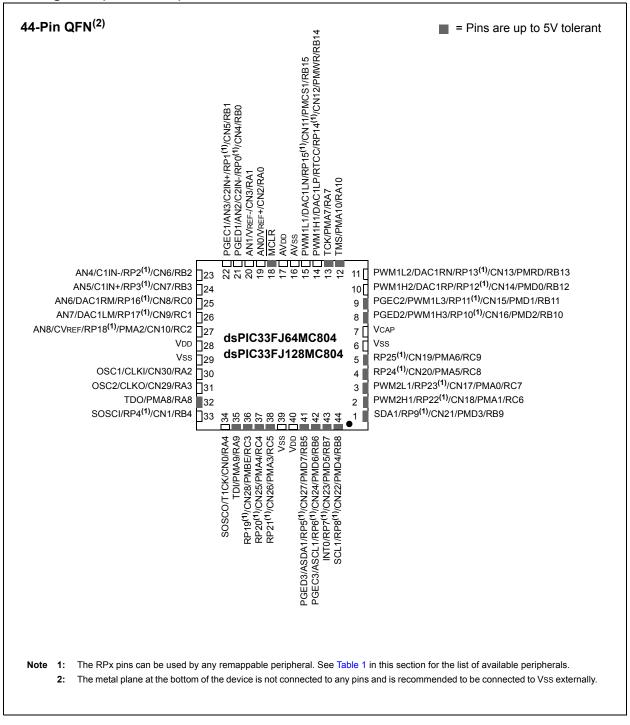


Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

1.0 DEVICE OVERVIEW

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 Digital Signal Controller (DSC) devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance 16-bit Microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 families of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

TABLE 1-1:	PINOU	T I/O DES	CRIPT	IONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	PPS	Description
FLTA1	I	ST	Yes	PWM1 Fault A input.
PWM1L1	0		No	PWM1 Low output 1
PWM1H1	0	—	No	PWM1 High output 1
PWM1L2	0	—	No	PWM1 Low output 2
PWM1H2	0		No	PWM1 High output 2
PWM1L3	0		No	PWM1 Low output 3
PWM1H3	0		No	PWM1 High output 3
FLTA2	I	ST	Yes	PWM2 Fault A input.
PWM2L1	0		No	PWM2 Low output 1
PWM2H1	0		No	PWM2 High output 1
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.
PGEC1	I	ST	No	Clock input pin for programming/debugging communication channel 1.
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.
PGEC2	I	ST	No	Clock input pin for programming/debugging communication channel 2.
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.
PGEC3	I	ST	No	Clock input pin for programming/debugging communication channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules.
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.
VCAP	Р	_	No	CPU logic filter capacitor connection.
Vss	Р	—	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	I	Analog	No	Analog voltage reference (low) input.
	$\sim - \alpha u \alpha$	C as man a tile	La liana de	or output Applog = Applog input P = Power

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)

Legend: CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

Analog = Analog input P = Power O = Output TTL = TTL input buffer

I = Input

4.8.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDH).

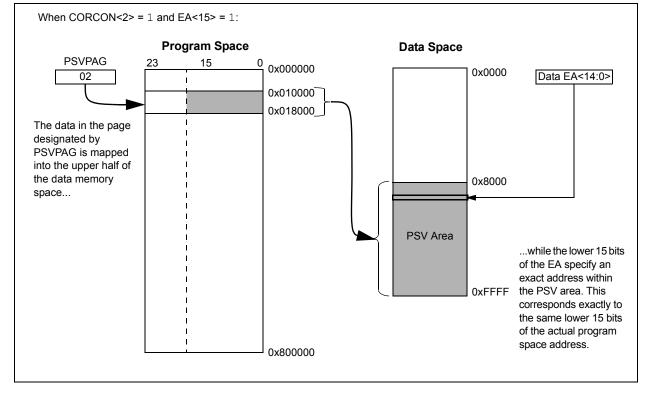
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the ${\tt REPEAT}$ loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
_	DMA4IE	PMPIE	_	_	—	_	_				
it 15					I		bit				
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—		—	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE				
bit 7							bit				
Legend:	1. 1.9		1.11								
R = Readab		W = Writable			mented bit, read						
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 15	Unimplomor	ted: Read as	·^'								
bit 14	-			omploto Intorr	runt Enable bit						
JIL 14		DMA4IE: DMA Channel 4 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled									
	0 = Interrupt request not enabled										
bit 13	PMPIE: Para	PMPIE: Parallel Master Port Interrupt Enable bit									
		request enable									
	•	request not en									
bit 12-5	-	nted: Read as									
bit 4			Data Transfer C	complete Interr	rupt Enable bit						
		request enable request not en									
bit 3	•	•	pt Enable bit ⁽¹⁾								
511 5		request enable	•								
		request not en									
bit 2	C1RXIE: EC/	AN1 Receive I	Data Ready Inte	errupt Enable I	oit ⁽¹⁾						
		1 = Interrupt request enabled									
	-	request not en									
bit 1		Event Interrup									
		request enable									
ait O		•									
oit O	SPI2EIE: SP	I2 Error Interru request enable	pt Enable bit								

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

		4: INTERRUPT I									
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
		CNIP<2:0>		<u> </u>		CMIP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		MI2C1IP<2:0>				SI2C1IP<2:0>					
bit 7					•		bit				
Legend:											
R = Readabl	e bit	W = Writable t	bit	U = Unimpler	mented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own				
bit 15	Unimplem	ented: Read as '0)'								
bit 14-12	CNIP<2:0>	Change Notifica	tion Interrup	t Priority bits							
	111 = Inte	rrupt is priority 7 (h	nighest priori	ty interrupt)							
	•										
	•										
		001 = Interrupt is priority 1									
		rrupt source is disa									
bit 11	-	ented: Read as '0									
bit 10-8		Comparator Interview									
	111 = Inte	rrupt is priority 7 (h	nighest priori	ty interrupt)							
	•										
	•										
		rrupt is priority 1	- I - II								
hit 7		rrupt source is disa									
bit 7	-	ented: Read as '0		munt Drievity hits	_						
bit 6-4		2:0>: I2C1 Master rrupt is priority 7 (h			5						
	•		lightest phon	ty interrupt)							
	•										
	• 0.01 - Into	rrupt is priority 1									
		rrupt source is disa	abled								
bit 3		ented: Read as '0									
bit 2-0	-	2:0>: I2C1 Slave E		pt Priority bits							
		rrupt is priority 7 (h									
	•		•	• •							
	•										
	001 = Inte	rrupt is priority 1									
		rrupt source is disa	blad								

DECISTED 7 10

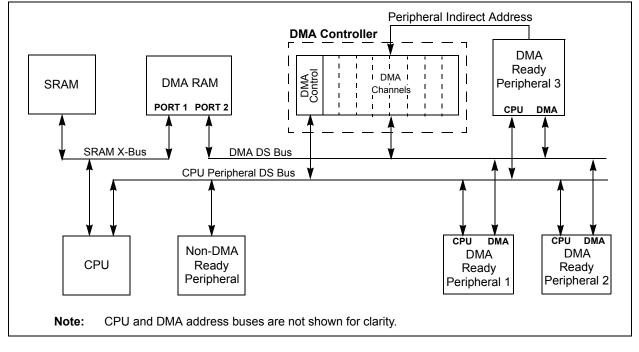
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U2TXIP<2:0>		—		U2RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>		_		T5IP<2:0>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
hit 1E	Unimplomo	nted: Dood oo '	o'				
bit 15	-	nted: Read as '					
bit 14-12		>: UART2 Trans upt is priority 7 (
	•	-prio piioiii) i (.,			
	•						
	•	unt in priority 1					
		upt is priority 1 upt source is dis	abled				
bit 11		nted: Read as '					
bit 10-8	-	>: UART2 Rece		Priority bits			
		upt is priority 7 (•	•			
	•		5	-,,			
	•						
	• 001 - Interru	upt is priority 1					
		upt is priority if	abled				
bit 7		nted: Read as '					
bit 6-4	-	: External Inter		bits			
		upt is priority 7 (
	•	-prio piloniji (.,			
	•						
	•	unt in uniquity d					
		upt is priority 1 upt source is dis	abled				
bit 3		nted: Read as '					
bit 2-0	-	Timer5 Interrupt					
		upt is priority 7 (-	ty interrunt)			
	•		giloot priori	, interrupt)			

• • 001 = Interrupt is priority 1

000 = Interrupt source is disabled

© 2007-2012 Microchip Technology Inc.

The DMA controller features eight identical data transfer channels.


Each channel has its own set of control and status registers. Each DMA channel can be configured to copy data either from buffers stored in dual port DMA RAM to peripheral SFRs, or from peripheral SFRs to buffers in DMA RAM.

The DMA controller supports the following features:

- Eight DMA channels
- Register Indirect with Post-increment Addressing mode
- Register Indirect without Post-increment Addressing mode
- Peripheral Indirect Addressing mode (peripheral generates destination address)
- CPU interrupt after half or full block transfer complete

- · Byte or word transfers
- · Fixed priority channel arbitration
- Manual (software) or Automatic (peripheral DMA requests) transfer initiation
- One-Shot or Auto-Repeat block transfer modes
- Ping-Pong mode (automatic switch between two DPSRAM start addresses after each block transfer complete)
- DMA request for each channel can be selected from any supported interrupt source
- · Debug support features

For each DMA channel, a DMA interrupt request is generated when a block transfer is complete. Alternatively, an interrupt can be generated when half of the block has been filled.

FIGURE 8-1: TOP LEVEL SYSTEM ARCHITECTURE USING A DEDICATED TRANSACTION BUS

REGISTER 8-7: DMACS0: DMA CONTROLLER STATUS REGISTER 0 (CONTINUED)

bit 3	XWCOL3: Channel 3 DMA RAM Write Collision Flag bit
	1 = Write collision detected0 = No write collision detected
bit 2	XWCOL2: Channel 2 DMA RAM Write Collision Flag bit
	1 = Write collision detected0 = No write collision detected
bit 1	XWCOL1: Channel 1 DMA RAM Write Collision Flag bit
	1 = Write collision detected0 = No write collision detected
bit 0	XWCOL0: Channel 0 DMA RAM Write Collision Flag bit
	1 = Write collision detected0 = No write collision detected

REGISTER 11-29:	RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾
-----------------	---

bit 7							bit (
	_	—			RP16R<4:0>	>	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit t
 bit 15					KF17K54.02	-	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0 RP17R<4:0	R/W-0	R/W-0

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-30: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	—	—			RP19R<4:0>			
bit 15							bit 8	
			D 444 0	D 444.0	DAMA	DMU O	D 444.0	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—			RP18R<4:0>			
bit 7							bit 0	
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	= Bit is unknown	
bit 15-13	Unimplemen	ted: Read as '	0'					
bit 12-8		Peripheral Ou ction numbers	•	is Assigned to	RP19 Output F	Pin bits (see Tal	ole 11-2 for	
bit 7-5	Unimplemen	ted: Read as '	0'					
bit 4-0		Peripheral Ou	•	is Assigned to	RP18 Output F	Pin bits (see Tal	ole 11-2 for	

Note 1: This register is implemented in 44-pin devices only.

16.0 MOTOR CONTROL PWM MODULE

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 device supports up to two dedicated Pulse Width Modulation (PWM) modules. The PWM1 module is a 6-channel PWM generator, and the PWM2 module is a 2-channel PWM generator.

The PWM module has the following features:

- Up to 16-bit resolution
- · On-the-fly PWM frequency changes
- · Edge and Center-Aligned Output modes
- · Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation or Brushless DC (BLDC)
- Special Event Comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates configurable to be immediate or synchronized to the PWM time base

16.1 PWM1: 6-Channel PWM Module

This module simplifies the task of generating multiple synchronized PWM outputs. The following power and motion control applications are supported by the PWM module:

- 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

This module contains three duty cycle generators, numbered 1 through 3. The module has six PWM output pins, numbered PWM1H1/PWM1L1 through PWM1H3/PWM1L3. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

16.2 PWM2: 2-Channel PWM Module

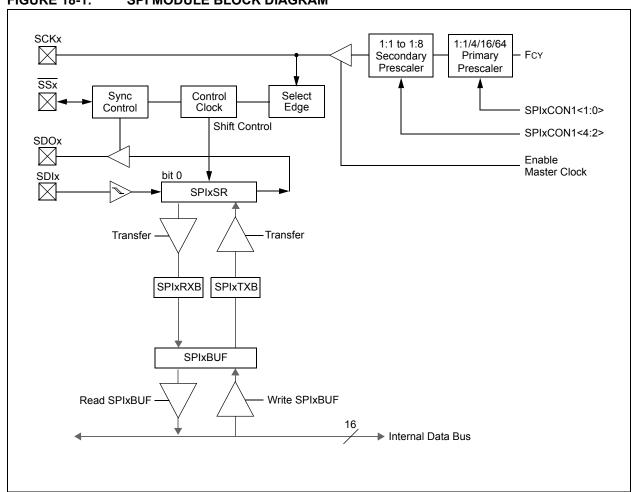
This module provides an additional pair of complimentary PWM outputs that can be used for:

- Independent PFC correction in a motor system
- Induction cooking

This module contains a duty cycle generator that provides two PWM outputs, numbered PWM2H1/ PWM2L1.

SERIAL PERIPHERAL 18.0 **INTERFACE (SPI)**

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304. the of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) the "dsPIC33F/PIC24H Family of Reference Manual", which is available the Microchip from web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with Motorola® SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (serial data input)
- · SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

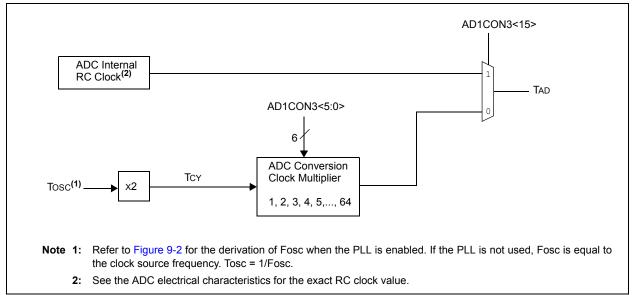
FIGURE 18-1: SPI MODULE BLOCK DIAGRAM

21.2 Frame Types

The ECAN module transmits various types of frames which include data messages, or remote transmission requests initiated by the user, as other frames that are automatically generated for control purposes. The following frame types are supported:

Standard Data Frame:

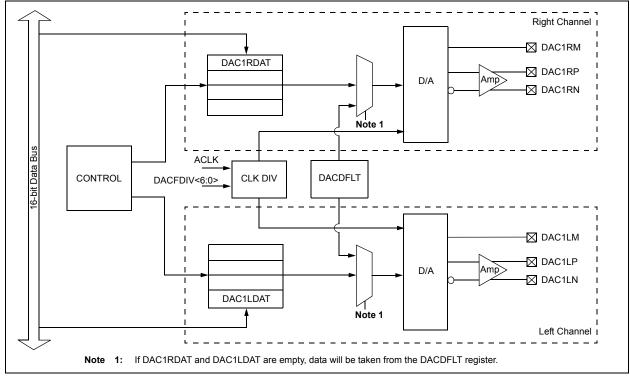
A standard data frame is generated by a node when the node wishes to transmit data. It includes an 11-bit Standard Identifier (SID), but not an 18-bit Extended Identifier (EID).

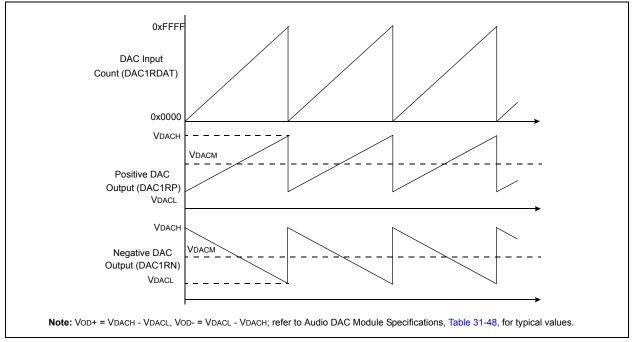

- Extended Data Frame:
- An extended data frame is similar to a standard data frame, but includes an extended identifier as well.
- Remote Frame:
- It is possible for a destination node to request the data from the source. For this purpose, the destination node sends a remote frame with an identifier that matches the identifier of the required data frame. The appropriate data source node sends a data frame as a response to this remote request.
- Error Frame:
- An error frame is generated by any node that detects a bus error. An error frame consists of two fields: an error flag field and an error delimiter field.
- Overload Frame:
- An overload frame can be generated by a node as a result of two conditions. First, the node detects a dominant bit during interframe space which is an illegal condition. Second, due to internal conditions, the node is not yet able to start reception of the next message. A node can generate a maximum of 2 sequential overload frames to delay the start of the next message.
- · Interframe Space:
- Interframe space separates a proceeding frame (of whatever type) from a following data or remote frame.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			TERRO	CNT<7:0>			
pit 15							bit
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
			RERRO	CNT<7:0>			
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'	
n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	iown
bit 15-8		':0>: Transmit E					
bit 7-0	RERRCNT<	7:0>: Receive E	Error Count bi	ts			
REGISTER	21-9: CiCFC	G1: ECAN™ E	BAUD RATE	E CONFIGUR	ATION REGI	STER 1	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	_	_	_	_	_
hi+ 1 E							bit
B/W-0	R/W/-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0 BRI	R/W-0	R/W-0	R/W-0
R/W-0	R/W-0 W<1:0>	R/W-0	R/W-0		R/W-0 P<5:0>	R/W-0	
R/W-0 SJ		R/W-0	R/W-0			R/W-0	
R/W-0 SJ bit 7 Legend:	W<1:0>			BRI	² <5:0>		R/W-0 bit
R/W-0 SJ bit 7 L egend: R = Readab	W<1:0>	W = Writable	bit	BRI U = Unimplet	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab	W<1:0>		bit	BRI	P<5:0>		bit
R/W-0 SJ Dit 7 Legend: R = Readab n = Value a	W<1:0> Die bit at POR	W = Writable '1' = Bit is set	bit	BRI U = Unimplet	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8	W<1:0> ble bit at POR Unimplemer	W = Writable '1' = Bit is set	bit 0'	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7	W<1:0> ble bit at POR Unimplemer SJW<1:0>: 5	W = Writable '1' = Bit is set nted: Read as ' Synchronization	bit 0'	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8	W<1:0> ble bit at POR Unimplemer SJW<1:0>: \$ 11 = Length	W = Writable '1' = Bit is set nted: Read as ' Synchronization is 4 x TQ	bit 0'	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8	W<1:0> ble bit at POR Unimplemer SJW<1:0>: 5	W = Writable '1' = Bit is set nted: Read as ' Synchronization is 4 x TQ is 3 x TQ	bit 0'	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8	W<1:0> ble bit at POR Unimplemer SJW<1:0>: \$ 11 = Length 10 = Length	W = Writable '1' = Bit is set hted: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ	bit 0'	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8	De bit at POR Unimplemer SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length	W = Writable '1' = Bit is set hted: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ	bit o' a Jump Width	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8 bit 7-6	W<1:0> Dele bit at POR Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	W = Writable '1' = Bit is set hted: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ is 1 x TQ	bit 0' 1 Jump Width caler bits	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ Dit 7 Legend: R = Readab n = Value a Dit 15-8 Dit 7-6	W<1:0> Dele bit at POR Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	W = Writable '1' = Bit is set nted: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ is 1 x TQ Baud Rate Pres	bit 0' 1 Jump Width caler bits	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8 bit 7-6	W<1:0> Dele bit at POR Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	W = Writable '1' = Bit is set nted: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ is 1 x TQ Baud Rate Pres	bit 0' 1 Jump Width caler bits	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8 bit 7-6	W<1:0> Dele bit at POR Unimplemen SJW<1:0>: S 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E	W = Writable '1' = Bit is set nted: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ is 1 x TQ Baud Rate Pres	bit 0' 1 Jump Width caler bits	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8 bit 7-6	W<1:0> Dele bit at POR Unimplemer SJW<1:0>: \$ 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E 11 1111 = 7 00 0010 = 7	W = Writable '1' = Bit is set ited: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ is 1 x TQ Baud Rate Pres $TQ = 2 \times 64 \times 1/2$	bit o' Jump Width caler bits FCAN	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit
R/W-0 SJ bit 7 Legend: R = Readab n = Value a bit 15-8 bit 7-6	W<1:0> Dele bit at POR Unimplemen SJW<1:0>: \$ 11 = Length 10 = Length 01 = Length 00 = Length BRP<5:0>: E 11 1111 = 7 00 0010 = 7 00 0001 = 7	W = Writable '1' = Bit is set nted: Read as ' Synchronization is 4 x TQ is 3 x TQ is 2 x TQ is 1 x TQ Baud Rate Pres TQ = 2 x 64 x 1/	bit 0' 1 Jump Width caler bits FCAN CAN	BRI U = Unimplet '0' = Bit is cle	P<5:0>	d as '0'	bit

© 2007-2012 Microchip Technology Inc.


FIGURE 22-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM


23.4 DAC CLOCK

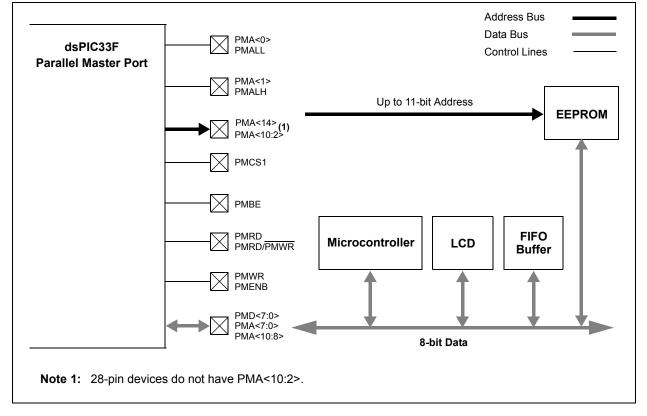
The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator. The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

26.5 Programmable CRC Registers

—	CSIDL			VWORD<4:0					
				VVVURD~4.0	>				
						bit 8			
R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CRCMPT	_	CRCGO	PLEN<3:0>						
						bit (
it	W = Writable	/ = Writable bit U = Unimplemented b			oit, read as '0'				
)R	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
Unimplemented: Read as '0'									
CSIDL: CRC Stop in Idle Mode bit									
•									
		d words in the	FIFO. Has a ma	aximum value	of 8 when PLE	N<3:0> > 7,			
CRCFUL: FIF	O Full bit								
1 = FIFO is full									
0 = FIFO is not full									
CRCMPT: FIFO Empty Bit									
1 = FIFO is empty									
		01							
•									
				<i>y</i>					
PLEN<3:0>:	Polynomial La	nath hite							
	CRCMPT bit DR Unimplement CSIDL: CRC 1 = Discontin 0 = Continue VWORD<4:0: Indicates the is or 16 when Pl CRCFUL: FIF 1 = FIFO is ft 0 = FIFO is ft 0 = FIFO is n CRCMPT: FIF 1 = FIFO is n CRCMPT: SIF 1 = SIFC SIF 1 = Start CRC	CRCMPT—bitW = WritableDR'1' = Bit is setUnimplemented: Read as 'CSIDL: CRC Stop in Idle Mo1 = Discontinue module opera0 = Continue module operaVWORD<4:0>: Pointer ValuIndicates the number of valior 16 when PLEN<3:0> \leq 7.CRCFUL: FIFO Full bit1 = FIFO is full0 = FIFO is not fullCRCMPT: FIFO Empty Bit1 = FIFO is empty0 = FIFO is not emptyUnimplemented: Read as 'CRCGO: Start CRC bit1 = Start CRC serial shifter	CRCMPT—CRCGObitW = Writable bitDR'1' = Bit is setUnimplemented: Read as '0'CSIDL: CRC Stop in Idle Mode bit1 = Discontinue module operation when c0 = Continue module operation in Idle m	CRCMPT—CRCGObitW = Writable bitU = UnimplemDR'1' = Bit is set'0' = Bit is clearUnimplemented: Read as '0'CSIDL: CRC Stop in Idle Mode bit1 = Discontinue module operation when device enters Idl0 = Continue module operation in Idle modeVWORD<4:0>: Pointer Value bitsIndicates the number of valid words in the FIFO. Has a more of the when PLEN<3:0> \leq 7.CRCFUL: FIFO Full bit1 = FIFO is full0 = FIFO is not fullCRCMPT: FIFO Empty Bit1 = FIFO is not fullCRCGO: Start CRC bit1 = Start CRC serial shifter	CRCMPTCRCGOPLEIbitW = Writable bitU = Unimplemented bit, reaDR'1' = Bit is set'0' = Bit is clearedUnimplemented: Read as '0'CSIDL: CRC Stop in Idle Mode bit1 = Discontinue module operation when device enters Idle mode0 = Continue module operation when device enters Idle mode0 = Continue module operation in Idle modeVWORD<4:0>: Pointer Value bitsIndicates the number of valid words in the FIFO. Has a maximum valueor 16 when PLEN<3:0> \leq 7.CRCFUL: FIFO Full bit1 = FIFO is full0 = FIFO is not fullCRCMPT: FIFO Empty Bit1 = FIFO is empty0 = FIFO is not emptyUnimplemented: Read as '0'CRCGO: Start CRC bit	CRCMPT CRCGO PLEN<3:0> bit W = Writable bit U = Unimplemented bit, read as '0' DR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn Unimplemented: Read as '0' CSIDL: CRC Stop in Idle Mode bit 1 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode VWORD 4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEI or 16 when PLEN<3:0> <7.			

REGISTER 26-1: CRCCON: CRC CONTROL REGISTER

27.0 PARALLEL MASTER PORT (PMP)


- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304. of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master Port (PMP)" (DS70299) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

FIGURE 27-1: PMP MODULE OVERVIEW

Key features of the PMP module include:

- Fully Multiplexed Address/Data Mode
 16 bits of address
- Demultiplexed or Partially Multiplexed Address/ Data mode:
 - Up to 11 address lines with single Chip Select
 - Up to 12 address lines without Chip Select
- · One Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

DC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	Io∟ ≤3 mA, Vod = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	_	_	0.4	V	IoL ⊴6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4	_	_	0.4	V	Io∟ ≤10 mA, Vdd = 3.3V See Note 1	
DO20 Voh		Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	V	Іон ≥ -3 mA, Vod = 3.3V See Note 1	
	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V	Іон ≥ -6 mA, Voo = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	Іон ≥ -10 mA, VDD = 3.3V See Note 1	
DO20A Vo	Vон1	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	1.5	_	_	v	IOH ≥ -6 mA, VDD = 3.3V See Note 1	
			2.0	_	_		IOH ≥ -5 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	1.5	_	_	V	Іон ≥ -12 mA, Voo = 3.3V See Note 1	
			2.0	_	_		Іон ≥ -11 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA3, RA4	1.5	_	_	V	IOH ≥ -16 mA, VDD = 3.3V See Note 1	
			2.0	_	_		IOH ≥ -12 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -4 mA, VDD = 3.3V See Note 1	

TABLE 31-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic		Min ⁽¹⁾	Мах	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	_	
IM11 THI:SCL	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	_	
IM20 TF:SCL	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	_	300	ns	CB is specified to be	
			400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21 TR:SCL	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
	Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns		
IM25 TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	_		
		400 kHz mode	100	—	ns			
		1 MHz mode ⁽²⁾	40	—	ns			
IM26 Thd:dat	Data Input	100 kHz mode	0	—	μs	_		
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	—	μs		
IM30	30 Tsu:sta	Start Condition Setup Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition	
IM31 THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated	
IM33 Tsu:sto	U:STO Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs		
IM34 Thd:sto	O Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	_		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
		1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns			
IM40 TAA	TAA:SCL	Output Valid From Clock	100 kHz mode	—	3500	ns	—	
			400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	—	
IM45 Ti	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time bus must be free	
			400 kHz mode	1.3	_	μs	before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF	—	
IM51	TPGD	Pulse Gobbler De	÷	65	390	ns	See Note 3	

TABLE 31-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site for the latest dsPIC33F/PIC24H Family Reference Manual sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.