

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	PIC
Core Size	16-Bit
Speed	32MHz
Connectivity	I ² C, IrDA, SPI, UART/USART, USB OTG
Peripherals	Brown-out Detect/Reset, LVD, POR, PWM, WDT
Number of I/O	84
Program Memory Size	256KB (85.5K x 24)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	96K x 8
Voltage - Supply (Vcc/Vdd)	2.2V ~ 3.6V
Data Converters	A/D 24x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	100-TQFP
Supplier Device Package	100-TQFP (12x12)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic24fj256gb210t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-5: ICN REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNPD1	0056	CN15PDE	CN14PDE	CN13PDE	CN12PDE	CN11PDE	CN10PDE	CN9PDE	CN8PDE	CN7PDE	CN6PDE	CN5PDE	CN4PDE	CN3PDE	CN2PDE	CN1PDE	CN0PDE	0000
CNPD2	0058	CN31PDE	CN30PDE	CN29PDE	CN28PDE	CN27PDE	CN26PDE	CN25PDE	CN24PDE	CN23PDE	CN22PDE	CN21PDE ⁽¹⁾	CN20PDE ⁽¹⁾	CN19PDE ⁽¹⁾	CN18PDE	CN17PDE	CN16PDE	0000
CNPD3	005A	CN47PDE(1)	CN46PDE ⁽¹⁾	CN45PDE ⁽¹⁾	CN44PDE ⁽¹⁾	CN43PDE ⁽¹⁾	CN42PDE ⁽¹⁾	CN41PDE ⁽¹⁾	CN40PDE ⁽¹⁾	CN39PDE ⁽¹⁾	CN38PDE ⁽¹⁾	CN37PDE ⁽¹⁾	CN36PDE ⁽¹⁾	CN35PDE ⁽¹⁾	CN34PDE ⁽¹⁾	CN33PDE ⁽¹⁾	CN32PDE	0000
CNPD4	005C	CN63PDE	CN62PDE	CN61PDE	CN60PDE	CN59PDE	CN58PDE	CN57PDE ⁽¹⁾	CN56PDE	CN55PDE	CN54PDE	CN53PDE	CN52PDE	CN51PDE	CN50PDE	CN49PDE	CN48PDE ⁽¹⁾	0000
CNPD5	005E	CN79PDE ⁽¹⁾	CN78PDE ⁽¹⁾	CN77PDE ⁽¹⁾	CN76PDE ⁽¹⁾	CN75PDE ⁽¹⁾	CN74PDE ⁽¹⁾	CN73PDE ⁽¹⁾	_	CN71PDE	CN70PDE ⁽¹⁾	CN69PDE	CN68PDE	CN67PDE ⁽¹⁾	CN66PDE ⁽¹⁾	CN65PDE	CN64PDE	0000
CNPD6	0060		_	_	-	_	_	_	-	_	_	_	CN84PDE	CN83PDE	CN82PDE ⁽¹⁾	CN81PDE ⁽¹⁾	CN80PDE ⁽¹⁾	0000
CNEN1	0062	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0064	CN31IE	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE ⁽¹⁾	CN20IE ⁽¹⁾	CN19IE ⁽¹⁾	CN18IE	CN17IE	CN16IE	0000
CNEN3	0066	CN47IE ⁽¹⁾	CN46IE ⁽¹⁾	CN45IE ⁽¹⁾	CN44IE ⁽¹⁾	CN43IE ⁽¹⁾	CN42IE ⁽¹⁾	CN41IE ⁽¹⁾	CN40IE ⁽¹⁾	CN39IE ⁽¹⁾	CN38IE ⁽¹⁾	CN37IE ⁽¹⁾	CN36IE ⁽¹⁾	CN35IE ⁽¹⁾	CN34IE ⁽¹⁾	CN33IE ⁽¹⁾	CN32IE	0000
CNEN4	0068	CN63IE	CN62IE	CN61IE	CN60IE	CN59IE	CN58IE	CN57IE ⁽¹⁾	CN56IE	CN55IE	CN54IE	CN53IE	CN52IE	CN51IE	CN50IE	CN49IE	CN48IE ⁽¹⁾	0000
CNEN5	006A	CN79IE ⁽¹⁾	CN78IE ⁽¹⁾	CN77IE ⁽¹⁾	CN76IE ⁽¹⁾	CN75IE ⁽¹⁾	CN74IE ⁽¹⁾	CN73IE ⁽¹⁾	_	CN71IE	CN70IE ⁽¹⁾	CN69IE	CN68IE	CN67IE ⁽¹⁾	CN66IE ⁽¹⁾	CN65IE	CN64IE	0000
CNEN6	006C		_	_	-	_	_	_	-	_	_	_	CN84IE	CN83IE	CN82IE ⁽¹⁾	CN81IE ⁽¹⁾	CN80IE ⁽¹⁾	0000
CNPU1	006E	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CNOPUE	0000
CNPU2	0070	CN31PUE	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE ⁽¹⁾	CN20PUE ⁽¹⁾	CN19PUE ⁽¹⁾	CN18PUE	CN17PUE	CN16PUE	0000
CNPU3	0072	CN47PUE ⁽¹⁾	CN46PUE ⁽¹⁾	CN45PUE ⁽¹⁾	CN44PUE ⁽¹⁾	CN43PUE ⁽¹⁾	CN42PUE ⁽¹⁾	CN41PUE ⁽¹⁾	CN40PUE ⁽¹⁾	CN39PUE ⁽¹⁾	CN38PUE ⁽¹⁾	CN37PUE ⁽¹⁾	CN36PUE ⁽¹⁾	CN35PUE ⁽¹⁾	CN34PUE ⁽¹⁾	CN33PUE ⁽¹⁾	CN32PUE	0000
CNPU4	0074	CN63PUE	CN62PUE	CN61PUE	CN60PUE	CN59PUE	CN58PUE	CN57PUE ⁽¹⁾	CN56PUE	CN55PUE	CN54PUE	CN53PUE	CN52PUE	CN51PUE	CN50PUE	CN49PUE	CN48PUE ⁽¹⁾	0000
CNPU5	0076	CN79PUE ⁽¹⁾	CN78PUE ⁽¹⁾	CN77PUE ⁽¹⁾	CN76PUE ⁽¹⁾	CN75PUE ⁽¹⁾	CN74PUE ⁽¹⁾	CN73PUE ⁽¹⁾	—	CN71PUE	CN70PUE ⁽¹⁾	CN69PUE	CN68PUE	CN67PUE ⁽¹⁾	CN66PUE ⁽¹⁾	CN65PUE	CN64PUE	0000
CNPU6	0078	_	_	_	_	—	_	_	_	_	—	_	CN84PUE	CN83PUE	CN82PUE ⁽¹⁾	CN81PUE ⁽¹⁾	CN80PUE ⁽¹⁾	0000

 Legend:
 — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

 Note
 1:
 Unimplemented in 64-pin devices; read as '0'.

TABLE	4-6:	INT	ERRUP	T CON	ROLLE	R REG	SISTER N	IAP										
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	_	_	_	_	-	-	-	_	_	-	MATHERR	ADDRERR	STKERR	OSCFAIL	-	0000
INTCON2	0082	ALTIVT	DISI		_	_	_	_	_	_	_	_	INT4EP	INT3EP	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	—	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPF1IF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF	0000
IFS1	0086	U2TXIF	U2RXIF	INT2IF	T5IF	T4IF	OC4IF	OC3IF	-	IC8IF	IC7IF	-	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	_	PMPIF	OC8IF	OC7IF	OC6IF	OC5IF	IC6IF	IC5IF	IC4IF	IC3IF	_	_	_	SPI2IF	SPF2IF	0000
IFS3	008A	_	RTCIF	_	_	-	_	_	_	-	INT4IF	INT3IF	-	_	MI2C2IF	SI2C2IF	—	0000
IFS4	008C	_	_	CTMUIF	-	_	_	_	LVDIF	_	_	-	-	CRCIF	U2ERIF	U1ERIF	_	0000
IFS5	008E	_	_	IC9IF	OC9IF	SPI3IF	SPF3IF	U4TXIF	U4RXIF	U4ERIF	USB1IF	MI2C3IF	SI2C3IF	U3TXIF	U3RXIF	U3ERIF	_	0000
IEC0	0094	—	_	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPF1IE	T3IE	T2IE	OC2IE	IC2IE	_	T1IE	OC1IE	IC1IE	INTOIE	0000
IEC1	0096	U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	-	IC8IE	IC7IE	-	INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098	—	_	PMPIE	OC8IE	OC7IE	OC6IE	OC5IE	IC6IE	IC5IE	IC4IE	IC3IE	_	_	_	SPI2IE	SPF2IE	0000
IEC3	009A	—	RTCIE		_	_	_	_	_	_	INT4IE	INT3IE	_	_	MI2C2IE	SI2C2IE	_	0000
IEC4	009C	_	_	CTMUIE	-	_	_	_	LVDIE	_	_	-	-	CRCIE	U2ERIE	U1ERIE	_	0000
IEC5	009E	_	_	IC9IE	OC9IE	SPI3IE	SPF3IE	U4TXIE	U4RXIE	U4ERIE	USB1IE	MI2C3IE	SI2C3IE	U3TXIE	U3RXIE	U3ERIE	_	0000
IPC0	00A4	_	T1IP2	T1IP1	T1IP0	_	OC1IP2	OC1IP1	OC1IP0	—	IC1IP2	IC1IP1	IC1IP0	_	INT0IP2	INT0IP1	INT0IP0	4444
IPC1	00A6	_	T2IP2	T2IP1	T2IP0	_	OC2IP2	OC2IP1	OC2IP0	_	IC2IP2	IC2IP1	IC2IP0	_	_	_	-	4440
IPC2	00A8	_	U1RXIP2	U1RXIP1	U1RXIP0	_	SPI1IP2	SPI1IP1	SPI1IP0	_	SPF1IP2	SPF1IP1	SPF1IP0	_	T3IP2	T3IP1	T3IP0	4444
IPC3	00AA	_	-	_	_	_	_	_	_	-	AD1IP2	AD1IP1	AD1IP0	_	U1TXIP2	U1TXIP1	U1TXIP0	0044
IPC4	00AC	_	CNIP2	CNIP1	CNIP0	_	CMIP2	CMIP1	CMIP0	_	MI2C1IP2	MI2C1IP1	MI2C1IP0	_	SI2C1IP2	SI2C1IP1	SI2C1IP0	4444
IPC5	00AE	_	IC8IP2	IC8IP1	IC8IP0	_	IC7IP2	IC7IP1	IC7IP0	_	_	_	_	_	INT1IP2	INT1IP1	INT1IP0	4404
IPC6	00B0	—	T4IP2	T4IP1	T4IP0	_	OC4IP2	OC4IP1	OC4IP0	—	OC3IP2	OC3IP1	OC3IP0	_	_	_	_	4440
IPC7	00B2	_	U2TXIP2	U2TXIP1	U2TXIP0	_	U2RXIP2	U2RXIP1	U2RXIP0	_	INT2IP2	INT2IP1	INT2IP0	_	T5IP2	T5IP1	T5IP0	4444
IPC8	00B4	_	-	_	-	_	_	_	_	-	SPI2IP2	SPI2IP1	SPI2IP0	_	SPF2IP2	SPF2IP1	SPF2IP0	0044
IPC9	00B6	—	IC5IP2	IC5IP1	IC5IP0	_	IC4IP2	IC4IP1	IC4IP0	—	IC3IP2	IC3IP1	IC3IP0	_	_	_	_	4440
IPC10	00B8	_	OC7IP2	OC7IP1	OC7IP0	_	OC6IP2	OC6IP1	OC6IP0	_	OC5IP2	OC5IP1	OC5IP0	_	IC6IP2	IC6IP1	IC6IP0	4444
IPC11	00BA		_	_	_	_	_	_	_	_	PMPIP2	PMPIP1	PMPIP0	_	OC8IP2	OC8IP1	OC8IP0	0044
IPC12	00BC	—	_	—	_	—	MI2C2IP2	MI2C2IP1	MI2C2IP0	—	SI2C2IP2	SI2C2IP1	SI2C2IP0	—	-	-	—	0440
IPC13	00BE	_	_	_	_	_	INT4IP2	INT4IP1	INT4IP0	_	INT3IP2	INT3IP1	INT3IP0	_	_	_	_	0440
IPC15	00C2		_	_	_	_	RTCIP2	RTCIP1	RTCIP0	_	_	_	_	_	_	_	_	0400

DS39975A-page 50

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-11: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 3	T1IE: Timer1 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request is enabled0 = Interrupt request is not enabled
bit 0	INTOIE: External Interrupt 0 Enable bit
	1 = Interrupt request is enabled

0 = Interrupt request is not enabled

REGISTER 7-12: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
U2TXIE	U2RXIE	INT2IE ⁽¹⁾	T5IE	T4IE	OC4IE	OC3IE	—
bit 15							bit 8

R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
IC8IE	IC7IE	—	INT1IE ⁽¹⁾	CNIE	CMIE	MI2C1IE	SI2C1IE
bit 7	-				•	•	bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	U2TXIE: UART2 Transmitter Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 14	U2RXIE: UART2 Receiver Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 13	INT2IE: External Interrupt 2 Enable bit ⁽¹⁾ 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 12	<pre>T5IE: Timer5 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled</pre>
bit 11	T4IE: Timer4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled
bit 10	OC4IE: Output Compare Channel 4 Interrupt Enable bit 1 = Interrupt request is enabled 0 = Interrupt request is not enabled

Note 1: If an external interrupt is enabled, the interrupt input must also be configured to an available RPx or RPIx pin. See **Section 10.4 "Peripheral Pin Select (PPS)**" for more information.

REGISTER 7-15: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0			
_	—	CTMUIE	_	—	_		LVDIE			
bit 15							bit 8			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
_	—	—		CRCIE	U2ERIE	U1ERIE	—			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit		nented bit, read					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
		hada Daadaa (.,							
DIL 15-14		(ed: Read as () Abla bit							
DIT 13		CIMUL: CIMU Interrupt Enable bit								
	0 = Interrupt i	request is enactive request is not e	enabled							
bit 12-9	Unimplement	ted: Read as 'd)'							
bit 8	LVDIE: Low-V	oltage Detect I	nterrupt Enab	le bit						
	1 = Interrupt	request is enab	oled							
	0 = Interrupt i	request is not e	enabled							
bit 7-4	Unimplement	ted: Read as 'o)'							
bit 3	CRCIE: CRC	Generator Inte	rrupt Enable b	bit						
	1 = Interrupt I	request is enab	bled							
h # 0										
DIL 2	U2ERIE: UAR12 Error Interrupt Enable bit									
	1 = Interrupt request is enabled $ 0 = Interrupt request is not enabled$									
bit 1	U1ERIE: UAR	RT1 Error Interr	upt Enable bit							
	1 = Interrupt	request is enab	oled							
	0 = Interrupt i	request is not e	enabled							
bit 0	Unimplement	ted: Read as 'd)'							

REGISTER 7-38: IPC23: INTERRUPT PRIORITY CONTROL REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—	IC9IP2	IC9IP1	IC9IP0	—	OC9IP2	OC9IP1	OC9IP0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-7 bit 6-4	Unimplemented: Read as '0' IC9IP<2:0>: Input Capture Channel 9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)
	000 = Interrupt source is disabled
bit 3	Unimplemented: Read as '0'
bit 2-0	OC9IP<2:0>: Output Compare Channel 9 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt) 001 = Interrupt is priority 1 000 = Interrupt source is disabled
	-

REGISTER 10-6: ANSF: PORTF ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-1
—	—	—	—	—	—	—	ANSF0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-1 Unimplemented: Read as '0'

bit 0

bit 9-6

ANSF0: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

REGISTER 10-7: ANSG: PORTG ANALOG FUNCTION SELECTION REGISTER

U-0	U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1
			_	—	—	ANSG9	ANSG8
bit 15							bit 8
R/W-1	R/W-1	U-0	U-0	U-0	U-0	U-0	U-0
ANSG7	ANSG6	—	—	—	—	—	—
bit 7						•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			Iown	

bit 15-10 **Unimplemented:** Read as '0'

ANSG<9:6>: Analog Function Selection bits

1 = Pin is configured in Analog mode; I/O port read is disabled

0 = Pin is configured in Digital mode; I/O port read is enabled

bit 5-0 Unimplemented: Read as '0'

REGISTER 10-43: RPOR14: PERIPHERAL PIN SELECT OUTPUT REGISTER 14

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
-	—	RP29R5	RP29R4	RP29R3	RP29R2	RP29R1	RP29R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP28R5	RP28R4	RP28R3	RP28R2	RP28R1	RP28R0
bit 7							bit 0

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

as '0'
as '(

- bit 13-8
 RP29R<5:0>: RP29 Output Pin Mapping bits

 Peripheral output number n is assigned to pin, RP29 (see Table 10-4 for peripheral function numbers).

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 RP28R<5:0>: RP28 Output Pin Mapping bits
 - Peripheral output number n is assigned to pin, RP28 (see Table 10-4 for peripheral function numbers).

REGISTER 10-44: RPOR15: PERIPHERAL PIN SELECT OUTPUT REGISTER 15⁽¹⁾

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP31R5	RP31R4	RP31R3	RP31R2	RP31R1	RP31R0
bit 15							bit 8

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	RP30R5	RP30R4	RP30R3	RP30R2	RP30R1	RP30R0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14 Unimplemented: Read as '0'

bit 13-8 **RP31R<5:0>:** RP31 Output Pin Mapping bits⁽¹⁾

Peripheral output number n is assigned to pin, RP31 (see Table 10-4 for peripheral function numbers).

bit 7-6 Unimplemented: Read as '0'

bit 5-0 **RP30R<5:0>:** RP30 Output Pin Mapping bits⁽¹⁾ Peripheral output number n is assigned to pin, RP30 (see Table 10-4 for peripheral function numbers).

Note 1: Unimplemented in 64-pin devices; read as '0'.

NOTES:

18.6.2 HOST NEGOTIATION PROTOCOL (HNP)

In USB OTG applications, a Dual Role Device (DRD) is a device that is capable of being either a host or a peripheral. Any OTG DRD must support Host Negotiation Protocol (HNP).

HNP allows an OTG B-device to temporarily become the USB host. The A-device must first enable the B-device to follow HNP. Refer to the "On-The-Go Supplement" to the "USB 2.0 Specification" for more information regarding HNP. HNP may only be initiated at full speed.

After being enabled for HNP by the A-device, the B-device requests being the host any time that the USB link is in suspend state, by simply indicating a disconnect. This can be done in software by clearing DPPULUP and DMPULUP. When the A-device detects the disconnect condition (via the URSTIF (U1IR<0>) interrupt), the A-device may allow the B-device to take over as host. The A-device does this by signaling connect as a full-speed function. Software may accomplish this by setting DPPULUP.

If the A-device responds instead with resume signaling, the A-device remains as host. When the B-device detects the connect condition (via ATTACHIF (U1IR<6>), the B-device becomes host. The B-device drives Reset signaling prior to using the bus.

1

When the B-device has finished in its role as host, it stops all bus activity and turns on its D+ pull-up resistor by setting DPPULUP. When the A-device detects a suspend condition (Idle for 3 ms), the A-device turns off its D+ pull-up. The A-device may also power-down the VBUS supply to end the session. When the A-device detects the connect condition (via ATTACHIF), the A-device resumes host operation and drives Reset signaling.

18.6.3 EXTERNAL VBUS COMPARATORS

The external VBUS comparator option is enabled by setting the UVCMPDIS bit (U1CNFG2<1>). This disables the internal VBUS comparators, removing the need to attach VBUS to the microcontroller's VBUS pin.

The external comparator interface uses either the VCMPST1 and VCMPST2 pins, or the VBUSVLD, SESSVLD and SESSEND pins, based upon the setting of the UVCMPSEL bit (U1CNFG2<5>). These pins are digital inputs and should be set in the following patterns (see Table 18-3), based on the current level of the VBUS voltage.

VBUS > VBUS VLD

TARI E 18-3.	EXTERNAL VIEWS COMPARATO	
IADLE 10-J.	EATERINAL VBUS CUIVIFARATU	X STALES

If UVCMPSEL = 0							
VCMPST1	VCMPST2		Bus Condition				
0	0		VBUS < VB_SESS_END				
1	0		VB_SESS_END < VBUS < VA_SESS_VLD				
0	1		VA_SESS_VLD < VBUS < VA_VBUS_VLD				
1	1	VBUS > VBUS_VLD					
If UVCMPSEL =	:1						
VBUSVLD	SESSVLD	SESSEND	Bus Condition				
0	0	1	VBUS < VB_SESS_END				
0	0	0	VB_SESS_END < VBUS < VA_SESS_VLD				
0	1	0 VA_SESS_VLD < VBUS < VA_VBUS_VLD					

0

1

REGISTER 18-7: U1CON: USB CONTROL REGISTER (DEVICE MODE)								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	—	—		—	—	_	—	
bit 15							bit 8	
	D 1100	D 444.0		D 444 0	D 444 0	D 444 0	D 444 0	
U-0	R-x, HSC	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
	SEU	PKIDIS		HOSTEN	RESUME	PPBRST	USBEN	
Dit 7							Dit U	
Legend:		U = Unimplem	ented bit, rea	d as '0'				
R = Readat	ole bit	W = Writable b	bit	HSC = Hardw	/are Settable/C	learable bit		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown	
bit 6 bit 5	SE0: Live Sir 1 = Single-er 0 = No single PKTDIS: Pac 1 = SIE toke 0 = SIE toke	ngle-Ended Zero nded zero is act e-ended zero is cket Transfer Dis n and packet pro n and packet pro	 Flag bit ive on the US detected sable bit occessing are occessing are 	B bus disabled; autom enabled	atically set whe	en a SETUP tok	ken is received	
bit 4	Unimplemen	nted: Read as '0	3					
bit 3	HOSTEN: Ho 1 = USB hos 0 = USB hos	ost Mode Enable at capability is er at capability is di	e bit nabled; pull-de sabled	owns on D+ and	l D- are activat	ed in hardware		
bit 2	RESUME: Re 1 = Resume 0 = Resume	esume Signaling signaling is acti signaling is disa	l Enable bit vated abled					
bit 1	PPBRST: Pir 1 = Reset a 0 = Ping-Po	ng-Pong Buffers II Ping-Pong But ng Buffer Pointe	Reset bit fer Pointers t ers are not res	o the even BD b set	oanks			
bit 0	USBEN: USE 1 = USB mod	3 Module Enable dule and supporti	e bit ng circuitry are	e enabled (device	e attached); D+	pull-up is activat	ted in hardware	

0 = USB module and supporting circuity are enabled (device attached), b+ p
 0 = USB module and supporting circuitry are disabled (device detached)

	11.0	11.0	11.0	11.0	11.0	11.0	
0-0	0-0	0-0	U-0	0-0	0-0	0-0	0-0
	_	—		—	—	—	—
bit 15							bit 8
r							
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	UVCMPSEL	PUVBUS	EXTI2CEN	UVBUSDIS ⁽¹⁾	UVCMPDIS ⁽¹⁾	UTRDIS ⁽¹⁾
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-6	Unimplemen	ted: Read as '0	,				
bit 5	UVCMPSEL:	VBUS Compara	tor External In	terface Selection	on bit		
	1 = Use VBUS	SVLD, SESSVLD	and SESSEN	ND as compara	ator interface pi	าร	
	0 = Use VCM	PST1 and VCMP	s⊤ <mark>2 as compa</mark> i	rator interface	pins		
bit 4	PUVBUS: VB	us Pull-Up Ena	ble bit				
	1 = Pull-up or	n Vвus pin i <mark>s</mark> er	nabled				
	0 = Pull-up or	n Vв∪s pin is di	sabled				
bit 3	EXTI2CEN: I ²	C [™] Interface F	or External M	odule Control E	Enable bit		
	1 = External	module(s) is co	ntrolled via the	e I ² C™ interfac	e		
		module(s) contr	olled via the d	edicated pins	(1)		
bit 2		On-Chip 5V Boo	ost Regulator E	Builder Disable	bit ⁽¹⁾	e	
	1 = On-chip k	boost regulator	builder is disat	oled; digital out	iput control inte	rface is enabled	3
hit 1			Comparator Di	e ooblo hit(1)			
			morator in die	sabled: digital i	naut atatua inta	rface is enabled	d
	1 = On-Chip C 0 = On-Chip C	charge VBUS CO	mparator is ac	tive	nput status inte		u
bit 0	UTRDIS: On-	Chin Transceiv	er Disable hit ⁽¹)			
5.0	1 = On-chip t	ransceiver is di	sabled: digital	transceiver inte	erface is enable	ed .	
	0 = On-chip t	ransceiver is ad	ctive				
	•						

Note 1: Never change these bits while the USBPWR bit is set (U1PWRC<0> = 1).

REGISTER ²	19-1: PMC	ON1: EPMP	CONTROL RI	EGISTER 1						
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0			
PMPEN		PSIDL	ADRMUX1	ADRMUX0		MODE1	MODE0			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
CSF1	CSF0	ALP	ALMODE	—	BUSKEEP	IRQM1	IRQM0			
Dit 7	bit (
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'				
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15	PMPEN: Par	allel Master P	ort Enable bit							
	1 = EPMP is	senabled								
L 11 A A	0 = EPMP is	s disabled	()							
DIT 14		in Idle Mede k								
DIL 13	1 = Disconti		n Deration when d	vice enters Idle	mode					
		e module oper	ation in Idle mod	le	mode					
bit 12-11	ADRMUX<1	:0>: Address/I	Data Multiplexing	Selection bits						
	11 = Lower	address bits a	are multiplexed v	<i>,</i> ith data bits usi	ng 3 address	phases				
	10 = Lower	address bits a	are multiplexed v	vith data bits usi	ng 2 address	phases				
	01 = Lower	address bits a	are multiplexed v	vith data bits usi	ng 1 address	phase				
bit 10		ss anu uala ap ntad: Read as	'0'	e pins						
bit 9-8	MODE<1:0>	: Parallel Port	Mode Select bit	8						
	11 = Master	r mode		-						
	10 = Enhan	ced PSP; pins	used are PMR	D, PMWR, PMC	S, PMD<7:0>	and PMA<1:0	>			
	01 = Buffere	ed PSP; pins ι	ised are PMRD,	PMWR, PMCS	and PMD<7:0)>				
hit 7.6	00 = Legacy	y Parallel Slav	e Port; PMRD, F	MWR, PMCS a	and Pivid<7:0>	• pins are used				
DIL 7-0	11 = Reserved	ved								
	10 = PMA<	15> used for (Chip Select 2, PN	/IA<14> used fo	r Chip Select	1				
	01 = PMA<	15> used for C	Chip Select 2, PN	/ICS1 used for C	Chip Select 1					
	00 = PMCS	2 used for Chi	p Select 2, PMC	S1 used for Ch	ip Select 1					
bit 5	ALP: Addres	s Latch Polari	ty bit							
	1 = Active-h	Ign <u>(PIMALL, F</u> w (PMALL PI	MALH and PMA							
bit 4	ALMODE: A	ddress Latch (Strobe Mode bit	20)						
	1 = Enable "	'smart" addres	s strobes (each	address phase	is only preser	nt if the current	t access would			
	cause a	different addre	ess in the latch t	han the previou	s address)					
	0 = Disable	"smart" addres	ss strobes							
bit 3	Unimplemen	nted: Read as	'0'							
DIT 2	BUSKEEP: I	Bus Keeper bi	[hualua whan nat							
	1 = Data bus 0 = Data bus	s keeps its las s is in high-imi	nedance state w	hen not actively	being driven					
bit 1-0	IRQM<1:0>:	Interrupt Rea	uest Mode bits		bonig arron					
	11 = Interru	pt generated v	vhen Read Buffe	r 3 is read or Wi	rite Buffer 3 is	written (Buffere	ed PSP mode),			
	or on a	a read or write	operation when	PMA<1:0> = 11	L (Addressable	e PSP mode o	nly)			
	10 = Reserv	ved	at the end of a	od/write evels						
	01 = Interfu 00 = No interfu	errupt is gener	ated	au/write Cycle						

REGISTER 19-6:	PMCSxBS: CH	IP SELECT x BASE	ADDRESS REGISTER

			•===• · · ·				
R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾	R/W ⁽¹⁾				
BASE23	BASE22	BASE21	BASE20	BASE19	BASE18	BASE17	BASE16
bit 15							bit 8
R/W ⁽¹⁾	U-0	U-0	U-0	R/W ⁽¹⁾	U-0	U-0	U-0
BASE15		—	—	BASE11	—	—	_
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkno	wn

bit 15-7 BASE<23:15>: Chip Select x Base Address bits⁽²⁾

bit 6-4 Unimplemented: Read as '0'

bit 3 BASE<11>: Chip Select x Base Address bits⁽²⁾

bit 2-0 Unimplemented: Read as '0'

Note 1: Value at POR is 0x0200 for PMCS1BS and 0x0600 for PMCS2BS.

2: If the whole PMCS2BS register is written together as 0x0000, then the last EDS address for the Chip Select 1 will be 0xFFFFFF. In this case, the Chip Select 2 should not be used. PMCS1BS has no such feature.

ALWDHR: ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾ REGISTER 20-9:

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	_	—		—	WDAY2	WDAY1	WDAY0
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	_	HRTEN1	HRTEN0	HRONE3	HRONE2	HRONE1	HRONE0
bit 7			•		•	•	bit 0
Legend:							
P - Poodoble	, hit	M = M/ritable	hit	II – Unimplon	ontod hit road		

R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit bits
	Contains a value from 0 to 6.
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit bits
	Contains a value from 0 to 2.
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit bits
	Contains a value from 0 to 9.

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 20-10: ALMINSEC: ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x						
_	MINTEN2	MINTEN1	MINTEN0	MINONE3	MINONE2	MINONE1	MINONE0
bit 15							bit 8
U-0	R/W-x						
—	SECTEN2	SECTEN1	SECTEN0	SECONE3	SECONE2	SECONE1	SECONE0
bit 7							bit 0

Legend: R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit '0' = Bit is cleared -n = Value at POR '1' = Bit is set x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit bits
	Contains a value from 0 to 5.
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit bits
	Contains a value from 0 to 9.
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit bits
	Contains a value from 0 to 5.
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit bits
	Contains a value from 0 to 9.

bit 0

NOTES:

REGISTER 26-3: CW3: FLASH CONFIGURATION WORD 3 (CONTINUED)

- bit 11-10 WUTSEL<1:0>: Voltage Regulator Standby Mode Wake-up Time Select bits
 - 11 = Default regulator start-up time is used
 - 01 = Fast regulator start-up time is used
 - x_0 = Reserved; do not use

bit 9-8 SOSCSEL<1:0>: SOSC Selection Configuration bits

- 11 = Secondary oscillator is in Default (high drive strength) Oscillator mode
- 10 = Reserved; do not use
- 01 = Secondary oscillator is in Low-Power (low drive strength) Oscillator mode
- 00 = External clock (SCLKI) or Digital I/O mode⁽²⁾
- bit 7-0 WPFP<7:0>: Write Protected Code Segment Boundary Page bits

Designates the 512 instruction words page boundary of the protected code segment. If WPEND = 1:

Specifies the lower page boundary of the code-protected segment; the last page being the last implemented page in the device.

If WPEND = 0:

Specifies the upper page boundary of the code-protected segment; Page 0 being the lower boundary.

- Note 1: Unused in 64-pin devices, maintain at '1'.
 - 2: Ensure that the SCLKI pin is made a digital input while using this configuration, see Table 10-2.
 - **3:** Regardless of WPCFG status, if WPEND = 1 or if WPFP corresponds to the Configuration Word's page, the Configuration Word's page is protected.

REGISTER 26-4: CW4: FLASH CONFIGURATION WORD 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 23							bit 16

| r-1 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| reserved |
| bit 15 | | | | | | | bit 8 |

| r-1 |
|----------|----------|----------|----------|----------|----------|----------|----------|
| reserved |
| bit 7 | | | | | | | bit 0 |

Legend:	r = Reserved bit		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 23-16 Unimplemented: Read as '0'

bit 15-0 **Reserved:** Always maintain as '1'

27.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

27.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

27.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

27.10 PICkit 3 In-Circuit Debugger/Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

TABLE 29-15: INTERNAL RC ACCURACY

AC CHARACTERISTICS		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Characteristic	Min	Тур	Max	Units	s Conditions			
F20	FRC Accuracy @ 8 MHz ^(1,2)	-1	±0.15	1	%	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$			
F21	LPRC @ 31 kHz	-20	_	20	%	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$			

Frequency calibrated at 25°C and 3.3V. OSCTUN bits can be used to compensate for temperature drift.
 To achieve this accuracy, physical stress applied to the microcontroller package (ex., by flexing the PCB) must be kept to a minimum.

TABLE 29-16: RC OSCILLATOR START-UP TIME

AC CHARACTERISTICS		Standard Operating Conditions: 2.2V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial							
Param No.	Characteristic	Min	Тур	Мах	Units	Conditions			
TFRC		_	15		μS				
TLPRC		—	50		μS				

TABLE 29-17: RESET AND BROWN-OUT RESET REQUIREMENTS

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 2.2V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \end{array}$					
Param No.	Param No. Symbol Characteristic			Тур	Мах	Units	Conditions	
SY10	TMCL	MCLR Pulse width (Low)	2	_	_	μS		
SY12	TPOR	Power-on Reset Delay	_	2	_	μS		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	—	—	100	ns		
SY25	TBOR	Brown-out Reset Pulse Width	1	—		μS	$V\text{DD} \leq V\text{BOR}$	
	TRST	Internal State Reset Time	—	50	_	μS		

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://support.microchip.com Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

01/05/10