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S12P Memory Map Control (S12PMMCV1)
3.6 Initialization/Application Information

3.6.1 CALL and RTC Instructions

CALL and RTC instructions are uninterruptable CPU instructions that automate page switching in the
program page window. The CALL instruction is similar to the JSR instruction, but the subroutine that is
called can be located anywhere in the local address space or in any Flash or ROM page visible through the
program page window. The CALL instruction calculates and stacks a return address, stacks the current
PPAGE value and writes a new instruction-supplied value to the PPAGE register. The PPAGE value
controls which of the 256 possible pages is visible through the 16 Kbyte program page window in the
64 Kbyte local CPU memory map. Execution then begins at the address of the called subroutine.

During the execution of the CALL instruction, the CPU performs the following steps:

1. Writes the current PPAGE value into an internal temporary register and writes the new
instruction-supplied PPAGE value into the PPAGE register

2. Calculates the address of the next instruction after the CALL instruction (the return address) and
pushes this 16-bit value onto the stack

3. Pushes the temporarily stored PPAGE value onto the stack

4. Calculates the effective address of the subroutine, refills the queue and begins execution at the new
address

This sequence is uninterruptable. There is no need to inhibit interrupts during the CALL instruction
execution. A CALL instruction can be performed from any address to any other address in the local CPU
memory space.

The PPAGE value supplied by the instruction is part of the effective address of the CPU. For all addressing
mode variations (except indexed-indirect modes) the new page value is provided by an immediate operand
in the instruction. In indexed-indirect variations of the CALL instruction a pointer specifies memory
locations where the new page value and the address of the called subroutine are stored. Using indirect
addressing for both the new page value and the address within the page allows usage of values calculated
at run time rather than immediate values that must be known at the time of assembly.

The RTC instruction terminates subroutines invoked by a CALL instruction. The RTC instruction unstacks
the PPAGE value and the return address and refills the queue. Execution resumes with the next instruction
after the CALL instruction.

During the execution of an RTC instruction the CPU performs the following steps:

1. Pulls the previously stored PPAGE value from the stack

2. Pulls the 16-bit return address from the stack and loads it into the PC

3. Writes the PPAGE value into the PPAGE register

4. Refills the queue and resumes execution at the return address

This sequence is uninterruptable. The RTC can be executed from anywhere in the local CPU memory
space.

The CALL and RTC instructions behave like JSR and RTS instruction, they however require more
execution cycles. Usage of JSR/RTS instructions is therefore recommended when possible and
MC9S12HY/HA-Family Reference Manual, Rev. 1.05
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Background Debug Module (S12SBDMV1)
Since the host knows the target serial clock frequency, the SYNC command (used to abort a command)
does not need to consider the lower possible target frequency. In this case, the host could issue a SYNC
very close to the 128 serial clock cycles length. Providing a small overhead on the pulse length in order to
assure the SYNC pulse will not be misinterpreted by the target. See Section 5.4.9, “SYNC — Request
Timed Reference Pulse”.

Figure 5-12 shows a SYNC command being issued after a READ_BYTE, which aborts the READ_BYTE
command. Note that, after the command is aborted a new command could be issued by the host computer.

Figure 5-12. ACK Abort Procedure at the Command Level

NOTE
Figure 5-12 does not represent the signals in a true timing scale

Figure 5-13 shows a conflict between the ACK pulse and the SYNC request pulse. This conflict could
occur if a POD device is connected to the target BKGD pin and the target is already in debug active mode.
Consider that the target CPU is executing a pending BDM command at the exact moment the POD is being
connected to the BKGD pin. In this case, an ACK pulse is issued along with the SYNC command. In this
case, there is an electrical conflict between the ACK speedup pulse and the SYNC pulse. Since this is not
a probable situation, the protocol does not prevent this conflict from happening.

Figure 5-13. ACK Pulse and SYNC Request Conflict

READ_BYTE READ_STATUSBKGD Pin Memory Address New BDM Command

New BDM Command

Host Target Host Target Host Target

SYNC Response
From the Target
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S12S Debug Module (S12SDBGV2)
6.3.2.6 Debug Count Register (DBGCNT)

Read: Anytime

Write: Never

Address: 0x0026

7 6 5 4 3 2 1 0

R TBF 0 CNT

W

Reset
POR

—
0

—
0

—
0

—
0

—
0

—
0

—
0

—
0

= Unimplemented or Reserved

Figure 6-8. Debug Count Register (DBGCNT)

Table 6-12. DBGCNT Field Descriptions

Field Description

7
TBF

Trace Buffer Full — The TBF bit indicates that the trace buffer has stored 64 or more lines of data since it was
last armed. If this bit is set, then all 64 lines will be valid data, regardless of the value of DBGCNT bits. The TBF
bit is cleared when ARM in DBGC1 is written to a one. The TBF is cleared by the power on reset initialization.
Other system generated resets have no affect on this bit
This bit is also visible at DBGSR[7]

5–0
CNT[5:0]

Count Value — The CNT bits indicate the number of valid data 20-bit data lines stored in the Trace Buffer.
Table 6-13 shows the correlation between the CNT bits and the number of valid data lines in the Trace Buffer.
When the CNT rolls over to zero, the TBF bit in DBGSR is set and incrementing of CNT will continue in
end-trigger mode. The DBGCNT register is cleared when ARM in DBGC1 is written to a one. The DBGCNT
register is cleared by power-on-reset initialization but is not cleared by other system resets. Thus should a reset
occur during a debug session, the DBGCNT register still indicates after the reset, the number of valid trace buffer
entries stored before the reset occurred. The DBGCNT register is not decremented when reading from the trace
buffer.

Table 6-13. CNT Decoding Table

TBF CNT[5:0] Description

0 000000 No data valid

0 000001
000010
000100
000110

..
111111

1 line valid
2 lines valid
4 lines valid
6 lines valid

..
63 lines valid

1 000000 64 lines valid; if using Begin trigger alignment,
ARM bit will be cleared and the tracing session ends.

1 000001
..
..

111110

64 lines valid,
oldest data has been overwritten by most recent data
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S12S Debug Module (S12SDBGV2)
Similarly the SZE and SZ bits allow the size of access (word or byte) to be considered in the compare.
Only comparators A and B feature SZE and SZ.

The TAG bit in each comparator control register is used to determine the match condition. By setting TAG,
the comparator qualifies a match with the output of opcode tracking logic and a state sequencer transition
occurs when the tagged instruction reaches the CPU execution stage. Whilst tagging the RW, RWE, SZE,
and SZ bits and the comparator data registers are ignored; the comparator address register must be loaded
with the exact opcode address.

If the TAG bit is clear (forced type match) a comparator match is generated when the selected address
appears on the system address bus. If the selected address is an opcode address, the match is generated
when the opcode is fetched from the memory, which precedes the instruction execution by an indefinite
number of cycles due to instruction pipelining. For a comparator match of an opcode at an odd address
when TAG = 0, the corresponding even address must be contained in the comparator register. Thus for an
opcode at odd address (n), the comparator register must contain address (n–1).

Once a successful comparator match has occurred, the condition that caused the original match is not
verified again on subsequent matches. Thus if a particular data value is verified at a given address, this
address may not still contain that data value when a subsequent match occurs.

Match[0, 1, 2] map directly to Comparators [A, B, C] respectively, except in range modes (see 6.3.2.4,
"Debug Control Register2 (DBGC2)"). Comparator channel priority rules are described in the priority
section (6.4.3.4, "Channel Priorities").

6.4.2.1 Single Address Comparator Match

With range comparisons disabled, the match condition is an exact equivalence of address bus with the
value stored in the comparator address registers. Further qualification of the type of access (R/W,
word/byte) and databus contents is possible, depending on comparator channel.

6.4.2.1.1 Comparator C

Comparator C offers only address and direction (R/W) comparison. The exact address is compared, thus
with the comparator address register loaded with address (n) a word access of address (n–1) also accesses
(n) but does not cause a match.

Table 6-32. Comparator C Access Considerations

Condition For Valid Match Comp C Address RWE RW Examples

Read and write accesses of ADDR[n] ADDR[n]1

1 A word access of ADDR[n-1] also accesses ADDR[n] but does not generate a match.
The comparator address register must contain the exact address from the code.

0 X LDAA ADDR[n]
STAA #$BYTE ADDR[n]

Write accesses of ADDR[n] ADDR[n] 1 0 STAA #$BYTE ADDR[n]

Read accesses of ADDR[n] ADDR[n] 1 1 LDAA #$BYTE ADDR[n]
MC9S12HY/HA-Family Reference Manual, Rev. 1.05
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S12S Debug Module (S12SDBGV2)
6.4.3.4 Channel Priorities

In case of simultaneous matches the priority is resolved according to Table 6-36. The lower priority is
suppressed. It is thus possible to miss a lower priority match if it occurs simultaneously with a higher
priority. The priorities described in Table 6-36 dictate that in the case of simultaneous matches, the match
pointing to final state has highest priority followed by the lower channel number (0,1,2).

6.4.4 State Sequence Control

Figure 6-24. State Sequencer Diagram

The state sequencer allows a defined sequence of events to provide a trigger point for tracing of data in the
trace buffer. Once the DBG module has been armed by setting the ARM bit in the DBGC1 register, then
state1 of the state sequencer is entered. Further transitions between the states are then controlled by the
state control registers and channel matches. From Final State the only permitted transition is back to the
disarmed state0. Transition between any of the states 1 to 3 is not restricted. Each transition updates the
SSF[2:0] flags in DBGSR accordingly to indicate the current state.

Alternatively writing to the TRIG bit in DBGSC1, provides an immediate trigger independent of
comparator matches.

Independent of the state sequencer, each comparator channel can be individually configured to generate an
immediate breakpoint when a match occurs through the use of the BRK bits in the DBGxCTL registers.
Thus it is possible to generate an immediate breakpoint on selected channels, whilst a state sequencer
transition can be initiated by a match on other channels. If a debug session is ended by a match on a channel
the state sequencer transitions through Final State for a clock cycle to state0. This is independent of tracing

Table 6-36. Channel Priorities

Priority Source Action

Highest TRIG Enter Final State

Channel pointing to Final State Transition to next state as defined by state control registers

Match0 (force or tag hit) Transition to next state as defined by state control registers

Match1 (force or tag hit) Transition to next state as defined by state control registers

Lowest Match2 (force or tag hit) Transition to next state as defined by state control registers

State1

Final State State3

ARM = 1

Session Complete
(Disarm)

State2
   State 0

(Disarmed)
ARM = 0

ARM = 0

ARM = 0
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S12 Clock, Reset and Power Management Unit (S12CPMU) Block Description
7.4.2 Startup from Reset

An example of startup of clock system from Reset is given in Figure 7-31.

Figure 7-31. Startup of clock system after Reset

7.4.3 Stop Mode using PLLCLK as Bus Clock

An example of what happens going into Stop Mode and exiting Stop Mode after an interrupt is shown in
Figure 7-32. Disable PLL Lock interrupt (LOCKIE=0) before going into Stop Mode.

Figure 7-32. Stop Mode using PLLCLK as Bus Clock

System

PLLCLK

Reset

fVCORST

CPU reset state vector fetch, program execution

LOCK

POSTDIV $03 (default target fPLL=fVCO/4 = 16MHz)

fPLL increasing fPLL=16MHz

tlock

SYNDIV $1F (default target fVCO=64MHz)

$01

fPLL=32 MHz

example change
of POSTDIV

768 cycles

) (

PLLCLK

CPU

LOCK
tlock

STOP instructionexecution interrupt continue execution

wakeup

tSTP_REC
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Analog-to-Digital Converter (ADC12B8CV1) Block Description
Table 8-21 shows how depending on the A/D resolution the conversion result is transferred to the ATD
result registers. Compare is always done using all 12 bits of both the conversion result and the compare
value in ATDDRn.

Table 8-21. Conversion result mapping to ATDDRn

A/D
resolution

DJM
conversion result mapping to

ATDDRn

8-bit data 0 Bit[11:4] = result, Bit[3:0]=0000

8-bit data 1 Bit[7:0] = result, Bit[11:8]=0000

10-bit data 0 Bit[11:2] = result, Bit[1:0]=00

10-bit data 1 Bit[9:0] = result, Bit[11:10]=00

12-bit data X Bit[11:0] = result
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Freescale’s Scalable Controller Area Network (S12MSCANV3)
Figure 9-24. Receive/Transmit Message Buffer — Extended Identifier Mapping

Register
Name

Bit 7 6 5 4 3 2 1 Bit0

0x00X0
IDR0

R
ID28 ID27 ID26 ID25 ID24 ID23 ID22 ID21

W

0x00X1
IDR1

R
ID20 ID19 ID18 SRR (=1) IDE (=1) ID17 ID16 ID15

W

0x00X2
IDR2

R
ID14 ID13 ID12 ID11 ID10 ID9 ID8 ID7

W

0x00X3
IDR3

R
ID6 ID5 ID4 ID3 ID2 ID1 ID0 RTR

W

0x00X4
DSR0

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00X5
DSR1

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00X6
DSR2

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00X7
DSR3

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00X8
DSR4

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00X9
DSR5

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00XA
DSR6

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00XB
DSR7

R
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0

W

0x00XC
DLR

R
DLC3 DLC2 DLC1 DLC0

W
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Timer Module (TIM16B8CV2) Block Description
14.3.2.8 Timer Control Register 1/Timer Control Register 2 (TCTL1/TCTL2)

Read: Anytime

Write: Anytime

Module Base + 0x0008

7 6 5 4 3 2 1 0

R
OM7 OL7 OM6 OL6 OM5 OL5 OM4 OL4

W

Reset 0 0 0 0 0 0 0 0

Figure 14-14. Timer Control Register 1 (TCTL1)

Module Base + 0x0009

7 6 5 4 3 2 1 0

R
OM3 OL3 OM2 OL2 OM1 OL1 OM0 OL0

W

Reset 0 0 0 0 0 0 0 0

Figure 14-15. Timer Control Register 2 (TCTL2)

Table 14-8. TCTL1/TCTL2 Field Descriptions

Field Description

7:0
OMx

Output Mode — These eight pairs of control bits are encoded to specify the output action to be taken as a result
of a successful OCx compare. When either OMx or OLx is 1, the pin associated with OCx becomes an output
tied to OCx.
Note: To enable output action by OMx bits on timer port, the corresponding bit in OC7M should be cleared. For

an output line to be driven by an OCx the OCPDx must be cleared.

7:0
OLx

Output Level — These eight pairs of control bits are encoded to specify the output action to be taken as a result
of a successful OCx compare. When either OMx or OLx is 1, the pin associated with OCx becomes an output
tied to OCx.
Note: To enable output action by OLx bits on timer port, the corresponding bit in OC7M should be cleared. For

an output line to be driven by an OCx the OCPDx must be cleared.

Table 14-9. Compare Result Output Action

OMx OLx Action

0 0 No output compare
action on the timer output signal

0 1 Toggle OCx output line

1 0 Clear OCx output line to zero

1 1 Set OCx output line to one
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64 KByte Flash Module (S12FTMRC64K1V1)
17.4.3.5 D-Flash Commands

Table 17-29 summarizes the valid D-Flash commands along with the effects of the commands on the
D-Flash block.

0x04 Read Once
Read a dedicated 64 byte field in the nonvolatile information register in P-Flash block that
was previously programmed using the Program Once command.

0x06 Program P-Flash Program a phrase in a P-Flash block.

0x07 Program Once
Program a dedicated 64 byte field in the nonvolatile information register in P-Flash block
that is allowed to be programmed only once.

0x08 Erase All Blocks

Erase all P-Flash (and D-Flash) blocks.
An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN
bits in the FPROT register and the DPOPEN bit in the DFPROT register are set prior to
launching the command.

0x09 Erase Flash Block
Erase a P-Flash (or D-Flash) block.
An erase of the full P-Flash block is only possible when FPLDIS, FPHDIS and FPOPEN
bits in the FPROT register are set prior to launching the command.

0x0A
Erase P-Flash

Sector
Erase all bytes in a P-Flash sector.

0x0B Unsecure Flash
Supports a method of releasing MCU security by erasing all P-Flash (and D-Flash) blocks
and verifying that all P-Flash (and D-Flash) blocks are erased.

0x0C
Verify Backdoor

Access Key
Supports a method of releasing MCU security by verifying a set of security keys.

0x0D
Set User Margin

Level
Specifies a user margin read level for all P-Flash blocks.

0x0E
Set Field Margin

Level
Specifies a field margin read level for all P-Flash blocks (special modes only).

Table 17-29. D-Flash Commands

FCMD Command Function on D-Flash Memory

0x01
Erase Verify All

Blocks
Verify that all D-Flash (and P-Flash) blocks are erased.

0x02 Erase Verify Block Verify that the D-Flash block is erased.

0x08 Erase All Blocks

Erase all D-Flash (and P-Flash) blocks.
An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN
bits in the FPROT register and the DPOPEN bit in the DFPROT register are set prior to
launching the command.

0x09 Erase Flash Block
Erase a D-Flash (or P-Flash) block.
An erase of the full D-Flash block is only possible when DPOPEN bit in the DFPROT
register is set prior to launching the command.

0x0B Unsecure Flash
Supports a method of releasing MCU security by erasing all D-Flash (and P-Flash) blocks
and verifying that all D-Flash (and P-Flash) blocks are erased.

0x0D
Set User Margin

Level
Specifies a user margin read level for the D-Flash block.

0x0E
Set Field Margin

Level
Specifies a field margin read level for the D-Flash block (special modes only).

Table 17-28. P-Flash Commands

FCMD Command Function on P-Flash Memory
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64 KByte Flash Module (S12FTMRC64K1V1)
17.4.4 Allowed Simultaneous P-Flash and D-Flash Operations

Only the operations marked ‘OK’ in Table 17-30 are permitted to be run simultaneously on the Program
Flash and Data Flash blocks. Some operations cannot be executed simultaneously because certain
hardware resources are shared by the two memories. The priority has been placed on permitting Program
Flash reads while program and erase operations execute on the Data Flash, providing read (P-Flash) while
write (D-Flash) functionality.

17.4.5 Flash Command Description

This section provides details of all available Flash commands launched by a command write sequence. The
ACCERR bit in the FSTAT register will be set during the command write sequence if any of the following
illegal steps are performed, causing the command not to be processed by the Memory Controller:

• Starting any command write sequence that programs or erases Flash memory before initializing the
FCLKDIV register

• Writing an invalid command as part of the command write sequence

• For additional possible errors, refer to the error handling table provided for each command

0x10
Erase Verify

D-Flash Section
Verify that a given number of words starting at the address provided are erased.

0x11 Program D-Flash Program up to four words in the D-Flash block.

0x12
Erase D-Flash

Sector
Erase all bytes in a sector of the D-Flash block.

Table 17-30. Allowed P-Flash and D-Flash Simultaneous Operations

Data Flash

Program Flash Read
Margin
Read1 Program

Sector
Erase

Mass
Erase3

Read OK OK OK

Margin Read1

1 A ‘Margin Read’ is any read after executing the margin setting commands
‘Set User Margin Level’ or ‘Set Field Margin Level’ with anything but the
‘normal’ level specified.

OK2

2 See the Note on margin settings in Section 17.4.5.12 and Section 17.4.5.13.

Program

Sector Erase OK

Mass Erase3

3 The ‘Mass Erase’ operations are commands ‘Erase All Blocks’ and ‘Erase
Flash Block’

OK

Table 17-29. D-Flash Commands

FCMD Command Function on D-Flash Memory
MC9S12HY/HA-Family Reference Manual, Rev. 1.05

Freescale Semiconductor 649



64 KByte Flash Module (S12FTMRC64K1V1)
Figure 17-27. Flash Module Interrupts Implementation

17.4.7 Wait Mode

The Flash module is not affected if the MCU enters wait mode. The Flash module can recover the MCU
from wait via the CCIF interrupt (see Section 17.4.6, “Interrupts”).

17.4.8 Stop Mode

If a Flash command is active (CCIF = 0) when the MCU requests stop mode, the current Flash operation
will be completed before the CPU is allowed to enter stop mode.

17.5 Security
The Flash module provides security information to the MCU. The Flash security state is defined by the
SEC bits of the FSEC register (see Table 17-10). During reset, the Flash module initializes the FSEC
register using data read from the security byte of the Flash configuration field at global address 0x3_FF0F.
The security state out of reset can be permanently changed by programming the security byte assuming
that the MCU is starting from a mode where the necessary P-Flash erase and program commands are
available and that the upper region of the P-Flash is unprotected. If the Flash security byte is successfully
programmed, its new value will take affect after the next MCU reset.

The following subsections describe these security-related subjects:

• Unsecuring the MCU using Backdoor Key Access

• Unsecuring the MCU in Special Single Chip Mode using BDM

• Mode and Security Effects on Flash Command Availability

17.5.1 Unsecuring the MCU using Backdoor Key Access

The MCU may be unsecured by using the backdoor key access feature which requires knowledge of the
contents of the backdoor keys (four 16-bit words programmed at addresses 0x3_FF00-0x3_FF07). If the
KEYEN[1:0] bits are in the enabled state (see Section 17.3.2.2), the Verify Backdoor Access Key
command (see Section 17.4.5.11) allows the user to present four prospective keys for comparison to the
keys stored in the Flash memory via the Memory Controller. If the keys presented in the Verify Backdoor
Access Key command match the backdoor keys stored in the Flash memory, the SEC bits in the FSEC

Flash Error Interrupt Request

CCIF
CCIE

DFDIF
DFDIE

SFDIF
SFDIE

Flash Command Interrupt Request
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Motor Controller (MC10B8CV1)
Whenever FAST = 1, the bits D10, D9, D1, and D0 will be set to 0 if the duty cycle register is written.

For example setting MCDCx = 0x0158 with FAST = 0 gives the same output waveform as setting
MCDCx = 0x5600 with FAST = 1 (with FAST = 1, the low byte of MCDCx needs not to be written).

The state of the FAST bit has impact only during write and read operations. A change of the FAST bit (set
or clear) without writing a new value does not impact the internal interpretation of the duty cycle values.

To prevent the output from inconsistent signals, the duty cycle registers are double buffered. The motor
controller module will use working registers to generate the output signals. The working registers are
copied from the bus accessible registers at the following conditions:

• MCPER is set to 0 (all channels are disabled in this case)

• MCAM[1:0] of the respective channel is set to 0 (channel is disabled)

• A PWM timer counter overflow occurs while in half H-bridge or full H-bridge mode

• A PWM channel pair is configured to work in Dual Full H-Bridge mode and a PWM timer counter
overflow occurs after the odd1 duty cycle register of the channel pair has been written.

In this way, the output of the PWM will always be either the old PWM waveform or the new PWM
waveform, not some variation in between.

Reads of this register return the most recent value written. Reads do not necessarily return the value of the
currently active sign, duty cycle, and dither functionality due to the double buffering scheme.

Offset Module Base + 0x0020 . . . 0x002F Access: User read/write

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

R
S D8 D7 D6 D5 D4 D3 D2

0 0 0 0 0 0 0 0

W

Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

= Unimplemented or Reserved

Figure 19-9. Motor Controller Duty Cycle Register x (MCDCx) with FAST = 1

Table 19-10. MCDCx Field Descriptions

Field Description

0
S

SIGN — The SIGN bit is used to define which output will drive the PWM signal in (dual) full-H-bridge modes. The
SIGN bit has no effect in half-bridge modes. See Section 19.4.1.3.2, “Sign Bit (S)”, and table Table 19-12 for
detailed information about the impact of RECIRC and SIGN bit on the PWM output.

1. Odd duty cycle register: MCDCx+1, x = 2⋅n
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Motor Controller (MC10B8CV1)
19.4.1.3.5 Dither Bit (DITH)

The purpose of the dither mode is to increase the minimum length of output pulses without decreasing the
PWM resolution, in order to limit the pulse distortion introduced by the slew rate control of the outputs. If
dither mode is selected the output pattern will repeat after two timer counter overflows. For the same
output frequency, the shortest output pulse will have twice the length while dither feature is selected. To
achieve the same output frame frequency, the prescaler of the MC10B8C module has to be set to twice the
division rate if dither mode is selected; e.g., with the same prescaler division rate the repeat rate of the
output pattern is the same as well as the shortest output pulse with or without dither mode selected.

The DITH bit in control register 0 enables or disables the dither function.

DITH = 0: dither function is disabled.

When DITH is cleared and assuming left aligned operation and RECIRC = 0, the PWM output will start
at a logic low level at the beginning of the PWM period (motor controller timer counter = 0x000). The
PWM output remains low until the motor controller timer counter matches the 11-bit PWM duty cycle
value, DUTY, contained in D[10:0] in MCDCx. When a match (output compare between motor controller
timer counter and DUTY) occurs, the PWM output will toggle to a logic high level and will remain at a
logic high level until the motor controller timer counter overflows (reaches the contents of MCPER – 1).
After the motor controller timer counter resets to 0x000, the PWM output will return to a logic low level.
This completes one PWM period. The PWM period repeats every P counts (as defined by the bits P[10:0]
in the motor controller period register) of the motor controller timer counter. If DUTY >= P, the output
will be static low. If DUTY = 0x0000, the output will be continuously at a logic high level. The
relationship between the motor controller timer counter clock, motor controller timer counter value, and
PWM output while DITH = 0 is shown in Figure 19-17.

Figure 19-17. PWM Output: DITH = 0, MCAM[1:0] = 01, MCDC = 100,
MCPER = 200, RECIRC = 0

DITH = 1: dither function is enabled

Please note if DITH = 1, the bit P0 in the motor controller period register will be internally forced to 0 and
read always as 0.

When DITH is set and assuming left aligned operation and RECIRC = 0, the PWM output will start at a
logic low level at the beginning of the PWM period (when the motor controller timer counter = 0x000).
The PWM output remains low until the motor controller timer counter matches the 10-bit PWM duty cycle

0 100 0 100 0

PWM Output

1 Period

200 Counts 200 Counts

1 Period

Motor Controller
Timer Counter Clock

Motor Controller
Timer Counter 199199
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Motor Controller (MC10B8CV1)
value, DUTY, contained in D[10:1] in MCDCx. When a match (output compare between motor controller
timer counter and DUTY) occurs, the PWM output will toggle to a logic high level and will remain at a
logic high level until the motor controller timer counter overflows (reaches the value defined by
P[10:1] – 1 in MCPER). After the motor controller timer counter resets to 0x000, the PWM output will
return to a logic low level. This completes the first half of the PWM period. During the second half of the
PWM period, the PWM output will remain at a logic low level until either the motor controller timer
counter matches the 10-bit PWM duty cycle value, DUTY, contained in D[10:1] in MCDCx if D0 = 0, or
the motor controller timer counter matches the 10-bit PWM duty cycle value + 1 (the value of D[10:1] in
MCDCx is increment by 1 and is compared with the motor controller timer counter value) if D0 = 1 in the
corresponding duty cycle register. When a match occurs, the PWM output will toggle to a logic high level
and will remain at a logic high level until the motor controller timer counter overflows (reaches the value
defined by P[10:1] – 1 in MCPER). After the motor controller timer counter resets to 0x000, the PWM
output will return to a logic low level.

This process will repeat every number of counts of the motor controller timer counter defined by the period
register contents (P[10:0]). If the output is neither set to 0% nor to 100% there will be four edges on the
PWM output per PWM period in this case. Therefore, the PWM output compare function will alternate
between DUTY and DUTY + 1 every half PWM period if D0 in the corresponding duty cycle register is
set to 1. The relationship between the motor controller timer counter clock (fTC), motor controller timer
counter value, and left aligned PWM output if DITH = 1 is shown in Figure 19-18 and Figure 19-19.
Figure 19-20 and Figure 19-21 show right aligned and center aligned PWM operation respectively, with
dither feature enabled and D0 = 1. Please note: In the following examples, the MCPER value is defined
by the bits P[10:0], which is, if DITH = 1, always an even number.

NOTE
The DITH bit must be changed only if the motor controller is disabled (all
channels disabled or period register cleared) to avoid erroneous waveforms.

Figure 19-18. PWM Output: DITH = 1, MCAM[1:0] = 01, MCDC = 31, MCPER = 200, RECIRC = 0

0 15

PWM Output

16 0

100 Counts

Motor Controller
Timer Counter

Motor Controller
Timer Counter

Clock

0 16

1 Period

100 Counts

15 9999
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Electrical Characteristics
A.1.10 Supply Currents

This section describes the current consumption characteristics of the device as well as the conditions for
the measurements.

A.1.10.1 Measurement Conditions

IDD value is measured on VDDR pin. It does not include the current to drive external loads. Unless
otherwise noted the currents are measured in special single chip mode and the CPU code is executed from
RAM. For Run and Wait current measurements PLL is on and the reference clock is the IRC trimmed to
1 MHz. The bus frequency is 32 MHz and the CPU frequency is 64 MHz. Table A-7, Table A-8 and
Table A-9 show the configuration of the CPMU module and the peripherals for Run, Wait and Stop current
measurement.

18 D Port T, S, R, AD interrupt input pulse passed (STOP) tPULSE 4 — — tcyc

19 D IRQ pulse width, edge-sensitive mode (STOP) PWIRQ 1 — — tcyc
1. Maximum leakage current occurs at maximum operating temperature. Current decreases by approximately one-half for each

8 C to 12°C in the temperature range from 50°C to 125°C.
2. Refer to Section A.1.4, “Current Injection” for more details
3. Parameter only applies in stop or pseudo stop mode.

Table A-7. CPMU Configuration for Pseudo Stop Current Measurement

CPMU REGISTER Bit settings/Conditions

CPMUCLKS
PLLSEL=0, PSTP=1,
PRE=PCE=RTIOSCSEL=COPOSCSEL=1

CPMUOSC
OSCE=1, External Square wave on EXTAL fEXTAL=16MHz,
VIH= 1.8V, VIL=0V

CPMURTI RTDEC=0, RTR[6:4]=111, RTR[3:0]=1111;

CPMUCOP WCOP=1, CR[2:0]=111

Table A-8. CPUM Configuration for Run/Wait and Full Stop Current Measurement

CPMU REGISTER Bit settings/Conditions

CPMUSYNR VCOFRQ[1:0]=01,SYNDIV[5:0] = 32

CPMUPOSTDIV POSTDIV[4:0]=0,

CPMUCLKS PLLSEL=1

CPMUOSC
OSCE=0,
Reference clock for PLL is fref=firc1m trimmed to 1MHz

Table A-6. 5-V I/O Characteristics
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Ordering Information
Appendix B
Ordering Information
The following figure provides an ordering partnumber example for the devices covered by this data book.
There are two options when ordering a device. Customers must choose between ordering either the mask-
specific partnumber or the generic / mask-independent partnumber. Ordering the mask-specific
partnumber enables the customer to specify which particular maskset they will receive whereas ordering
the generic maskset means that FSL will ship the currently preferred maskset (which may change over
time).

In either case, the marking on the device will always show the generic / mask-independent partnumber and
the mask set number.

NOTE
The  mask identifier suffix and the Tape & Reel suffix are always both omitted from the

partnumber which is actually marked on the device.

For specific partnumbers to order, please contact your local sales office. The below figure illustrates the
structure of a typical mask-specific ordering number for the MC9S12HY/HA-Family devices

Figure B-1. Order Part Number Example

S 9 S12 HY64 J0 M LH R

Package Option:

Temperature Option:

Device Title

Controller Family

C = -40˚C to 85˚C
V = -40˚C to 105˚C
M = -40˚C to 125˚C

LH = 64 LQFP
LL = 100 LQFP

Status / Partnumber type:
S or SC = Maskset specific partnumber
MC = Generic / mask-independent partnumber
P or PC = prototype status (pre qualification)

Main Memory Type:
9 = Flash
3 = ROM (if available)

Maskset identifier Suffix:
First digit usually references wafer fab
Second digit usually differentiates mask rev
(This suffix is omitted in generic partnumbers)

Tape & Reel:
R = Tape & Reel
No R = No Tape & Reel
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Package Information
Figure C-3. 100-pin LQFP (case no. 983) - page 3
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