000136h	IFS1<1>	IEC1<1>	IPC4<6:4>	
I2C1 Slave Event	16	000034h	000134h	IFS1<0>	IEC1<0>	IPC4<2:0>	
I2C2 Master Event	50	000078h	000178h	IFS3<2>	IEC3<2>	IPC12<10:8>	
I2C2 Slave Event	49	000076h	000176h	IFS3<1>	IEC3<1>	IPC12<6:4>	
I2C3 Master Event	85	0000BEh	0001BEh	IFS5<5>	IEC5<5>	IPC21<6:4>	
I2C3 Slave Event	84	0000BCh	0001BCh	IFS5<4>	IEC5<4>	IPC21<2:0>	
Input Capture 1	1	000016h	000116h	IFS0<1>	IEC0<1>	IPC0<6:4>	
Input Capture 2	5	00001Eh	00011Eh	IFS0<5>	IEC0<5>	IPC1<6:4>	
Input Capture 3	37	00005Eh	00015Eh	IFS2<5>	IEC2<5>	IPC9<6:4>	
Input Capture 4	38	000060h	000160h	IFS2<6>	IEC2<6>	IPC9<10:8>	
Input Capture 5	39	000062h	000162h	IFS2<7>	IEC2<7>	IPC9<14:12>	
Input Capture 6	40	000064h	000164h	IFS2<8>	IEC2<8>	IPC10<2:0>	
Input Capture 7	22	000040h	000140h	IFS1<6>	IEC1<6>	IPC5<10:8>	
Input Capture 8	23	000042h	000142h	IFS1<7>	IEC1<7>	IPC5<14:12>	
Input Capture 9	93	0000CEh	0001CEh	IFS5<13>	IEC5<13>	IPC23<6:4>	
Input Change Notification (ICN)	19	00003Ah	00013Ah	IFS1<3>	IEC1<3>	IPC4<14:12>	
Low-Voltage Detect (LVD)	72	0000A4h	0001A4h	IFS4<8>	IEC4<8>	IPC18<2:0>	
Output Compare 1	2	000018h	000118h	IFS0<2>	IEC0<2>	IPC0<10:8>	
Output Compare 2	6	000020h	000120h	IFS0<6>	IEC0<6>	IPC1<10:8>	
Output Compare 3	25	000046h	000146h	IFS1<9>	IEC1<9>	IPC6<6:4>	
Output Compare 4	26	000048h	000148h	IFS1<10>	IEC1<10>	IPC6<10:8>	
Output Compare 5	41	000066h	000166h	IFS2<9>	IEC2<9>	IPC10<6:4>	
Output Compare 6	42	000068h	000168h	IFS2<10>	IEC2<10>	IPC10<10:8>	
Output Compare 7	43	00006Ah	00016Ah	IFS2<11>	IEC2<11>	IPC10<14:12>	
Output Compare 8	44	00006Ch	00016Ch	IFS2<12>	IEC2<12>	IPC11<2:0>	
Output Compare 9	92	0000CCh	0001CCh	IFS5<12>	IEC5<12>	IPC23<2:0>	
Enhanced Parallel Master Port (EPMP)	45	00006Eh	00016Eh	IFS2<13>	IEC2<13>	IPC11<6:4>	
Real-Time Clock and Calendar (RTCC)	62	000090h	000190h	IFS3<14>	IEC3<14>	IPC15<10:8>	
SPI1 Error	9	000026h	000126h	IFS0<9>	IEC0<9>	IPC2<6:4>	
SPI1 Event	10	000028h	000128h	IFS0<10>	IEC0<10>	IPC2<10:8>	
SPI2 Error	32	000054h	000154h	IFS2<0>	IEC2<0>	IPC8<2:0>	
SPI2 Event	33	000056h	000156h	IFS2<1>	IEC2<1>	IPC8<6:4>	
SPI3 Error	90	0000C8h	0001C8h	IFS5<10>	IEC5<10>	IPC22<10:8>	
SPI3 Event	91	0000CAh	0001CAh	IFS5<11>	IEC5<11>	IPC22<14:12>	

TABLE 7-2: IMPLEMENTED INTERRUPT VECTORS

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
	IC8IP2	IC8IP1	IC8IP0	—	IC7IP2	IC7IP1	IC7IP0
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	—	—	INT1IP2	INT1IP1	INT1IP0
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimpler	nented bit, read	l as '0'	
-n = Value a	at POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimplemen	ted: Read as '	0'				
bit 14-12	IC8IP<2:0>:	Input Capture (Channel 8 Inter	rrupt Priority bit	S		
	111 = Interru	pt is priority 7	(highest priority	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is dis	sabled				
bit 11	Unimplemen	ted: Read as '	0'				
bit 10-8	IC7IP<2:0>:	Input Capture (Channel 7 Inter	rrupt Priority bit	S		
	111 = Interru	pt is priority 7	(highest priority	v interrupt)			
	•	,					
	•						
	• 001 = Interru	int is priority 1					
	000 = Interru	pt source is dis	sabled				
bit 7-3	Unimplemen	ted: Read as '	0'				
bit 2-0	INT1IP<2:0>	: External Inter	rupt 1 Priority b	oits			
	111 = Interru	pt is priority 7	(highest priority	v interrupt)			
	•		(5	,,			
	•						
	• 001 = Interru	int is priority 1					
	000 = Interru	ipt source is dis	sabled				

REGISTER 7-22: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

REGISTER 10-2: ANSB: PORTB ANALOG FUNCTION SELECTION REGISTER

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
ANSB15	ANSB14	ANSB13	ANSB12	ANSB11	ANSB10	ANSB9	ANSB8
bit 15							bit 8

bit 7							bit 0
ANSB7	ANSB6	ANSB5	ANSB4	ANSB3	ANSB2	ANSB1	ANSB0
R/W-1							

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 ANSB<15:0>: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

REGISTER 10-3: ANSC: PORTC ANALOG FUNCTION SELECTION REGISTER

U-0	R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0
_	ANSC14	ANSC13	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	U-0	U-0	U-0	U-0
_	—	—	ANSC4 ⁽¹⁾	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	
bit 15	Unimplomon	tod: Read as '	ר י				

DIT 10	
bit 14-13	ANSC<14:13>: Analog Function Selection bits
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 12-5	Unimplemented: Read as '0'
bit 4	ANSC4: Analog Function Selection bit ⁽¹⁾
	 1 = Pin is configured in Analog mode; I/O port read is disabled 0 = Pin is configured in Digital mode; I/O port read is enabled
bit 3-0	Unimplemented: Read as '0'

Note 1: This bit is not available on 64-pin devices (PIC24FJXXXGB206).

REGISTER 10-16: RPINR10: PERIPHERAL PIN SELECT INPUT REGISTER 10

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	IC8R5	IC8R4	IC8R3	IC8R2	IC8R1	IC8R0
bit 15							bit 8
U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	—	IC7R5	IC7R4	IC7R3	IC7R2	IC7R1	IC7R0
bit 7				·			bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	

R - Reauable bit		0 – Onimplemented bit, read	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13-8	IC8R<5:0>: Assign Input Capture 8 (IC8) to the Corresponding RPn or RPIn Pin bits
bit 7-6	Unimplemented: Read as '0'
bit 5-0	IC7R<5:0>: Assign Input Capture 7 (IC7) to the Corresponding RPn or RPIn Pin bits

REGISTER 10-17: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFBR5	OCFBR4	OCFBR3	OCFBR2	OCFBR1	OCFBR0
bit 15							bit 8

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	OCFAR5	OCFAR4	OCFAR3	OCFAR2	OCFAR1	OCFAR0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **OCFBR<5:0>:** Assign Output Compare Fault B (OCFB) to the Corresponding RPn or RPIn Pin bits

bit 7-6 Unimplemented: Read as '0'

bit 5-0 OCFAR<5:0>: Assign Output Compare Fault A (OCFA) to the Corresponding RPn or RPIn Pin bits

REGISTER 12-2: TyCON: TIMER3 AND TIMER5 CONTROL REGISTER⁽³⁾

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽¹⁾	—	TSIDL ⁽¹⁾	—	—	—	—	—
bit 15							bit 8

U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
—	TGATE ⁽¹⁾	TCKPS1 ⁽¹⁾	TCKPS0 ⁽¹⁾		—	TCS ^(1,2)	—
bit 7							bit 0

Legend:				
R = Read	able bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Valu	e at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown
bit 15	TON: Tim	nery On bit ⁽¹⁾		
	1 = Start 0 = Stop	s 16-bit Timery s 16-bit Timery		
bit 14	Unimple	mented: Read as '0'		
bit 13	TSIDL: S	top in Idle Mode bit ⁽¹⁾		
	1 = Disc 0 = Cont	ontinue module operation whinue module operation in Idle	nen device enters Idle mode e mode	
bit 12-7	Unimple	mented: Read as '0'		
bit 6	TGATE:	Timery Gated Time Accumul	ation Enable bit ⁽¹⁾	
	This bit is When TC 1 = Gate 0 = Gate	S = 1 ignored. S = 0: d time accumulation is enab d time accumulation is disab	led	
bit 5-4	TCKPS<	1:0>: Timery Input Clock Pre	escale Select bits ⁽¹⁾	
	11 = 1:25 10 = 1:64 01 = 1:8 00 = 1:1	56 I		
bit 3-2	Unimple	mented: Read as '0'		
bit 1	TCS: Tim	ery Clock Source Select bit ⁽	1,2)	
	1 = Exte 0 = Inter	rnal clock from pin, TyCK (or nal clock (Fosc/2)	n the rising edge)	
bit 0	Unimple	mented: Read as '0'		
Note 1:	When 32-bit operation; all	operation is enabled (T2CON timer functions are set throu	N<3> or T4CON<3> = 1), thes igh T2CON and T4CON.	e bits have no effect on Timery
2:	If TCS = 1, R	PINRx (TxCK) must be config	jured to an available RPn/RPIn	pin. See Section 10.4 "Peripher

Pin Select (PPS)" for more information.

3: Changing the value of TyCON while the timer is running (TON = 1) causes the timer prescale counter to reset and is not recommended.

14.0 OUTPUT COMPARE WITH DEDICATED TIMERS

Note: This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the *"PIC24F Family Reference Manual"*, Section 35. "Output Compare with Dedicated Timer" (DS39723). The information in this data sheet supersedes the information in the FRM.

Devices in the PIC24FJ256GB210 family feature all of the 9 independent output compare modules. Each of these modules offers a wide range of configuration and operating options for generating pulse trains on internal device events, and can produce pulse-width modulated waveforms for driving power applications.

Key features of the output compare module include:

- Hardware configurable for 32-bit operation in all modes by cascading two adjacent modules
- Synchronous and Trigger modes of output compare operation, with up to 31 user-selectable trigger/sync sources available
- Two separate period registers (a main register, OCxR, and a secondary register, OCxRS) for greater flexibility in generating pulses of varying widths
- Configurable for single pulse or continuous pulse generation on an output event, or continuous PWM waveform generation
- Up to 6 clock sources available for each module, driving a separate internal 16-bit counter

14.1 General Operating Modes

14.1.1 SYNCHRONOUS AND TRIGGER MODES

When the output compare module operates in a free-running mode, the internal 16-bit counter, OCxTMR, runs counts up continuously, wrapping around from 0xFFFF to 0x0000 on each overflow, with its period synchronized to the selected external clock source. Compare or PWM events are generated each time a match between the internal counter and one of the period registers occurs.

In Synchronous mode, the module begins performing its compare or PWM operation as soon as its selected clock source is enabled. Whenever an event occurs on the selected sync source, the module's internal counter is reset. In Trigger mode, the module waits for a sync event from another internal module to occur before allowing the counter to run.

Free-running mode is selected by default or any time that the SYNCSEL bits (OCxCON2<4:0>) are set to '00000'. Synchronous or Trigger modes are selected any time the SYNCSEL bits are set to any value except '00000'. The OCTRIG bit (OCxCON2<7>) selects either Synchronous or Trigger mode; setting the bit selects Trigger mode operation. In both modes, the SYNCSEL bits determine the sync/trigger source.

14.1.2 CASCADED (32-BIT) MODE

By default, each module operates independently with its own set of 16-bit timer and duty cycle registers. To increase resolution, adjacent even and odd modules can be configured to function as a single 32-bit module. (For example, Modules 1 and 2 are paired, as are Modules 3 and 4, and so on.) The odd numbered module (OCx) provides the Least Significant 16 bits of the 32-bit register pairs and the even module (OCy) provides the Most Significant 16 bits. Wrap-arounds of the OCx registers cause an increment of their corresponding OCy registers.

Cascaded operation is configured in hardware by setting the OC32 bit (OCxCON2<8>) for both modules. For more details on cascading, refer to the "*PIC24F Family Reference Manual*", **Section 35.** "**Output Compare with Dedicated Timer**".

REGISTER 14-1: OCxCON1: OUTPUT COMPARE x CONTROL REGISTER 1 (CONTINUED)

- bit 3 TRIGMODE: Trigger Status Mode Select bit
 - 1 = TRIGSTAT (OCxCON2<6>) is cleared when OCxRS = OCxTMR or in software
 - 0 = TRIGSTAT is only cleared by software
- bit 2-0 OCM<2:0>: Output Compare x Mode Select bits⁽¹⁾
 - 111 = Center-Aligned PWM mode on OCx⁽²⁾
 - 110 = Edge-Aligned PWM Mode on $OCx^{(2)}$
 - 101 = Double Compare Continuous Pulse mode: Initialize the OCx pin low, the toggle OCx state is continuously on alternate matches of OCxR and OCxRS
 - 100 = Double Compare Single-Shot mode: Initialize the OCx pin low, toggle the OCx state on matches of OCxR and OCxRS for one cycle
 - 011 = Single Compare Continuous Pulse mode: Compare events continuously toggle the OCx pin
 - 010 = Single Compare Single-Shot mode: Initialize OCx pin high, compare event forces the OCx pin low
 - 001 = Single Compare Single-Shot mode: Initialize OCx pin low, compare event forces the OCx pin high
 - 000 = Output compare channel is disabled
- Note 1: The OCx output must also be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".
 - 2: The Fault input enable and Fault status bits are valid when OCM<2:0> = 111 or 110.
 - **3:** The Comparator 1 output controls the OC1-OC3 channels; Comparator 2 output controls the OC4-OC6 channels. Comparator 3 output controls the OC7-OC9 channels.
 - 4: The OCFA/OCFB Fault input must also be configured to an available RPn/RPIn pin. For more information, see Section 10.4 "Peripheral Pin Select (PPS)".

EQUATION 15-1: RELATIONSHIP BETWEEN DEVICE AND SPI CLOCK SPEED⁽¹⁾

FCY

FSCK = Primary Prescaler x Secondary Prescaler

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

TABLE 15-1: SAMPLE SCKx FREQUENCIES^(1,2)

		Secondary Prescaler Settings					
	1:1	2:1	4:1	6:1	8:1		
	1:1	Invalid	8000	4000	2667	2000	
Drimon / Droppolor Sottingo	4:1	4000	2000	1000	667	500	
Phinary Prescaler Settings	16:1	1000	500	250	167	125	
	64:1	250	125	63	42	31	
Fcy = 5 MHz							
	1:1	5000	2500	1250	833	625	
Primary Proceeder Settings	4:1	1250	625	313	208	156	
Fillinary Prescaler Settings	16:1	313	156	78	52	39	
	64:1	78	39	20	13	10	

Note 1: Based on FCY = FOSC/2; Doze mode and PLL are disabled.

2: SCKx frequencies shown in kHz.

REGISTER 18-5: U1PWRC: USB POWER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	-
bit 15							bit 8

R/W-0, HS	U-0	U-0	R/W-0	U-0	U-0	R/W-0, HC	R/W-0
UACTPND	—	—	USLPGRD	—	—	USUSPND	USBPWR
bit 7							bit 0

Legend:	HS = Hardware Settable bit	HC = Hardware Clearable bi	t
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7	UACTPND: USB Activity Pending bit
	 1 = Module should not be suspended at the moment (requires the USLPGRD bit to be set) 0 = Module may be suspended or powered down
bit 6-5	Unimplemented: Read as '0'
bit 4	USLPGRD: Sleep/Suspend Guard bit
	 1 = Indicate to the USB module that it is about to be suspended or powered down 0 = No suspend
bit 3-2	Unimplemented: Read as '0'
bit 1	USUSPND: USB Suspend Mode Enable bit
	 1 = USB OTG module is in Suspend mode; USB clock is gated and the transceiver is placed in a low-power state 0 = Normal USB OTG operation
bit 0	USBPWR: USB Operation Enable bit
	1 = USB OTG module is enabled
	0 = USB OTG module is disabled(")

Note 1: Do not clear this bit unless the HOSTEN, USBEN and OTGEN bits (U1CON<3,0> and U1OTGCON<2>) are all cleared.

NOTES:

REGISTER	20-3: ALCF	GRPT: ALAR		RATION REC	GISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0, HSC	R/W-0, HSC	
ALRMEN	CHIME	AMASK3	AMASK2	AMASK1	AMASK0	ALRMPTR1	ALRMPTR0	
bit 15							bit 8	
R/W-0. HSC	R/W-0, HSC	R/W-0. HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	
ARPT7	ARPT6	ARPT5	ARPT4	ARPT3	ARPT2	ARPT1	ARPT0	
bit 7							bit 0	
Legend:		HSC = Hardw	are Settable/C	learable bit				
D - Doodobl	o hit	W = Writable I	ale Sellable/C		ponted hit read	ac '0'		
		41° = Dit is set	JIL	$0^{\circ} = \text{Drimplen}$	arod	a = Dit is upkr		
	PUR	I = BILIS SEL			areu		IOWI	
bit 15	ALRMEN: Ala 1 = Alarm is CHIME = 0 = Alarm is of CHIME: Chim	arm Enable bit enabled (clear 0) disabled	ed automatica	lly after an ala	irm event whe	never ARPT<7	:0> = 00h and	
Dit 14	1 = Chime is 0 = Chime is	enabled; ARP1 disabled; ARP1	「<7:0> bits are T<7:0> bits sto	allowed to roll p once they rea	over from 00h t ach 00h	to FFh		
bit 13-10	AMASK<3:0>: Alarm Mask Configuration bits							
	11xx = Rese 101x = Rese 1001 = Once 1000 = Once 0111 = Once 0110 = Once 0101 = Ever 0100 = Ever 0011 = Ever 0010 = Ever 0001 = Ever 0001 = Ever	erved – do not t erved – do not t e a year (excep e a month e a week e a day y hour y 10 minutes y minute y 10 seconds y second y half second	use use t when configu	red for Februar	ry 29 th , once ev	very 4 years)		
bit 9-8	ALRMPTR<1	:0>: Alarm Valu	ie Register Wir	ndow Pointer bi	its			
- # 7.0	Points to the c The ALRMPTI ALRMVAL<15 11 = Unimple 10 = ALRMN 01 = ALRMN 00 = ALRMN ALRMVAL<7: 11 = Unimple 10 = ALRME 01 = ALRME 01 = ALRME	orresponding Al R<1:0> value de <u>5:8>:</u> emented /INTH VD /IN <u>0>:</u> emented DAY IR SEC	arm Value regis ecrements on e	sters when read very read or wri	ing the ALRMV/ ite of ALRMVAL	ALH and ALRM H until it reache	VALL registers. es '00'.	
bit 7-0	ARPT<7:0>:	ARPT<7:0>: Alarm Repeat Counter Value bits						

11111111 = Alarm will repeat 255 more times

00000000 = Alarm will not repeat

The counter decrements on any alarm event. The counter is prevented from rolling over from 00h to FFh unless CHIME = 1.

...

FIGURE 20-2:	ALARM MASK SETTINGS

Alarm Mask Setting (AMASK<3:0>)	Day of the Week	Month Day	Hours Minutes Seconds			
0000 – Every half second 0001 – Every second						
0010 - Every 10 seconds						
0011 – Every minute						
0100 – Every 10 minutes			m : s s			
0101 – Every hour						
0110 – Every day			h h ; m m ; s s			
0111 – Every week	d		h h : m m : s s			
1000 – Every month		/ d_ d	h h ; m m ; s s			
1001 – Every year ⁽¹⁾		m m / d d	h h : m m : s s			
Note 1: Annually, except when configured for February 29.						

REGISTER 21-2:	CRCCON2: CRC CONTROL 2 REGISTER
----------------	---------------------------------

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—	DWIDTH4	DWIDTH3	DWIDTH2	DWIDTH1	DWIDTH0
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		—	PLEN4	PLEN3	PLEN2	PLEN1	PLEN0
bit 7				•			bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			iown	

bit 15-13	Unimplemented: Read as '0'
bit 12-8	DWIDTH<4:0>: Data Word Width Configuration bits
	Configures the width of the data word (data word width -1).
bit 7-5	Unimplemented: Read as '0'
bit 4-0	PLEN<4:0>: Polynomial Length Configuration bits
	Configures the length of the polynomial (polynomial length – 1).

REGISTER 21-3: CRCXORL: CRC XOR POLYNOMIAL REGISTER, LOW BYTE

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
X15	X14	X13	X12	X11	X10	X9	X8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
X7	X6	X5	X4	X3	X2	X1	—
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-1 X<15:1>: XOR of Polynomial Term xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

26.0 SPECIAL FEATURES

- **Note:** This data sheet summarizes the features of this group of PIC24F devices. It is not intended to be a comprehensive reference source. For more information, refer to the following sections of the "*PIC24F Family Reference Manual*". The information in this data sheet supersedes the information in the FRMs.
 - Section 9. "Watchdog Timer (WDT)" (DS39697)
 - Section 32. "High-Level Device Integration" (DS39719)
 - Section 33. "Programming and Diagnostics" (DS39716)

PIC24FJ256GB210 family devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible Configuration
- Watchdog Timer (WDT)
- Code Protection
- JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™]
- In-Circuit Emulation

26.1 Configuration Bits

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location F80000h. A detailed explanation of the various bit functions is provided in Register 26-1 through Register 26-6.

Note that address F80000h is beyond the user program memory space. In fact, it belongs to the configuration memory space (800000h-FFFFFh) which can only be accessed using table reads and table writes.

26.1.1 CONSIDERATIONS FOR CONFIGURING PIC24FJ256GB210 FAMILY DEVICES

In PIC24FJ256GB210 family devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the three words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 26-1. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note: Configuration data is reloaded on all types of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '0000 0000'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '0's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 26-1: FLASH CONFIGURATION WORD LOCATIONS FOR PIC24FJ256GB210 FAMILY DEVICES

Davias	Configuration Word Addresses					
Device	1 2 3					
PIC24FJ128GB2XX	157FEh	157FCh	157FAh	157F8h		
PIC24FJ256GB2XX	2ABFEh	2ABFCh	2ABFAh	2ABF8h		

121-Lead Plastic Thin Profile Ball Grid Array (BG) - 10x10x1.10 mm Body [XBGA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS			
Dimension	Dimension Limits			MAX
Contact Pitch	E1		0.80 BSC	
Contact Pitch	E2		0.80 BSC	
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Diameter (X121)	X			0.40

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2148A

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com, click on Customer Change Notification and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com