E·XFL

NXP USA Inc. - S9S12HY64J0VLL Datasheet

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	HCS12
Core Size	16-Bit
Speed	32MHz
Connectivity	CANbus, EBI/EMI, I ² C, IrDA, LINbus, SCI, SPI
Peripherals	LCD, Motor control PWM, POR, PWM, WDT
Number of I/O	80
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	4K x 8
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	4.5V ~ 5.5V
Data Converters	A/D 8x10b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	100-LQFP
Supplier Device Package	100-LQFP (14x14)
Purchase URL	https://www.e-xfl.com/product-detail/nxp-semiconductors/s9s12hy64j0vll

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Freescale Semiconductor

MC9S1
2НҮ/НА
-Family
Referen
ce Manu
ual, Rev
. 1.05

Table 1-8.	Pin-Out	Summary	(¹)	(Sheet 3 of 8)
------------	---------	---------	------------------	----------------

Pacl P	kage in			Fund	tion			Dowor	Internal Pull Resistor		
100 LQ FP	64 LQ FP	Pin	2nd Func.	3rd Func.	4th Func.	5th Func.	6th Func.	Supply	CTRL	Reset State	Description
28	19	PS3	TXCAN	_	_	_	-	V _{DDX}	PERS/PPSS	Up	Port S I/O, TX of CAN
29	-	PS4	PWM0	SCL	MISO	_	-	V _{DDX}	PERS/PPSS	Up	Port S I/O, MISO of SPI, SCL of IIC, PWM channel 0
30	-	PS5	PWM1	KWS5	MOSI	_	_	V _{DDX}	PERS/PPSS	Up	Port S I/O, MOSI of SPI, PWM channel 1, key wakeup
31	_	PS6	PWM2	KWS6	SCK	_	-	V _{DDX}	PERS/PPSS	Up	Port S I/O, SCK of SPI, PWM channel2, key wakeup
32	_	PS7	PWM3	SDA	SS	_	-	V _{DDX}	PERS/PPSS	Up	Port S I/O, SS of SPI, SDA of IIC, PWM channel 3
33	20	PR0	IOC0_6	KWR0	_	_	-	V _{DDX}	PERR/PPSR	Down	Port R I/O, timer0 Channel, Key wakeup
34	21	PR1	IOC0_7	KWR1	_	_	-	V _{DDX}	PERR/PPSR	Down	Port R I/O, timer0 Channel, Key wakeup
35	22	PR2	IOC1_6	KWR2	_	_	-	V _{DDX}	PERR/PPSR	Down	Port R I/O, timer1 Channel, Key wakeup
36	23	PR3	IOC1_7	KWR3	_	_	-	V _{DDX}	PERR/PPSR	Down	Port R I/O, timer1 Channel, Key wakeup
37	24	PP0	PWM0	FP0	_	_	-	V _{DDX}	PERP/PPSP	Down	Port P I/O, LCD Frontplane driver, PWM channel
38	25	PP1	PWM1	FP1	_	_	-	V _{DDX}	PERP/PPSP	Down	Port P I/O, LCD Frontplane driver, PWM channel
39	26	PP2	PWM2	FP2	_	_	-	V _{DDX}	PERP/PPSP	Down	Port P I/O, LCD Frontplane driver, PWM channel
40	27	PP3	PWM3	FP3	_		_	V _{DDX}	PERP/PPSP	Down	Port P I/O, LCD Frontplane driver, PWM channel

NP

Port Integration Module (S12HYPIMV1)

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0287 Reserved	R W	0	0	0	0	0	0	0	0
0x0288 PIET	R W	PIET7	PIET6	PIET5	PIET4	PIET3	PIET2	PIET1	PIET0
0x0289 PIFT	R W	PIFT7	PIFT6	PIFT5	PIFT4	PIFT3	PIFT2	PIFT1	PIFT0
0x028A PIES	R W	0	PIES6	PIES5	0	0	0	0	0
0x028B PIFS	R W	0	PIFS6	PIFS5	0	0	0	0	0
0x028C PIE1AD	R W	PIE1AD7	PIE1AD6	PIE1AD5	PIE1AD4	PIE1AD3	PIE1AD2	PIE1AD1	PIE1AD0
0x028D PIF1AD	R W	PIF1AD7	PIF1AD6	PIF1AD5	PIF1AD4	PIF1AD3	PIF1AD2	PIF1AD1	PIF1AD0
0x028E PIER	R W	0	0	0	0	PIER3	PIER2	PIER1	PIER0
0x028F PIFR	R W	0	0	0	0	PIFR3	PIFR2	PIFR1	PIFR0
0x0290 PTU	R W	PTU7	PTU6	PTU5	PTU4	PTU3	PTU2	PTU1	PTU0
0x0291 PTIU	R W	PTIU7	PTIU6	PTIU5	PTIU4	PTIU3	PTIU2	PTIU1	PTIU0
0x0292 DDRU	R W	DDRU7	DDRU6	DDRU5	DDRU4	DDRU3	DDRU2	DDRU1	DDRU0
0x0293 Reserved	R W	0	0	0	0	0	0	0	0
0x0294 PERU	R W	PERU7	PERU6	PERU5	PERU4	PERU3	PERU2	PERU1	PERU0
0x0295 PPSU	R	PPSU7	PPSU6	PPSU5	PPSU4	PPSU3	PPSU2	PPSU1	PPSU0
0x0296 SRRU	R W	SRRU7	SRRU6	SRRU5	SRRU4	SRRU3	SRRU2	SRRU1	SRRU0
			= Unimpleme	ented or Reser	ved				

NOTE

Due to internal synchronization circuits, it can take up to 2 bus clock cycles until the correct value is read on port data or port input registers, when changing the data direction register.

Figure 2-87. Illustration of I/O pin functionality

2.4.2.4 Reduced drive register (RDRx)

If the pin is used as an output this register allows the configuration of the drive strength independent of the use with a peripheral module.

2.4.2.5 Pull device enable register (PERx)

This register turns on a pull-up or pull-down device on the related pins determined by the associated polarity select register (2.4.2.6/2-129).

The pull device becomes active only if the pin is used as an input or as a wired-or output. Some peripheral module only allow certain configurations of pull devices to become active. Refer to the respective bit descriptions.

2.4.2.6 Polarity select register (PPSx)

This register selects either a pull-up or pull-down device if enabled.

It becomes only active if the pin is used as an input. A pull-up device can be activated if the pin is used as a wired-or output.

S12 Clock, Reset and Power Management Unit (S12CPMU) Block Description

7.3.2.20 S12CPMU IRC1M Trim Registers (CPMUIRCTRIMH / CPMUIRCTRIML)

After de-assert of System Reset a factory programmed trim value is automatically loaded from the Flash memory to provide trimmed Internal Reference Frequency f_{IRC1M_TRIM} .

After de-assert of System Reset a factory programmed trim value is automatically loaded from the Flash memory to provide trimmed Internal Reference Frequency f_{IRC1M_TRIM} .

Figure 7-25. S12CPMU IRC1M Trim Low Register (CPMUIRCTRIML)

Read: Anytime

Write: Anytime if PROT=0 (CPMUPROT register). Else write has no effect

NOTE

Writes to these registers while PLLSEL=1 clears the LOCK and UPOSC status bits.

Table 7-20. CPMUIRCTRIMH/L Field Descriptions

Field	Description
15-12 TCTRIM[3:0]	IRC1M temperature coefficient Trim Bits Trim bits for the Temperature Coefficient (TC) of the IRC1M frequency. Table 7-21 shows the influence of the bits TCTRIM3:0] on the relationship between frequency and temperature. Figure 7-27 shows an approximate TC variation, relative to the nominal TC of the IRC1M (i.e. for TCTRIM[3:0]=0x0000 or 0x1000).
9-0 IRCTRIM[9:0]	IRC1M Frequency Trim Bits — Trim bits for Internal Reference Clock After System Reset the factory programmed trim value is automatically loaded into these registers, resulting in a Internal Reference Frequency f _{IRC1M_TRIM} . See device electrical characteristics for value of f _{IRC1M_TRIM} . The frequency trimming consists of two different trimming methods: A rough trimming controlled by bits IRCTRIM[9:6] can be done with frequency leaps of about 6% in average. A fine trimming controlled by the bits IRCTRIM[5:0] can be doe with frequency leaps of about 0.3% (this trimming determines the precision of the frequency setting of 0.15%, i.e. 0.3% is the distance between two trimming values). Figure 7-26 shows the relationship between the trim bits and the resulting IRC1M frequency.

The RTI can be used to generate hardware interrupts at a fixed periodic rate. If enabled (by setting RTIE=1), this interrupt will occur at the rate selected by the CPMURTI register. At the end of the RTI time-out period the RTIF flag is set to one and a new RTI time-out period starts immediately.

A write to the CPMURTI register restarts the RTI time-out period.

7.6.1.2 PLL Lock Interrupt

The S12CPMU generates a PLL Lock interrupt when the lock condition (LOCK status bit) of the PLL changes, either from a locked state to an unlocked state or vice versa. Lock interrupts are locally disabled by setting the LOCKIE bit to zero. The PLL Lock interrupt flag (LOCKIF) is set to 1 when the lock condition has changed, and is cleared to 0 by writing a 1 to the LOCKIF bit.

7.6.1.3 Oscillator Status Interrupt

The Adaptive Oscillator Filter contains two different features:

1. Filter spikes of the external oscillator clock.

2. Qualify the external oscillator clock (detect and flag severe noise disturbances on the external oscillator clock which can not be filtered).

When the OSCE bit is 0, then UPOSC stays 0. When OSCE = 1 and OSCFILT = 0, then the filter is transparent and no spikes are filtered. The UPOSC bit is then set after the LOCK bit is set.

Upon detection of a status change (UPOSC), that is an unqualified oscillation becomes qualified or vice versa, the OSCIF flag is set. Going into Full Stop Mode or disabling the oscillator can also cause a status change of UPOSC.

Also, since the Adaptive Oscillator Filter is based on the PLLCLK, any change in PLL configuration or any other event which causes the PLL lock status to be cleared leads to a loss of the oscillator status information as well (UPOSC=0).

Oscillator status change interrupts are locally enabled with the OSCIE bit.

NOTE

Loosing the oscillator status (UPOSC=0) affects the clock configuration of the system¹. This needs to be dealt with in application software.

7.6.1.4 Low-Voltage Interrupt (LVI)

In FPM the input voltage VDDA is monitored. Whenever VDDA drops below level V_{LVIA} , the status bit LVDS is set to 1. When VDDA rises above level V_{LVID} the status bit LVDS is cleared to 0. An interrupt, indicated by flag LVIF = 1, is triggered by any change of the status bit LVDS if interrupt enable bit LVIE = 1.

^{1.} For details please refer to "7.4.6 System Clock Configurations"

8.3.2 Register Descriptions

This section describes in address order all the ADC12B8C registers and their individual bits.

8.3.2.1 ATD Control Register 0 (ATDCTL0)

Writes to this register will abort current conversion sequence.

Module Base + 0x0000

Figure 8-3. ATD Control Register 0 (ATDCTL0)

Read: Anytime

Write: Anytime, in special modes always write 0 to Reserved Bit 7.

Table 8-1. ATDCTL0 Field Descriptions

Field	Description
3-0	Wrap Around Channel Select Bits — These bits determine the channel for wrap around when doing
WRAP[3-0]	multi-channel conversions. The coding is summarized in Table 8-2.

Table 8-2. Multi-Channel Wrap Around Coding

WRAP3	WRAP2	WRAP1	WRAP0	Multiple Channel Conversions (MULT = 1) Wraparound to AN0 after Converting
0	0	0	0	Reserved ¹
0	0	0	1	AN1
0	0	1	0	AN2
0	0	1	1	AN3
0	1	0	0	AN4
0	1	0	1	AN5
0	1	1	0	AN6
0	1	1	1	AN7
1	0	0	0	AN7
1	0	0	1	AN7
1	0	1	0	AN7
1	0	1	1	AN7
1	1	0	0	AN7
1	1	0	1	AN7
1	1	1	0	AN7
1	1	1	1	AN7

8.3.2.9 ATD Status Register 2 (ATDSTAT2)

This read-only register contains the Conversion Complete Flags CCF[7:0].

Module Base + 0x000A

Figure 8-11. ATD Status Register 2 (ATDSTAT2)

Read: Anytime

Write: Anytime, no effect

Table 8-18. ATDSTAT2 Field Descriptions

Field	Description
7–0 CCF[7:0]	Conversion Complete Flag <i>n</i> (<i>n</i> = 7, 6, 5, 4, 3, 2, 1, 0) (<i>n conversion number, NOT channel number!)</i> — A conversion complete flag is set at the end of each conversion in a sequence. The flags are associated with the conversion position in a sequence (and also the result register number). Therefore in non-fifo mode, CCF[4] is set when the fifth conversion in a sequence is complete and the result is available in result register ATDDR4; CCF[5] is set when the sixth conversion in a sequence is complete and the result is available in ATDDR5, and so forth.
	If automatic compare of conversion results is enabled (CMPE[<i>n</i>]=1 in ATDCMPE), the conversion complete flag is only set if comparison with ATDDR <i>n</i> is true and if ACMPIE=1 a compare interrupt will be requested. In this case, as the ATDDR <i>n</i> result register is used to hold the compare value, the result will not be stored there at the end of the conversion but is lost. A flag CCF[<i>n</i>] is cleared when one of the following occurs: A) Write to ATDCTL5 (a new conversion sequence is started) B) If AFFC=0, write "1" to CCF[<i>n</i>] C) If AFFC=1 and CMPE[<i>n</i>]=0, read of result register ATDDR <i>n</i> D) If AFFC=1 and CMPE[<i>n</i>]=1, write to result register ATDDR <i>n</i>
	 In case of a concurrent set and clear on CCF[<i>n</i>]: The clearing by method A) will overwrite the set. The clearing by methods B) or C) or D) will be overwritten by the set. 0 Conversion number <i>n</i> not completed or successfully compared 1 If (CMPE[<i>n</i>]=0): Conversion number <i>n</i> has completed. Result is ready in ATDDR<i>n</i>. If (CMPE[<i>n</i>]=1): Compare for conversion result number <i>n</i> with compare value in ATDDR<i>n</i>, using compare operator CMPGT[<i>n</i>] is true. (No result available in ATDDR<i>n</i>)

8.6 Interrupts

The interrupts requested by the ADC12B8C are listed in Table 8-23. Refer to MCU specification for related vector address and priority.

Interrupt Source	CCR Mask	Local Enable		
Sequence Complete Interrupt	l bit	ASCIE in ATDCTL2		
Compare Interrupt	l bit	ACMPIE in ATDCTL2		

Table 8-23. ATD Interrupt Vectors

See Section 8.3.2, "Register Descriptions" for further details.

Figure 9-18. MSCAN Receive Error Counter (CANRXERR) 1. Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1)

1. Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1) Write: Unimplemented

NOTE

Reading this register when in any other mode other than sleep or initialization mode may return an incorrect value. For MCUs with dual CPUs, this may result in a CPU fault condition.

Writing to this register when in special modes can alter the MSCAN functionality.

9.3.2.16 MSCAN Transmit Error Counter (CANTXERR)

This register reflects the status of the MSCAN transmit error counter.

Module Base + 0x000F

Access: User read/write⁽¹⁾

	7	6	5	4	3	2	1	0		
R	TXERR7	TXERR6	TXERR5	TXERR4	TXERR3	TXERR2	TXERR1	TXERR0		
W										
Reset:	0	0	0	0	0	0	0	0		
		= Unimplemented								

Figure 9-19. MSCAN Transmit Error Counter (CANTXERR)

1. Read: Only when in sleep mode (SLPRQ = 1 and SLPAK = 1) or initialization mode (INITRQ = 1 and INITAK = 1) Write: Unimplemented

NOTE

Reading this register when in any other mode other than sleep or initialization mode, may return an incorrect value. For MCUs with dual CPUs, this may result in a CPU fault condition.

Writing to this register when in special modes can alter the MSCAN functionality.

Serial Peripheral Interface (S12SPIV5)

13.2.3 SS — Slave Select Pin

This pin is used to output the select signal from the SPI module to another peripheral with which a data transfer is to take place when it is configured as a master and it is used as an input to receive the slave select signal when the SPI is configured as slave.

13.2.4 SCK — Serial Clock Pin

In master mode, this is the synchronous output clock. In slave mode, this is the synchronous input clock.

13.3 Memory Map and Register Definition

This section provides a detailed description of address space and registers used by the SPI.

13.3.1 Module Memory Map

The memory map for the SPI is given in Figure 13-2. The address listed for each register is the sum of a base address and an address offset. The base address is defined at the SoC level and the address offset is defined at the module level. Reads from the reserved bits return zeros and writes to the reserved bits have no effect.

Register Name		Bit 7	6	5	4	3	2	1	Bit 0
0x0000 SPICR1	R W	SPIE	SPE	SPTIE	MSTR	CPOL	СРНА	SSOE	LSBFE
0x0001 SPICR2	R W	0	XFRW	0	MODFEN	BIDIROE	0	SPISWAI	SPC0
0x0002 SPIBR	R W	0	SPPR2	SPPR1	SPPR0	0	SPR2	SPR1	SPR0
0x0003 SPISR	R W	SPIF	0	SPTEF	MODF	0	0	0	0
0x0004 SPIDRH	R W	R15 T15	R14 T14	R13 T13	R12 T12	R11 T11	R10 T10	R9 T9	R8 T8
0x0005 SPIDRL	R W	R7 T7	R6 T6	R5 T5	R4 T4	R3 T3	R2 T2	R1 T1	R0 T0
0x0006 Reserved	R W								
0x0007 Reserved	R W								
			= Unimplem	ented or Res	erved				

Figure 13-2. SPI Register Summary


```
Serial Peripheral Interface (S12SPIV5)
```


Figure 13-10. Reception with SPIF serviced too late

13.4 Functional Description

The SPI module allows a duplex, synchronous, serial communication between the MCU and peripheral devices. Software can poll the SPI status flags or SPI operation can be interrupt driven.

The SPI system is enabled by setting the SPI enable (SPE) bit in SPI control register 1. While SPE is set, the four associated SPI port pins are dedicated to the SPI function as:

- Slave select (\overline{SS})
- Serial clock (SCK)
- Master out/slave in (MOSI)
- Master in/slave out (MISO)

Figure 14-4. Channel 7 Output Compare/Pulse Accumulator Logic

14.2 External Signal Description

The TIM16B8CV2 module has a total of eight external pins.

14.2.1 IOC7 — Input Capture and Output Compare Channel 7 Pin

This pin serves as input capture or output compare for channel 7. This can also be configured as pulse accumulator input.

14.2.2 IOC6 — Input Capture and Output Compare Channel 6 Pin

This pin serves as input capture or output compare for channel 6.

14.2.3 IOC5 — Input Capture and Output Compare Channel 5 Pin

This pin serves as input capture or output compare for channel 5.

14.2.4 IOC4 — Input Capture and Output Compare Channel 4 Pin

This pin serves as input capture or output compare for channel 4. Pin

14.2.5 IOC3 — Input Capture and Output Compare Channel 3 Pin

This pin serves as input capture or output compare for channel 3.

14.2.6 IOC2 — Input Capture and Output Compare Channel 2 Pin

This pin serves as input capture or output compare for channel 2.

48 KByte Flash Module (S12FTMRC48K1V1)

Figure 16-1. FTMRC48K1 Block Diagram

16.2 External Signal Description

The Flash module contains no signals that connect off-chip.

Offset Module Base + 0x0008

The (unreserved) bits of the FPROT register are writable with the restriction that the size of the protected region can only be increased (see Section 16.3.2.9.1, "P-Flash Protection Restrictions," and Table 16-20).

During the reset sequence, the FPROT register is loaded with the contents of the P-Flash protection byte in the Flash configuration field at global address 0x3_FF0C located in P-Flash memory (see Table 16-3) as indicated by reset condition 'F' in Figure 16-13. To change the P-Flash protection that will be loaded during the reset sequence, the upper sector of the P-Flash memory must be unprotected, then the P-Flash protection byte must be reprogrammed. If a double bit fault is detected while reading the P-Flash phrase containing the P-Flash protection byte during the reset sequence, the FPOPEN bit will be cleared and remaining bits in the FPROT register will be set to leave the P-Flash memory fully protected.

Trying to alter data in any protected area in the P-Flash memory will result in a protection violation error and the FPVIOL bit will be set in the FSTAT register. The block erase of a P-Flash block is not possible if any of the P-Flash sectors contained in the same P-Flash block are protected.

Field	Description
6 RNV[6]	Reserved Nonvolatile Bit — The RNV bit should remain in the erased state for future enhancements.
5 FPHDIS	Flash Protection Higher Address Range Disable — The FPHDIS bit determines whether there is a protected/unprotected area in a specific region of the P-Flash memory ending with global address 0x3_FFFF. 0 Protection/Unprotection enabled 1 Protection/Unprotection disabled
4–3 FPHS[1:0]	Flash Protection Higher Address Size — The FPHS bits determine the size of the protected/unprotected area in P-Flash memory as shown inTable 16-18. The FPHS bits can only be written to while the FPHDIS bit is set.

Table	16-17.	P-Flash	Protection	Function
IUNIC	10 17.	1 1 10.511	11010011011	i unotion

FPOPEN	FPHDIS	FPLDIS	Function ¹	
1	1	1	No P-Flash Protection	
1	1	0	Protected Low Range	
1	0	1	Protected High Range	
1	0	0	Protected High and Low Ranges	
0	1	1	Full P-Flash Memory Protected	
0	1	0	Unprotected Low Range	
0	0	1	Unprotected High Range	
0	0	0	Unprotected High and Low Ranges	

48 KByte Flash Module (S12FTMRC48K1V1)

register (see Table 16-10) will be changed to unsecure the MCU. Key values of 0x0000 and 0xFFFF are not permitted as backdoor keys. While the Verify Backdoor Access Key command is active, P-Flash memory and D-Flash memory will not be available for read access and will return invalid data.

The user code stored in the P-Flash memory must have a method of receiving the backdoor keys from an external stimulus. This external stimulus would typically be through one of the on-chip serial ports.

If the KEYEN[1:0] bits are in the enabled state (see Section 16.3.2.2), the MCU can be unsecured by the backdoor key access sequence described below:

- 1. Follow the command sequence for the Verify Backdoor Access Key command as explained in Section 16.4.5.11
- 2. If the Verify Backdoor Access Key command is successful, the MCU is unsecured and the SEC[1:0] bits in the FSEC register are forced to the unsecure state of 10

The Verify Backdoor Access Key command is monitored by the Memory Controller and an illegal key will prohibit future use of the Verify Backdoor Access Key command. A reset of the MCU is the only method to re-enable the Verify Backdoor Access Key command. The security as defined in the Flash security byte (0x3_FF0F) is not changed by using the Verify Backdoor Access Key command sequence. The backdoor keys stored in addresses 0x3_FF00-0x3_FF07 are unaffected by the Verify Backdoor Access Key command sequence. The Verify Backdoor Access Key command sequence has no effect on the program and erase protections defined in the Flash protection register, FPROT.

After the backdoor keys have been correctly matched, the MCU will be unsecured. After the MCU is unsecured, the sector containing the Flash security byte can be erased and the Flash security byte can be reprogrammed to the unsecure state, if desired. In the unsecure state, the user has full control of the contents of the backdoor keys by programming addresses 0x3_FF00-0x3_FF07 in the Flash configuration field.

16.5.2 Unsecuring the MCU in Special Single Chip Mode using BDM

A secured MCU can be unsecured in special single chip mode by using the following method to erase the P-Flash and D-Flash memory:

- 1. Reset the MCU into special single chip mode
- 2. Delay while the BDM executes the Erase Verify All Blocks command write sequence to check if the P-Flash and D-Flash memories are erased
- 3. Send BDM commands to disable protection in the P-Flash and D-Flash memory
- 4. Execute the Erase All Blocks command write sequence to erase the P-Flash and D-Flash memory
- 5. After the CCIF flag sets to indicate that the Erase All Blocks operation has completed, reset the MCU into special single chip mode
- 6. Delay while the BDM executes the Erase Verify All Blocks command write sequence to verify that the P-Flash and D-Flash memory are erased

If the P-Flash and D-Flash memory are verified as erased, the MCU will be unsecured. All BDM commands will now be enabled and the Flash security byte may be programmed to the unsecure state by continuing with the following steps:

64 KByte Flash Module (S12FTMRC64K1V1)

Figure 17-1. FTMRC64K1 Block Diagram

17.2 External Signal Description

The Flash module contains no signals that connect off-chip.

FCMD	Command	Function on P-Flash Memory
0x04	Read Once	Read a dedicated 64 byte field in the nonvolatile information register in P-Flash block that was previously programmed using the Program Once command.
0x06	Program P-Flash	Program a phrase in a P-Flash block.
0x07	Program Once	Program a dedicated 64 byte field in the nonvolatile information register in P-Flash block that is allowed to be programmed only once.
0x08	Erase All Blocks	Erase all P-Flash (and D-Flash) blocks. An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN bits in the FPROT register and the DPOPEN bit in the DFPROT register are set prior to launching the command.
0x09	Erase Flash Block	Erase a P-Flash (or D-Flash) block. An erase of the full P-Flash block is only possible when FPLDIS, FPHDIS and FPOPEN bits in the FPROT register are set prior to launching the command.
0x0A	Erase P-Flash Sector	Erase all bytes in a P-Flash sector.
0x0B	Unsecure Flash	Supports a method of releasing MCU security by erasing all P-Flash (and D-Flash) blocks and verifying that all P-Flash (and D-Flash) blocks are erased.
0x0C	Verify Backdoor Access Key	Supports a method of releasing MCU security by verifying a set of security keys.
0x0D	Set User Margin Level	Specifies a user margin read level for all P-Flash blocks.
0x0E	Set Field Margin Level	Specifies a field margin read level for all P-Flash blocks (special modes only).

Table 17-28. P-Flash Commands

17.4.3.5 D-Flash Commands

Table 17-29 summarizes the valid D-Flash commands along with the effects of the commands on the D-Flash block.

FCMD	Command	Function on D-Flash Memory
0x01	Erase Verify All Blocks	Verify that all D-Flash (and P-Flash) blocks are erased.
0x02	Erase Verify Block	Verify that the D-Flash block is erased.
0x08	Erase All Blocks	Erase all D-Flash (and P-Flash) blocks. An erase of all Flash blocks is only possible when the FPLDIS, FPHDIS, and FPOPEN bits in the FPROT register and the DPOPEN bit in the DFPROT register are set prior to launching the command.
0x09	Erase Flash Block	Erase a D-Flash (or P-Flash) block. An erase of the full D-Flash block is only possible when DPOPEN bit in the DFPROT register is set prior to launching the command.
0x0B	Unsecure Flash	Supports a method of releasing MCU security by erasing all D-Flash (and P-Flash) blocks and verifying that all D-Flash (and P-Flash) blocks are erased.
0x0D	Set User Margin Level	Specifies a user margin read level for the D-Flash block.
0x0E	Set Field Margin Level	Specifies a field margin read level for the D-Flash block (special modes only).

Table 17-29. D-Flash Commands

64 KByte Flash Module (S12FTMRC64K1V1)

CCOBIX[2:0]	FCCOB Parameters		
000	0x0A	Global address [17:16] to identify P-Flash block to be erased	
001	Global address [15:0] anywhere within the sector to be erased Refer to Section 17.1.2.1 for the P-Flash sector size.		

Table 17-47. Erase	P-Flash Sector	Command FCCOB	Requirements
--------------------	-----------------------	----------------------	--------------

Upon clearing CCIF to launch the Erase P-Flash Sector command, the Memory Controller will erase the selected Flash sector and then verify that it is erased. The CCIF flag will be set after the Erase P-Flash Sector operation has completed.

Register	Error Bit	Error Condition		
		Set if CCOBIX[2:0] != 001 at command launch		
		Set if command not available in current mode (see Table 17-27)		
	ACCERK	Set if an invalid global address [17:16] is supplied		
FSTAT		Set if a misaligned phrase address is supplied (global address [2:0] != 000)		
	FPVIOL	Set if the selected P-Flash sector is protected		
	MGSTAT1	Set if any errors have been encountered during the verify operation		
	MGSTAT0	Set if any non-correctable errors have been encountered during the verify operation		

Table 17-48. Erase P-Flash Sector Command Error Handling

17.4.5.10 Unsecure Flash Command

The Unsecure Flash command will erase the entire P-Flash and D-Flash memory space and, if the erase is successful, will release security.

Table 17-49. Unsecure Flash Command FCCOB Requirements

CCOBIX[2:0]	FCCOB Parameters			
000	0x0B	Not required		

Upon clearing CCIF to launch the Unsecure Flash command, the Memory Controller will erase the entire P-Flash and D-Flash memory space and verify that it is erased. If the Memory Controller verifies that the entire Flash memory space was properly erased, security will be released. If the erase verify is not successful, the Unsecure Flash operation sets MGSTAT1 and terminates without changing the security state. During the execution of this command (CCIF=0) the user must not write to any Flash module register. The CCIF flag is set after the Unsecure Flash operation has completed.

In Table A-27 the timing characteristics for slave mode are listed.

Table A-27. SPI Slave Mode 1	Timing Characteristics
------------------------------	------------------------

Num	С	Characteristic	Symbol	Min	Тур	Мах	Unit	
1	D	SCK froquonou	f	DC		MIN(8,f _{bus} /4) ⁽¹⁾	MHZ	
	D		Isck	DC	_	MIN(0.8,f _{bus} /4) ⁽²⁾		
1	D	SCK period	t _{sck}	4*t _{bus} 1 MAX(1250, 4*t _{bus}) ²	_	œ	ns	
2	D	Enable lead time	t _{lead}	4	—	—	t _{bus}	
3	D	Enable lag time	t _{lag}	4		_	t _{bus}	
4	D	Clock (SCK) high or low time	t _{wsck}	4		_	t _{bus}	
5	D	Data setup time (inputs)	t _{su}	8		_	ns	
6	D	Data hold time (inputs)	t _{hi}	8	—	_	ns	
7	D	Slave access time (time to data active)	ta	—	—	20	ns	
0	D	Slava MISO disable time		—		22	ns	
0			^L dis	—		220 ²	ns	
0	D	Data valid ofter SCK odgo	+			$29 + 0.5 \cdot t_{bus}^{(3)}$,	ns	
9	D	Data valiu alter SCK euge	^v vsck	^v vsck	_	_	$220 + 0.5 \cdot t_{bus}^{(4)}$	
10	D	Data valid after \overline{SS} fall	t _{vss}	—		$29 + 0.5 \cdot t_{bus}^{3}$	ns	
11	D	Data hold time (outputs)	t _{ho}	17	_	_	ns	
12	D	Rise and fall time inputs	t _{rfi}	_		8	ns	
13	П	Pise and fall time outputs	t .			8	ns	
13			^r fo			85 ²		

1. SPI on non-motor pad ports (Port S or Port H), or SPI on motor pad ports with all Slew Rate control disable 2. SPI on Port V with slew rate control enabled. All the SPI pins slew rate control should be enabled

3. 0.5 t_{bus} added due to internal synchronization delay

4. 0.5 tbus added due to internal synchronization delay, SPI on Port V with slew rate control enabled. All the SPI pins slew 4. 0.5 t_{bus} added due to internal synchronization delay, of Fort Fort V war slew rate control enabled. All the of Fpi rate control should be enabled
4. MIN(8, f_{bus}/4) means select minimum frequency value from 8MHZ and f_{bus}/4MHZ. same for the other MIN(X,Y)
5. MAX(1250, 4*t_{bus}) means select the maximum period value from 1250ns and 4*t_{bus} ns.