

Welcome to E-XFL.COM

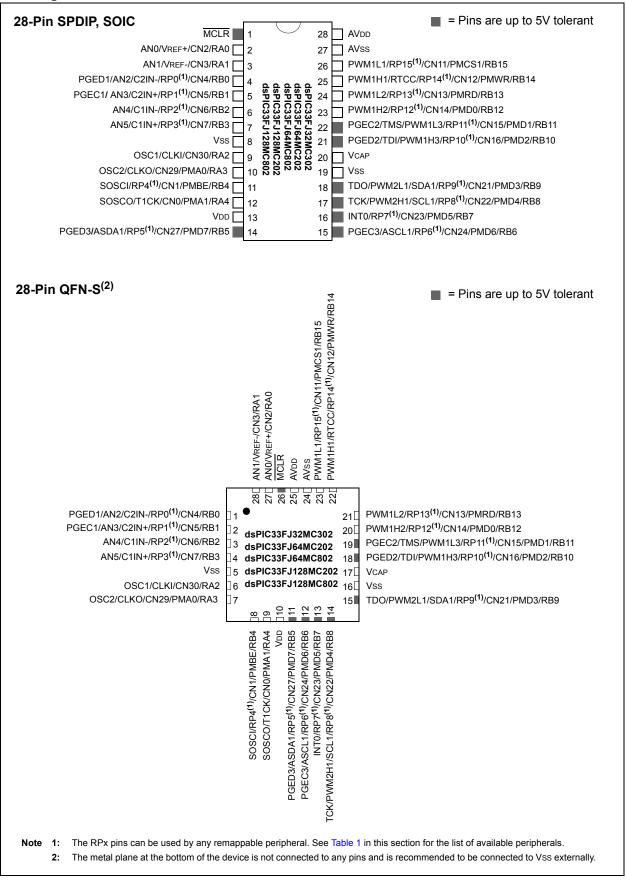
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

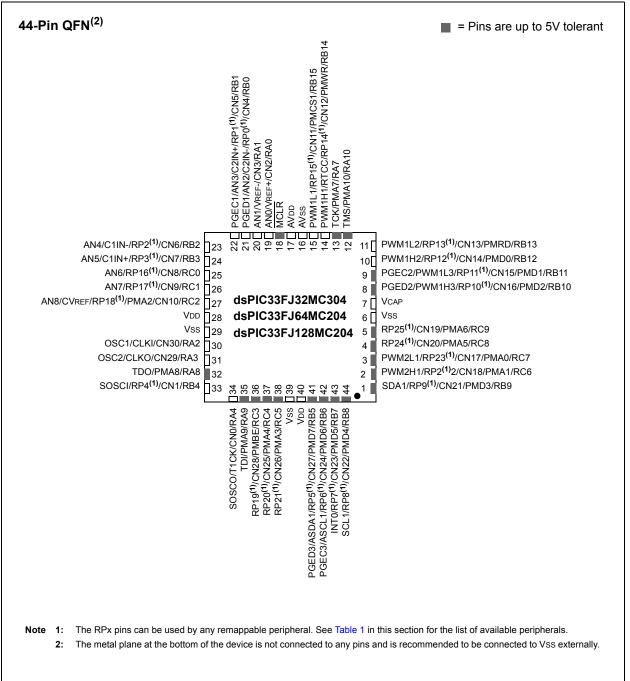
Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc202-e-so

Email: info@E-XFL.COM


Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Pin Diagrams

Pin Diagrams (Continued)

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33F/PIC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

- Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ64MC804 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.
 In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.
- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70202)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-saving Modes" (DS70196)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 14. "Motor Control PWM" (DS70187)
- Section 15. "Quadrature Encoder Interface (QEI)" (DS70208)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 30. "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- Section 32. "Interrupts (Part III)" (DS70214)
- Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211)
- Section 34. "Comparator" (DS70212)
- Section 35. "Parallel Master Port (PMP)" (DS70299)
- Section 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298)
- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- Section 38. "Direct Memory Access" (DS70215)
- · Section 39. "Oscillator (Part III)" (DS70216)

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INT0IF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

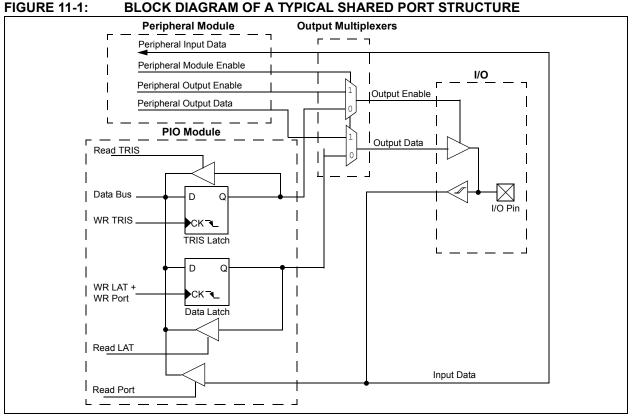
bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

I/O PORTS 11.0

- This data sheet summarizes the features Note 1: the dsPIC33FJ32MC302/304. of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 of family devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, Vss, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

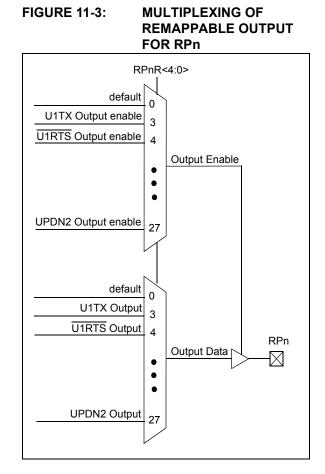
Parallel I/O (PIO) Ports 11.1


Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents loop through, in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.


When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

11.6.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 11-21 through Register 11-33). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 11-2 and Figure 11-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

TABLE 11-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C1OUT	00001	RPn tied to Comparator1 Output
C2OUT	00010	RPn tied to Comparator2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
U2TX	00101	RPn tied to UART2 Transmit
U2RTS	00110	RPn tied to UART2 Ready To Send
SDO1	00111	RPn tied to SPI1 Data Output
SCK1	01000	RPn tied to SPI1 Clock Output
SS1	01001	RPn tied to SPI1 Slave Select Output
SDO2	01010	RPn tied to SPI2 Data Output
SCK2	01011	RPn tied to SPI2 Clock Output
SS2	01100	RPn tied to SPI2 Slave Select Output
C1TX	10000	RPn tied to ECAN1 Transmit
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
OC3	10100	RPn tied to Output Compare 3
OC4	10101	RPn tied to Output Compare 4
UPDN1	11010	RPn tied to QEI1 direction (UPDN) status
UPDN2	11011	RPn tied to QEI2 direction (UPDN) status

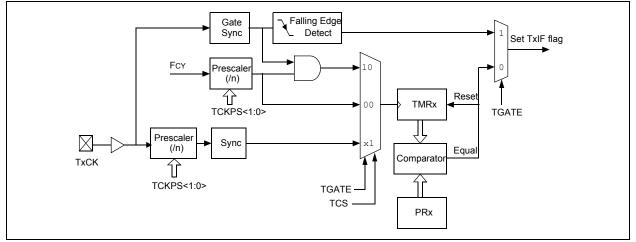
© 2007-2012 Microchip Technology Inc.

13.0 TIMER2/3 AND TIMER4/5

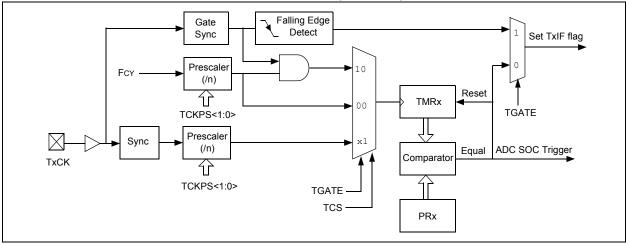
- This data sheet summarizes the features Note 1: dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 of family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2 and Timer4 are Type B timers with the following specific features:

- A Type B timer can be concatenated with a Type C timer to form a 32-bit timer
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler


A block diagram of the Type B timer is shown in Figure 13-1.

Timer3 and Timer5 are Type C timers with the following specific features:


- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an analog-to-digital conversion
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

A block diagram of the Type C timer is shown in Figure 13-2.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last
	Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I ² C slave)
	 1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I²C device address byte.
bit 1	RBF: Receive Buffer Full Status bit
	1 = Receive complete, I2CxRCV is full
	0 = Receive not complete, I2CxRCV is empty
	Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit
	1 = Transmit in progress, I2CxTRN is full
	0 = Transmit complete, I2CxTRN is empty

Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER	21-20: CiRXN REGIS	InSID: ECAN TER n (n = 0		ANCE FILTE	R MASK STA	NDARD IDEI	NTIFIER	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
SID10	SID9	SID8	SID7	SID6	SID5	SID4	SID3	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	U-0	R/W-x	U-0	R/W-x	R/W-x	
SID2	SID1	SID0	_	MIDE		EID17	EID16	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-5	1 = Include bi	tandard Identifi t SIDx in filter o s don't care in f	comparison	son				
bit 4	Unimplemen	ted: Read as '	כי					
bit 3	MIDE: Identifi	er Receive Mo	de bit					
	 1 = Match only message types (standard or extended address) that correspond to EXIDE bit in filter 0 = Match either standard or extended address message if filters match (i.e., if (Filter SID) = (Message SID) or if (Filter SID/EID) = (Message SID/EID)) 							
bit 2	Unimplemen	ted: Read as '	כי					
bit 1-0	EID<17:16>:	Extended Iden	tifier bits					
		t EIDx in filter o s don't care in f	•	son				

REGISTER 21-21: CIRXMnEID: ECAN[™] ACCEPTANCE FILTER MASK EXTENDED IDENTIFIER REGISTER n (n = 0-2)

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID15	EID14	EID13	EID12	EID11	EID10	EID9	EID8
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
EID7	EID6	EID5	EID4	EID3	EID2	EID1	EID0
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 EID<15:0>: Extended Identifier bits

1 = Include bit EIDx in filter comparison

0 = Bit EIDx is don't care in filter comparison

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	TR<1:0>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			ARP	T<7:0>				
bit 7							bit (
Legend:								
R = Readabl		W = Writable		•	nented bit, read			
-n = Value at	t POR	'1' = Bit is set	i	'0' = Bit is cle	ared	x = Bit is unkn	iown	
bit 15		Alarm Enable bit						
bit 10	1 = Alarm i CHIME	s enabled (clear = 0)		ally after an ala	rm event when	ever ARPT<7:0)> = 0x00 and	
	0 = Alarm i							
bit 14	-	ime Enable bit			II avar fram Ov			
		is enabled; ARP is disabled; ARF						
bit 13-10		0>: Alarm Mask						
		erved – do not u	•	bito				
	101x = Reserved – do not use							
	1001 = Onc	e a year (excep	t when config	ured for Februa	ry 29th, once e	very 4 years)		
	1000 = Onc							
	0111 = Onc							
	0110 = Onc 0101 = Eve	•						
		ry 10 minutes						
	0011 = Eve							
	0011 = Eve 0010 = Eve	ry minute ry 10 seconds						
	0011 = Eve 0010 = Eve 0001 = Eve	ry minute ry 10 seconds ry second						
	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve	ry minute ry 10 seconds ry second ry half second						
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR<	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Va	-					
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR Points to the	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val corresponding <i>J</i>	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR< Points to the the ALRMP	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val corresponding <i>J</i> TR<1:0> value d	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR< Points to the the ALRMP	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u>	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR< Points to the the ALRMP	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR< Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u>	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM ALRMVAL 11 = Unimp	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 00 = ALRM <u>ALRMVAL</u> 11 = Unimp 10 = ALRM	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY	Alarm Value re	gisters when re	ading ALRMVA			
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM ALRMVAL 11 = Unimp	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR	Alarm Value re	gisters when re	ading ALRMVA			
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL</u> 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC	Alarm Value re ecrements on	gisters when re every read or w	ading ALRMVA			
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA			
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA			
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA			
bit 9-8 bit 7-0	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat = Alarm will repe	Alarm Value re ecrements on Counter Value eat 255 more	gisters when re every read or w	ading ALRMVA			
	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat	Alarm Value re ecrements on Counter Value eat 255 more f	gisters when re every read or w e bits imes	eading ALRMVA	ALH until it reach	nes '00'.	

REGISTER 25-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 25-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
— — MTHTE		MTHTEN0		MTHON	IE<3:0>		
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

U-0	0-0	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X
—	—	DAYTE	N<1:0>		DAYON	E<3:0>	
bit 7	:7						bit 0

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 25-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—		—		—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN	N<1:0>		HRON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6

bit 7-6 Unimplemented: Read as '0'

bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2

bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

28.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices include the following features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

Address Bit 7 Bit 6 Bit 1 Bit 0 Name Bit 5 Bit 4 Bit 3 Bit 2 0xF80000 FBS RBS<1:0> BSS<2:0> BWRP FSS⁽¹⁾ 0xF80002 RSS<1:0> SSS<2:0> SWRP 0xF80004 GWRP FGS ____ ____ GSS<1:0> ____ ____ ____ 0xF80006 FOSCSEL FNOSC<2:0> IESO OSCIOFNC POSCMD<1:0> 0xF80008 FOSC FCKSM<1:0> **IOL1WAY** 0xF8000A FWDT FWDTEN WINDIS _ WDTPRE WDTPOST<3:0> PWMPIN 0xF8000C FPOR HPOL LPOL ALTI2C FPWRT<2:0> Reserved⁽²⁾ 0xF8000E FICD **JTAGEN** ICS<1:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3

TABLE 28-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on dsPIC33FJ32MC302/304 devices.

2: These bits are reserved for use by development tools and must be programmed as '1'.

28.1 Configuration Bits

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices provide nonvolatile memory implementations for device Configuration bits. Refer to **Section 25.** "**Device Configuration**" (DS70194) in the "*dsPIC33F/PIC24H Family Reference Manual*" for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 28-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The Device Configuration register map is shown in Table 28-1.

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

			Max MIPS
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04
_	3.0-3.6V ⁽¹⁾	-40°C to +85°C	40
	3.0-3.6V ⁽¹⁾	-40°C to +125°C	40

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 31-11 for the minimum and maximum BOR values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

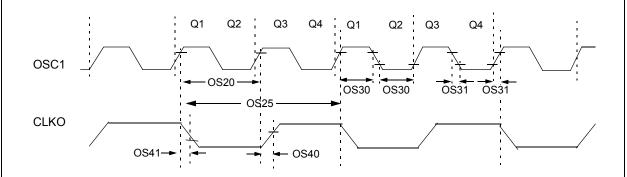

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+155	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation:	PD	D PINT + PI/O			w
$I/O = \Sigma (\{VDD - VOH\} \times IOH\} + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ – TA)/θJ	IA	W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θja	30	_	°C/W	1
Package Thermal Resistance, 44-pin TFQP	θја	40	_	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45	_	°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50	_	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θја	30	—	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

FIGURE 31-2: EXTERNAL CLOCK TIMING

TABLE 31-16: EXTERNAL CLOCK TIMING REQUIREMENTS

АС СНА	PACTER		(unless otherw	vise state		to 3.6V		
			$\begin{array}{ll} \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC	
		Oscillator Crystal Frequency	3.5	_	10	MHz	XT	
			10	—	40	MHz	HS	
			— —	—	33	kHz	Sosc	
			3.5	—	10	MHz	AUX_OSC_FIN	
OS20	Tosc	Tosc = 1/Fosc	12.5	_	DC	ns	_	
OS25	TCY	Instruction Cycle Time ⁽²⁾	25	_	DC	ns	—	
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC	
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC	
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns	—	
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2		ns	—	
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C	

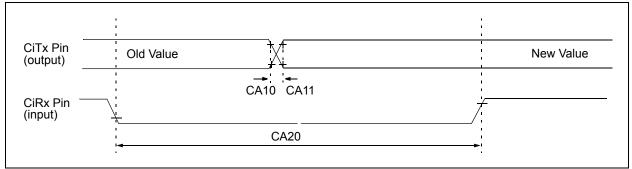
Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

АС СНА	RACTERIST	TICS	Standard Operating Conditions: 3.0V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+ -40°C ≤TA ≤+				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	—	_	15	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns	—
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—

TABLE 31-33: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 31-26: ECAN MODULE I/O TIMING CHARACTERISTICS

TABLE 31-42: ECAN MODULE I/O TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions				
CA10	TioF	Port Output Fall Time	_			ns	See parameter D032
CA11	TioR	Port Output Rise Time	_		_	ns	See parameter D031
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120 — — ns —				—

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

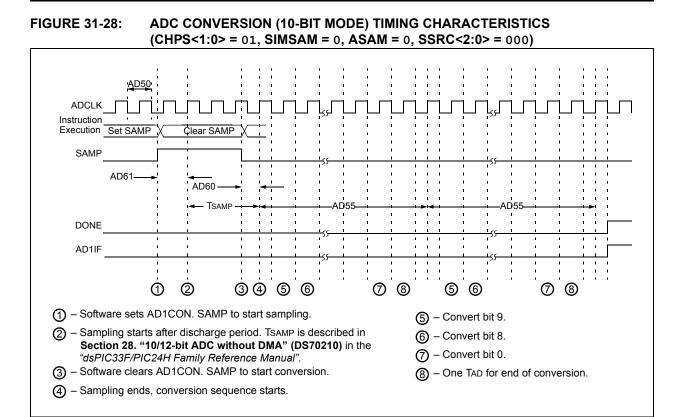
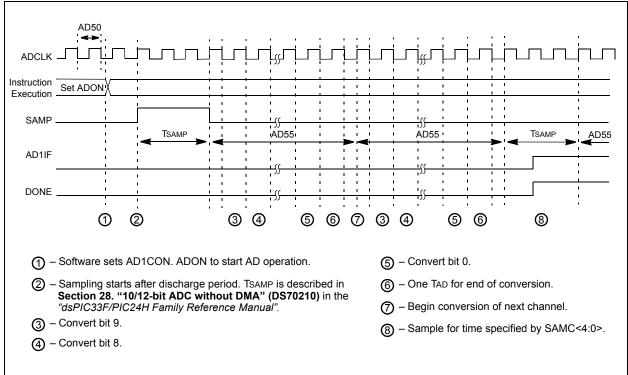
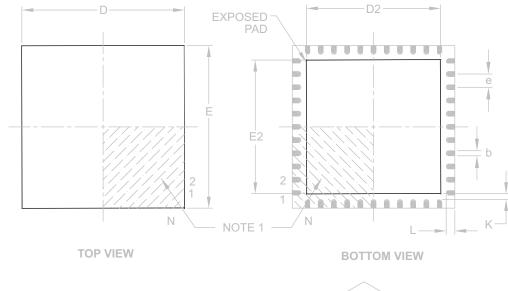



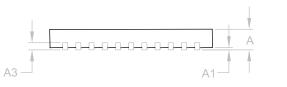
FIGURE 31-29: ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

TABLE 32-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

	AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) CHARACTERISTICS Operating temperature -40°C ≤TA ≤+150°C for High Temperature						tated)
Param No.	Symbol	Characteristic Min Typ Max Units Conditions					
		Clock	Parame	ters			
HAD50	Tad	ADC Clock Period ⁽¹⁾	147		_	ns	_
	Conversion Rate						
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	400	Ksps	_

Note 1: These parameters are characterized but not tested in manufacturing.


TABLE 32-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS


-	AC TERISTICS	Standard Operating Condition Operating temperature -40°C		•			ited)	
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
		Cloc	k Parame	ters				
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	_	_	ns	—	
	Conversion Rate							
HAD56	FCNV	hroughput Rate ⁽¹⁾ — — 800 Ksps —						
NI. (Late d. These permeters are characterized but not tested in manufacturing							

Note 1: These parameters are characterized but not tested in manufacturing.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	44			
Pitch	е	0.65 BSC			
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B