

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	121-TFBGA
Supplier Device Package	121-TFBGA (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb210t-i-bg

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

	Pin Number			Immut			
Function	64-Pin TQFP/QFN	100-Pin TQFP	121-Pin BGA	I/O	Input Buffer	Description	
RG0	—	90	A5	I/O	ST		
RG1		89	E6	I/O	ST		
RG2	37	57	H10	I/O	ST		
RG3	36	56	J11	I/O	ST		
RG6	4	10	E3	I/O	ST		
RG7	5	11	F4	I/O	ST		
RG8	6	12	F2	I/O	ST	PORTG Digital I/O.	
RG9	8	14	F3	I/O	ST		
RG12	_	96	C3	I/O	ST		
RG13	_	97	A3	I/O	ST		
RG14	_	95	C4	I/O	ST		
RG15	_	1	B2	I/O	ST		
RP0	16	25	K2	I/O	ST		
RP1	15	24	K1	I/O	ST		
RP2	42	68	E9	I/O	ST		
RP3	44	70	D11	I/O	ST		
RP4	43	69	E10	I/O	ST		
RP5	_	48	K9	I/O	ST		
RP6	17	26	L1	I/O	ST		
RP7	18	27	J3	I/O	ST		
RP8	21	32	K4	I/O	ST		
RP9	22	33	L4	I/O	ST	Demonstration Device and (manufacture events)	
RP10	31	49	L10	I/O	ST	Remappable Peripheral (input or output).	
RP11	46	72	D9	I/O	ST		
RP12	45	71	C11	I/O	ST		
RP13	14	23	J2	I/O	ST		
RP14	29	43	K7	I/O	ST		
RP15	—	53	J10	I/O	ST		
RP16	33	51	K10	I/O	ST		
RP17	32	50	L11	I/O	ST		
RP18	11	20	H1	I/O	ST		
RP19	6	12	F2	I/O	ST		
Legend:	TTL = TTL inpu	ut buffer			ST =	Schmitt Trigger input buffer	

TABLE 1-3: PIC24FJ256GB210 FAMILY PINOUT DESCRIPTIONS (CONTINUED)

ANA = Analog level input/output

ST = Schmitt Trigger input buffer $I^2C^{TM} = I^2C/SMBus$ input buffer

Note 1: The alternate EPMP pins are selected when the ALTPMP (CW3<12>) bit is programmed to '0'.

2: The PMSC2 signal will replace the PMA15 signal on the 15-pin PMA when CSF<1:0> = 01 or 10.

3: The PMCS1 signal will replace the PMA14 signal on the 14-pin PMA when CSF<1:0> = 10.

4: The alternate VREF pins selected when the ALTVREF (CW1<5>) bit is programmed to '0'.

The CORCON register contains the IPL3 bit, which, together with IPL<2:0>, indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

The interrupt controller has the Interrupt Controller Test register, INTTREG, which displays the status of the interrupt controller. When an interrupt request occurs, it's associated vector number and the new interrupt priority level are latched into INTTREG. This information can be used to determine a specific interrupt source if a generic ISR is used for multiple vectors (such as when ISR remapping is used in bootloader applications) or to check if another interrupt is pending while in an ISR.

All interrupt registers are described in Register 7-1 through Register 7-38 in the succeeding pages.

REGISTER 7-1: SR: ALU STATUS REGISTER (IN CPU)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R-0, HSC
—	—	—	_	—	—	—	DC ⁽¹⁾
bit 15							bit 8

R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC	R/W-0, HSC
IPL2 ^(2,3)	IPL1 ^(2,3)	IPL0 ^(2,3)	RA ⁽¹⁾	N ⁽¹⁾	0V ⁽¹⁾	Z ⁽¹⁾	C ⁽¹⁾
bit 7							bit 0

Legend:	HSC = Hardware Settal	HSC = Hardware Settable/Clearable bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-9 Unimplemented: Read as '0'

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ^(2,3)
	111 = CPU interrupt priority level is 7 (15); user interrupts are disabled
	110 = CPU interrupt priority level is 6 (14)
	101 = CPU interrupt priority level is 5 (13)
	100 = CPU interrupt priority level is 4 (12)
	011 = CPU interrupt priority level is 3 (11)
	010 = CPU interrupt priority level is 2 (10)
	001 = CPU interrupt priority level is 1 (9)
	000 = CPU interrupt priority level is 0 (8)
Note 1:	See Register 3-1 for the description of the remaining bits (bits 8, 4, 3, 2, 1 and 0)

- **Note 1:** See Register 3-1 for the description of the remaining bits (bits 8, 4, 3, 2, 1 and 0) that are not dedicated to interrupt control functions.
 - **2:** The IPL bits are concatenated with the IPL3 (CORCON<3>) bit to form the CPU interrupt priority level. The value in parentheses indicates the interrupt priority level if IPL3 = 1.
 - **3:** The IPL Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

U-0	R/W-0, HS	U-0	U-0	U-0	U-0	U-0	U-0
—	RTCIF	—	—	_	—	—	—
bit 15							bit 8

U-0	R/W-0, HS	R/W-0, HS	U-0	U-0	R/W-0, HS	R/W-0, HS	U-0
—	INT4IF	INT3IF	—	—	MI2C2IF	SI2C2IF	—
bit 7							bit 0

Legend:	HS = Hardware Settable	HS = Hardware Settable bit				
R = Readable bit	W = Writable bit	W = Writable bit U = Unimplemented bit, read as '0'				
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15	Unimplemented: Read as '0'
bit 14	RTCIF: Real-Time Clock/Calendar Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-7	Unimplemented: Read as '0'
bit 6	INT4IF: External Interrupt 4 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 5	INT3IF: External Interrupt 3 Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-3	Unimplemented: Read as '0'
bit 2	MI2C2IF: Master I2C2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 1	SI2C2IF: Slave I2C2 Event Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7-29: IPC12: INTERRUPT PRIORITY CONTROL REGISTER 12

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
		—		_	MI2C2IP2	MI2C2IP1	MI2C2IP0
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	_	_	_
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
L: 4 C 44			o'				
bit 15-11	-	ted: Read as '					
bit 10-8		>: Master I2C2	•	•			
	111 = Interru	pt is priority 7 (highest priority	interrupt)			
	•						
	•						
		pt is priority 1					
		ipt source is dis					
bit 7	-	ted: Read as '					
bit 6-4	SI2C2IP<2:0	>: Slave I2C2 E	Event Interrupt	Priority bits			
	111 = Interrupt is priority 7 (highest priority interrupt)						
•							
	•						
		pt is priority 1					
	000 = Interru	ipt source is dis	abled				
bit 3-0	Unimplemen	ted: Read as '	0'				

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source:

- 1. Set the NSTDIS (INTCON1<15>) control bit if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources may be programmed to the same non-zero value.

Note:	At a device Reset, the IPCx registers are
	initialized, such that all user interrupt
	sources are assigned to Priority Level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE (ISR)

The method that is used to declare an Interrupt Service Routine (ISR) and initialize the IVT with the correct vector address will depend on the programming language (i.e., 'C' or assembler) and the language development toolsuite that is used to develop the application. In general, the user must clear the interrupt flag in the appropriate IFSx register for the source of the interrupt that the ISR handles. Otherwise, the ISR will be re-entered immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE (TSR)

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using the following procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to Priority Level 7 by inclusive ORing the value 0Eh with SRL.

To enable user interrupts, the POP instruction may be used to restore the previous SR value.

Note that only user interrupts with a priority level of 7 or less can be disabled. Trap sources (Levels 8-15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of Priority Levels, 1-6, for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

REGISTER 8-4: REFOCON: REFERENCE OSCILLATOR CONTROL REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
ROEN		ROSSLP	ROSEL ⁽¹⁾	RODIV3	RODIV2	RODIV1	RODIV0		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	_	_	_	—	_	_	_		
bit 7							bit (
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown		
bit 15	ROEN: Refer	ence Oscillator	Output Enable	bit					
		e oscillator is e coscillator is d		O pin					
bit 14	Unimplemen	ted: Read as ')'						
bit 13	ROSSLP: Reference Oscillator Output Stop in Sleep bit								
	1 = Reference oscillator continues to run in Sleep								
	0 = Reference oscillator is disabled in Sleep								
bit 12	ROSEL: Reference Oscillator Source Select bit ⁽¹⁾								
		oscillator is use clock is used as			eflects any cloc	k switching of t	he device		
bit 11-8					5	0			
	RODIV<3:0>: Reference Oscillator Divisor Select bits 1111 = Base clock value divided by 32,768								
	1110 = Base	e clock value di	vided by 16,38	4					
		e clock value di							
	1100 = Base clock value divided by 4,096								
	1011 = Base clock value divided by 2,048 1010 = Base clock value divided by 1,024								
	1001 = Base clock value divided by 512								
	1001 = Base		vided by 512						
	1001 = Base 1000 = Base 0111 = Base	e clock value di e clock value di e clock value di	vided by 512 vided by 256 vided by 128						
	1001 = Base 1000 = Base 0111 = Base 0110 = Base	e clock value di e clock value di e clock value di e clock value di	vided by 512 vided by 256 vided by 128 vided by 64						
	1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base	e clock value di e clock value di	vided by 512 vided by 256 vided by 128 vided by 64 vided by 32						
	1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0100 = Base	e clock value di e clock value di	vided by 512 vided by 256 vided by 128 vided by 64 vided by 32 vided by 16						
	1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0100 = Base 0011 = Base	e clock value di e clock value di	vided by 512 vided by 256 vided by 128 vided by 64 vided by 32 vided by 16 vided by 8						
	1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0100 = Base 0011 = Base 0010 = Base	e clock value di e clock value di	vided by 512 vided by 256 vided by 128 vided by 64 vided by 32 vided by 16 vided by 8 vided by 4						
	1001 = Base 1000 = Base 0111 = Base 0110 = Base 0101 = Base 0100 = Base 0011 = Base 0010 = Base	e clock value di e clock value di	vided by 512 vided by 256 vided by 128 vided by 64 vided by 32 vided by 16 vided by 8 vided by 4						

Note 1: Note that the crystal oscillator must be enabled using the FOSC<2:0> bits; the crystal maintains the operation in Sleep mode.

10.4.3.2 Output Mapping

In contrast to inputs, the outputs of the Peripheral Pin Select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Each register contains two 6-bit fields, with each field being associated with one RPn pin (see Register 10-29 through Register 10-44). The value of the bit field corresponds to one of the peripherals and that peripheral's output is mapped to the pin (see Table 10-4).

Because of the mapping technique, the list of peripherals for output mapping also includes a null value of '000000'. This permits any given pin to remain disconnected from the output of any of the pin-selectable peripherals.

TABLE 10-4 :	SELECTABLE OUTPUT SOURCES ((MAPS FUNCTION TO OUTPUT)

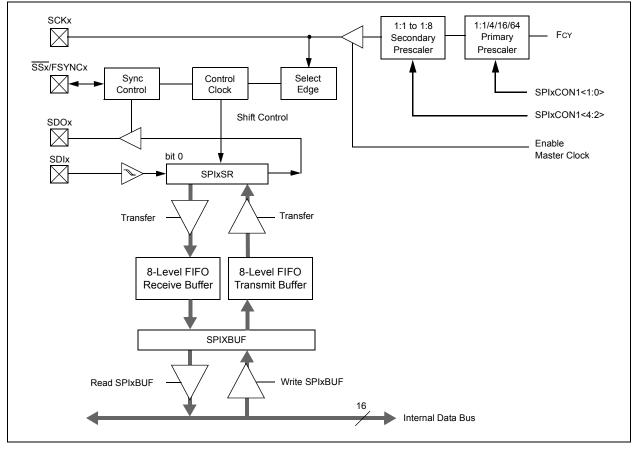
Output Function Number ⁽¹⁾	Function	Output Name
0	NULL ⁽²⁾	Null
1	C1OUT	Comparator 1 Output
2	C2OUT	Comparator 2 Output
3	U1TX	UART1 Transmit
4	U1RTS ⁽³⁾	UART1 Request To Send
5	U2TX	UART2 Transmit
6	U2RTS ⁽³⁾	UART2 Request To Send
7	SDO1	SPI1 Data Output
8	SCK10UT	SPI1 Clock Output
9	SS1OUT	SPI1 Slave Select Output
10	SDO2	SPI2 Data Output
11	SCK2OUT	SPI2 Clock Output
12	SS2OUT	SPI2 Slave Select Output
18	OC1	Output Compare 1
19	OC2	Output Compare 2
20	OC3	Output Compare 3
21	OC4	Output Compare 4
22	OC5	Output Compare 5
23	OC6	Output Compare 6
24	OC7	Output Compare 7
25	OC8	Output Compare 8
28	U3TX	UART3 Transmit
29	U3RTS ⁽³⁾	UART3 Request To Send
30	U4TX	UART4 Transmit
31	U4RTS ⁽³⁾	UART4 Request To Send
32	SDO3	SPI3 Data Output
33	SCK3OUT	SPI3 Clock Output
34	SS3OUT	SPI3 Slave Select Output
35	OC9	Output Compare 9
36	C3OUT	Comparator 3 Output
37-63	(unused)	NC

Note 1: Setting the RPORx register with the listed value assigns that output function to the associated RPn pin.

2: The NULL function is assigned to all RPn outputs at device Reset and disables the RPn output function.

3: IrDA[®] BCLK functionality uses this output.

NOTES:


To set up the SPI module for the Enhanced Buffer Master mode of operation:

- 1. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 1.
- 3. Clear the SPIROV bit (SPIxSTAT<6>).
- 4. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).
- 6. Write the data to be transmitted to the SPIxBUF register. Transmission (and reception) will start as soon as data is written to the SPIxBUF register.

To set up the SPI module for the Enhanced Buffer Slave mode of operation:

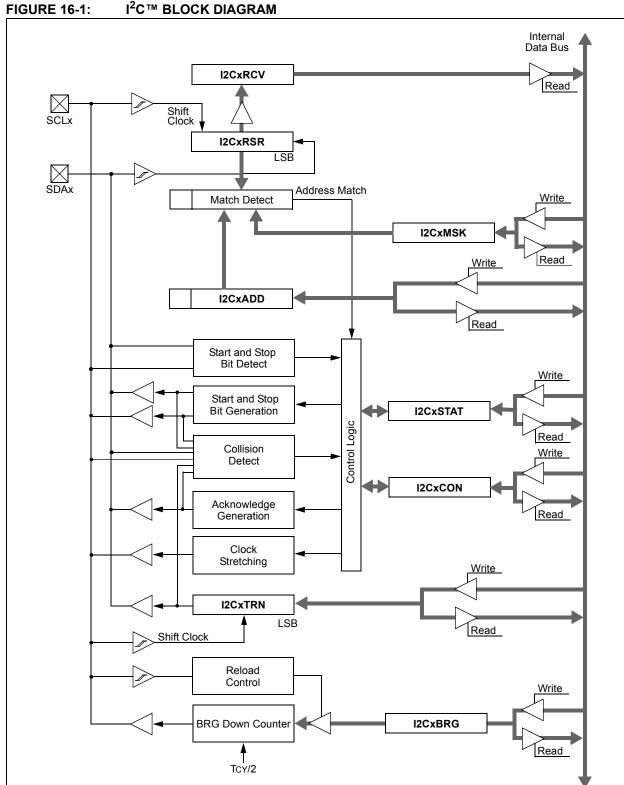

- 1. Clear the SPIxBUF register.
- 2. If using interrupts:
 - a) Clear the SPIxIF bit in the respective IFS register.
 - b) Set the SPIxIE bit in the respective IEC register.
 - c) Write the SPIxIP bits in the respective IPC register to set the interrupt priority.
- Write the desired settings to the SPIxCON1 and SPIxCON2 registers with MSTEN (SPIxCON1<5>) = 0.
- 4. Clear the SMP bit.
- 5. If the CKE bit is set, then the SSEN bit must be set, thus enabling the SSx pin.
- 6. Clear the SPIROV bit (SPIxSTAT<6>).
- 7. Select Enhanced Buffer mode by setting the SPIBEN bit (SPIxCON2<0>).
- 8. Enable SPI operation by setting the SPIEN bit (SPIxSTAT<15>).

FIGURE 15-2: SPIX MODULE BLOCK DIAGRAM (ENHANCED MODE)

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	SPIFPOL	_	—	_	_	—
bit 15	÷					Ŀ	bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_			_	<u> </u>	—	SPIFE	SPIBEN
bit 7							bit C
Legend:							
R = Readabl	le bit	W = Writable b	it	U = Unimplen	nented bit, rea	ıd as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unki	nown
bit 15		med SPIx Suppo					
		SPIx support is e SPIx support is c					
bit 14		me Sync Pulse [trol on \overline{SSx} Pin	bit		
		ync pulse input (2.1		
		nc pulse output					
bit 13	SPIFPOL: Fr	ame Sync Pulse	Polarity bit (Frame mode or	ıly)		
		ync pulse is activ					
	0 = Frame sy	ync pulse is activ	ve-low				
bit 12-2	Unimplemen	ted: Read as '0	,				
bit 1	SPIFE: Fram	e Sync Pulse Ed	lge Select bit				
	-	ync pulse coincio					
	-	/nc pulse preced		it clock			
bit 0		nanced Buffer Er					
		d buffer is enabl		modo)			
	0 = Enhance	d buffer is disab	led (Legacy r	mode)			

REGISTER 15-3: SPIxCON2: SPIx CONTROL REGISTER 2

DS39975A-page 218

REGISTER 16-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 4	P: Stop bit
	1 = Indicates that a Stop bit has been detected last
	0 = Stop bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware is set or clear when Start, Repeated Start or Stop is detected.
bit 2	R/W : Read/Write Information bit (when operating as I ² C slave)
	1 = Read – indicates data transfer is output from the slave
	0 = Write – indicates data transfer is input to the slave
	Hardware is set or clear after the reception of an I ² C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive is complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware is set when I2CxRCV is written with the received byte; hardware is clear when the software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit is in progress, I2CxTRN is full

0 = Transmit is complete, I2CxTRN is empty

Hardware is set when software writes to I2CxTRN; hardware is clear at the completion of data transmission.

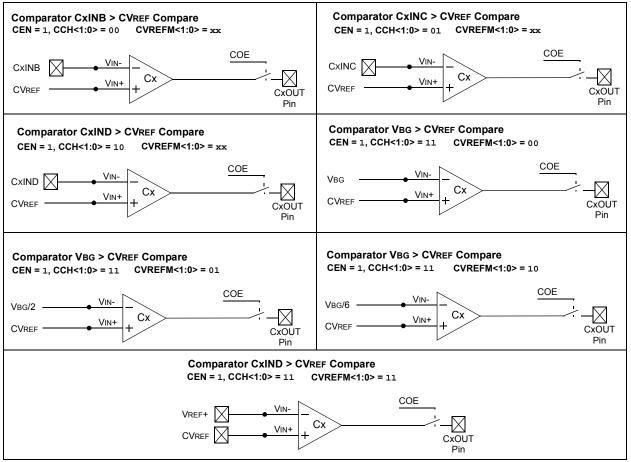
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	
UARTEN ⁽¹⁾	_	USIDL	IREN ⁽²⁾	RTSMD	_	UEN1	UEN0	
bit 15		1					bit 8	
R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAKE	LPBACK	ABAUD	RXINV	BRGH	PDSEL1	PDSEL0	STSEL	
bit 7							bit 0	
Legend:		HC = Hardwar						
R = Readab		W = Writable b	it	•	nented bit, read			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own	
		RTx Enable bit ⁽	1)					
bit 15		s enabled; all UA		controlled by U	APTy as define	ad by LIEN < 1.05		
		disabled; all UA						
bit 14	Unimplemen	ted: Read as '0						
bit 13	USIDL: Stop	in Idle Mode bit						
		ue module oper			e mode			
		module operation						
bit 12		Encoder and De						
		oder and decode						
bit 11		le Selection for \overline{I}						
		in is in Simplex						
		in is in Flow Cor						
bit 10	Unimplemen	ted: Read as '0						
bit 9-8		ARTx Enable bi						
		UxRX and BCLM UxRX, UxCTS a				controlled by po	ort latches	
		UxRX and UxRT				controlled by po	ort latches	
		ind UxRX pins a						
	latches			<u> </u>				
bit 7		-up on Start Bit	•	•		the folling edge	hit is alcored	
		vill continue to sa are on the follow			is generated or	i the railing edge	e, dit is cleared	
		-up is enabled		-				
bit 6	LPBACK: UA	RTx Loopback	Mode Select b	bit				
		oopback mode						
		k mode is disabl						
bit 5		p-Baud Enable b		o novt characte	r roquiroo ro	contion of a av	na fiold (EEb):	
		aud rate measun hardware upor			er – requires re	ception of a sy		
		e measurement		completed				
Note 1: If	UARTEN = 1	the peripheral in	puts and outp	uts must be cor	nfigured to an a	vailable RPn/RI	PIn pin. See	
2: T	his feature is or	n 10.4 "Peripheral Pin Select (PPS)" for more information. ature is only available for the 16x BRG mode (BRGH = 0).						

REGISTER 17-1: UxMODE: UARTx MODE REGISTER

18.7.4 USB VBUS POWER CONTROL REGISTER

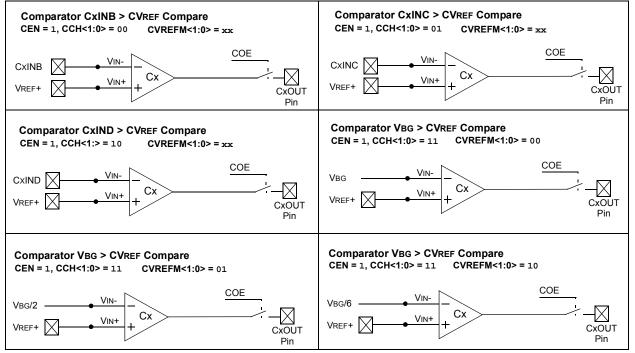
REGISTER 18-22: U1PWMCON: USB VBUS PWM GENERATOR CONTROL REGISTER

R/W-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
PWMEN	_		_			PWMPOL	CNTEN
bit 15	•						bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	_	_	_	_
bit 7							bit 0


Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	PWMEN: PWM Enable bit
	 1 = PWM generator is enabled 0 = PWM generator is disabled; output is held in the Reset state specified by PWMPOL
bit 14-10	Unimplemented: Read as '0'
bit 9	PWMPOL: PWM Polarity bit
	 1 = PWM output is active-low and resets high 0 = PWM output is active-high and resets low
bit 8	CNTEN: PWM Counter Enable bit
	1 = Counter is enabled0 = Counter is disabled
bit 7-0	Unimplemented: Read as '0'

Pin Name	Туре	Description		
PMA<22:16> ⁽¹⁾	0	Address Bus Bits<22-16>		
	0	Address Bus Bit<15>		
PMA<15>, PMCS2	0	Chip Select 2 (alternate location)		
T MAX102, T MOOZ	I/O	Data Bus Bit<15> when port size is 16 bits and address is multiplexed		
	0	Address Bus Bit<14>		
PMA<14>, PMCS1	0	Chip Select 1 (alternate location)		
	I/O	Data Bus Bit<14> when port size is 16-bit and address is multiplexed		
	0	Address Bus Bits<13-8>		
PMA<13:8>	I/O	Data Bus Bits<13-8> when port size is 16 bits and addres is multiplexed		
PMA<7:3>	0	Address Bus Bits<7-3>		
PMA<2>, PMALU ⁽¹⁾	0	Address Bus Bit<2>		
	0	Address latch upper strobe for multiplexed address		
	I/O	Address Bus Bit<1>		
PMA<1>, PMALH	0	Address latch high strobe for multiplexed address		
	I/O	Address Bus Bit<0>		
PMA<0>, PMALL	0	Address latch low strobe for multiplexed address		
PMD<15:8>	I/O	Data Bus Bits<15-8> when address is not multiplexed		
	I/O	Data Bus Bits<7-4>		
PMD<7:4>	0	Address Bus Bits<7-4> when port size is 4 bits and address is multiplexed with 1 address phase		
PMD<3:0>	I/O	Data Bus Bits<3-0>		
PMCS1	I/O	Chip Select 1		
PMCS2	0	Chip Select 2		
PMWR, PMENB	I/O	Write strobe or enable signal depending on Strobe mode		
PMRD, PMRD/PMWR	I/O	Read strobe or Read/Write signal depending on Strobe mode		
PMBE1 ⁽¹⁾	0	Byte indicator		
PMBE0	0	Nibble or byte indicator		
PMACK1	Ι	Acknowledgment 1		
PMACK2	I	Acknowledgment 2		


TABLE 19-2: PARALLEL MASTER PORT PIN DESCRIPTION

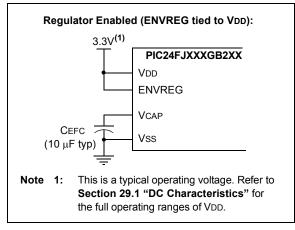
Note 1: Available only in 100-pin devices (PIC24FJXXXGB210).

FIGURE 23-3: INDIVIDUAL COMPARATOR CONFIGURATIONS WHEN CREF = 1 AND CVREFP = 0

26.2 On-Chip Voltage Regulator

All PIC24FJ256GB210 family devices power their core digital logic at a nominal 1.8V. This may create an issue for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the PIC24FJ256GB210 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator is controlled by the ENVREG pin. Tying VDD to the pin enables the regulator, which in turn, provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR capacitor (such as ceramic) must be connected to the VCAP pin (Figure 26-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor (CEFC) is provided in **Section 29.1 "DC Characteristics"**.


26.2.1 VOLTAGE REGULATOR LOW-VOLTAGE DETECTION

When the on-chip regulator is enabled, it provides a constant voltage of 1.8V nominal to the digital core logic.

The regulator can provide this level from a VDD of about 2.1V, all the way up to the device's VDDMAX. It does not have the capability to boost VDD levels. In order to prevent "brown-out" conditions when the voltage drops too low for the regulator, the Brown-out Reset occurs. Then the regulator output follows VDD with a typical voltage drop of 300 mV.

To provide information about when the regulator voltage starts reducing, the on-chip regulator includes a simple Low-Voltage Detect circuit, which sets the Low-Voltage Detect Interrupt Flag, LVDIF (IFS4<8>). This can be used to generate an interrupt to trigger an orderly shutdown.

FIGURE 26-1: CONNECTIONS FOR THE ON-CHIP REGULATOR

26.2.2 ON-CHIP REGULATOR AND POR

When the voltage regulator is enabled, it takes approximately 10 μ s for it to generate output. During this time, designated as TVREG, code execution is disabled. TVREG is applied every time the device resumes operation after any power-down, including Sleep mode. TVREG is determined by the status of the VREGS bit (RCON<8>) and the WUTSEL Configuration bits (CW3<11:10>). Refer to **Section 29.0 "Electrical Characteristics"** for more information on TVREG.

26.2.3 ON-CHIP REGULATOR AND BOR

When the on-chip regulator is enabled, PIC24FJ256GB210 family devices also have a simple brown-out capability. If the voltage supplied to the regulator is inadequate to maintain the output level, the regulator Reset circuitry will generate a Brown-out Reset. This event is captured by the BOR (RCON<1>) flag bit. The brown-out voltage specifications are provided in **Section 7.** "**Reset**" (DS39712) in the "*PIC24F Family Reference Manual*".

Note:	For more information, see Section 29.0
	"Electrical Characteristics". The infor-
	mation in this data sheet supersedes the information in the FRM.

26.2.4 VOLTAGE REGULATOR STANDBY MODE

When enabled, the on-chip regulator always consumes a small incremental amount of current over IDD/IPD, including when the device is in Sleep mode, even though the core digital logic does not require power. To provide additional savings in applications where power resources are critical, the regulator can be made to enter Standby mode on its own whenever the device goes into Sleep mode. This feature is controlled by the VREGS bit (RCON<8>). Clearing the VREGS bit enables the Standby mode. When waking up from Standby mode, the regulator needs to wait for TVREG to expire before wake-up.

The regulator wake-up time required for Standby mode is controlled by the WUTSEL<1:0> (CW3<11:10>) Configuration bits. The regulator wake-up time is lower when WUTSEL<1:0> = 01, and higher when WUTSEL<1:0> = 11. Refer to the TVREG specification in Table 29-10 for regulator wake-up time.

When the regulator's Standby mode is turned off (VREGS = 1), the device wakes up without waiting for TVREG. However, with the VREGS bit set, the power consumption while in Sleep mode will be approximately 40 μ A higher than what it would be if the regulator was allowed to enter Standby mode.

Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
ULNK	ULNK		Unlink Frame Pointer	1	1	None
XOR	XOR	f	f = f .XOR. WREG	1	1	N, Z
	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N, Z
	XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N, Z
	XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N, Z
	XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N, Z
ZE	ZE	Ws,Wnd	Wnd = Zero-Extend Ws	1	1	C, Z, N

TABLE 28-2: INSTRUCTION SET OVERVIEW (CONTINUED)

TABLE 29-3:	DC CHARACTERISTICS: TEMPERATURE AND VOLTAGE SPECIFICATIONS	
-------------	--	--

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
Operati	ing Voltag	e						
DC10	Supply Voltage							
	Vdd		VBOR	_	3.6	V	Regulator enabled	
	VCAP ⁽²⁾		_	1.8V	_	V	Regulator enabled	
DC12	Vdr	RAM Data Retention Voltage ⁽¹⁾	1.5	—	_	V		
DC16	VPOR	VDD Start Voltage to Ensure Internal Power-on Reset Signal	Vss	_	_	V		
DC17	Svdd	VDD Rise Rate to Ensure Internal Power-on Reset Signal	0.05	_	_	V/ms	0-3.3V in 66 ms 0-2.5V in 50 ms	
	VBOR	Brown-out Reset Voltage on VDD Transition, High-to-Low	2.0	2.10	2.2	V	Regulator enabled	
	Vlvd	LVD Trip Voltage	_	VBOR + 0.10		V		

Note 1: This is the limit to which the RAM data can be retained, while the on-chip regulator output voltage starts following the VDD.

2: This is the on-chip regulator output voltage specification.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/05/10