

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc202-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1.0 DEVICE OVERVIEW

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 Digital Signal Controller (DSC) devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance 16-bit Microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 families of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

Pin Name Pin Buffer Type PPS Description				Description
TMS	Ι	ST	No	JTAG Test mode select pin.
ТСК	Ι	ST	No	JTAG test clock input pin.
TDI	Ι	ST	No	JTAG test data input pin.
TDO	0	—	No	JTAG test data output pin.
INDX1	Ι	ST	Yes	Quadrature Encoder Index1 Pulse input.
QEA1	I	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
QEB1	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN1	0	CMOS	Yes	Position Up/Down Counter Direction State.
INDX2	Ι	ST	Yes	Quadrature Encoder Index2 Pulse input.
QEA2	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
QEB2	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN2	0	CMOS	Yes	Position Up/Down Counter Direction State.
C1RX	I	ST	Yes	ECAN1 bus receive pin.
C1TX	0	—	Yes	ECAN1 bus transmit pin.
RTCC	0	_	No	Real-Time Clock Alarm Output.
CVREF	0	ANA	No	Comparator Voltage Reference Output.
C1IN-	Ι	ANA	No	Comparator 1 Negative Input.
C1IN+	I	ANA	No	Comparator 1 Positive Input.
C1OUT	0	_	Yes	Comparator 1 Output.
C2IN-	Ι	ANA	No	Comparator 2 Negative Input.
C2IN+	Ι	ANA	No	Comparator 2 Positive Input.
C2OUT	0		Yes	Comparator 2 Output.
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2 -PMPA10	0	_	No	Parallel Master Port Address (Demultiplexed Master modes).
PMBE	Ō		No	Parallel Master Port Byte Enable Strobe.
PMCS1	0	_	No	Parallel Master Port Chip Select 1 Strobe.
PMD0-PMPD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/ Data (Multiplexed Master modes).
PMRD	0	_	No	Parallel Master Port Read Strobe.
PMWR	Ō	—	No	Parallel Master Port Write Strobe.
DAC1RN	0	_	No	DAC1 Negative Output.
DAC1RP	0	—	No	DAC1 Positive Output.
DAC1RM	0		No	DAC1 Output indicating middle point value (typically 1.65V).
DAC2RN	0		No	DAC2 Negative Output.
DAC2RP	0	—	No	DAC2 Positive Output.
DAC2RM	0	1	No	DAC2 Output indicating middle point value (typically 1.65V).

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PoweO = OutputI = InputTTL = TTL input buffer

6.9 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag bit (CM) in the Reset Control register (RCON<9>) is set to indicate the configuration mismatch Reset. Refer to **Section 11.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

6.10 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

TABLE 6-3:

The Illegal Opcode or Uninitialized W Access Reset Flag bit (IOPUWR) in the Reset Control register (RCON<14>) is set to indicate the illegal condition device Reset.

6.10.0.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

RESET FLAG BIT OPERATION⁽¹⁾

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.10.0.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

6.10.0.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 28.8 "Code Protection and CodeGuard Security" for more information on Security Reset.

6.11 Using the RCON Status Bits

The user application can read the Reset Control register (RCON) after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the Reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	-
POR (RCON<0>)	POR	_

Note 1: All Reset flag bits can be set or cleared by user software.

FIGURE 7-1: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/ X04 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interview Vector Table (IVT)(1)
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ity	Interrupt Vector 54	0x000080	
jo	~		
Ē	~		
de	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
Iral	Interrupt Vector 117	0x0000FE	
atr	Reserved	0x000100	
Z	Reserved	0x000102	
sinç	Reserved		
eas	Oscillator Fail Trap Vector		
ů –	Address Error Trap Vector		
ă	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		(4)
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~	_	
			1
	Interrupt Vector 116		
₩	Interrupt Vector 117	0x0001FE	
۲	Start of Code	0x000200	
Note 1: See	Table 7-1 for the list of impleme	ented interrupt v	rectors

7.5 Interrupt Registers

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA	SB	OAB	SAB	DA	DC
bit 15							bit 8

R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0
IPL2 ⁽²⁾	IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	Ν	OV	Z	C
bit 7							bit 0

Legend:

C = Clear only bit	R = Readable bit	U = Unimplemented bit, read as '0'	
S = Set only bit	W = Writable bit	-n = Value at POR	
'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 7-5

IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾

111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled

- 110 = CPU Interrupt Priority Level is 6 (14)
- 101 = CPU Interrupt Priority Level is 5 (13)
- 100 = CPU Interrupt Priority Level is 4 (12)
- 011 = CPU Interrupt Priority Level is 3 (11)
- 010 = CPU Interrupt Priority Level is 2 (10)
- 001 = CPU Interrupt Priority Level is 1 (9)
- 000 = CPU Interrupt Priority Level is 0 (8)

Note 1: For complete register details, see Register 3-1.

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- 3: The IPL<2:0> status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1.

CORCON: CORE CONTROL REGISTER⁽¹⁾ **REGISTER 7-2:**

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT		DL<2:0>	
bit 15							bit 8

R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit 0

Legend:	C = Clear only bit		
R = Readable bit	W = Writable bit	-n = Value at POR	'1' = Bit is set
0' = Bit is cleared	'x = Bit is unknown	U = Unimplemented bit, read	l as '0'

IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ bit 3

- 1 = CPU interrupt priority level is greater than 7
- 0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2.

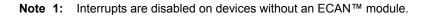
2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7	-3: INTCC	N1: INTERR	UPT CONTR	ROL REGISTE	ER 1						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0				
SFTACERR		DMACERR		ADDRERR		OSCFAIL	0-0				
bit 7	DIV0ERR	DIVIACERR	MATHERR	ADDRERR	STKERR	USCFAIL	 bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'					
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own				
bit 15	NSTDIS: Inte	rrupt Nesting E)isable bit								
		nesting is disat									
		nesting is enab									
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit							
		caused by ove									
	-	0 = Trap was not caused by overflow of Accumulator A									
bit 13	OVBERR: Accumulator B Overflow Trap Flag bit										
		 Trap was caused by overflow of Accumulator B Trap was not caused by overflow of Accumulator B 									
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit										
		p was caused by catastrophic overflow of Accumulator A									
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit										
				flow of Accumu							
bit 10	OVATE: Accu	OVATE: Accumulator A Overflow Trap Enable bit									
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator A								
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit										
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator B								
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ole bit							
	1 = Trap on c 0 = Trap disa	-	erflow of Accur	mulator A or B e	enabled						
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	us bit							
				ilid accumulator invalid accumu							
bit 6	DIV0ERR: Ar	ithmetic Error \$	Status bit								
		r trap was cau r trap was not									
bit 5		DMA Controlle	-	-							
		troller error trap troller error trap									
bit 4	MATHERR: A	Arithmetic Error	Status bit								
		r trap has occu									

REGISTER 7-3:	INTCON1:	INTERRUPT	CONTROL	REGISTER 1

0 = Math error trap has not occurred

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0										
FLTA1IF	RTCIF	DMA5IF		_	QEI1IF	PWM1IF	_										
bit 15				·			bit 8										
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0										
	<u> </u>	—	_			—	_										
bit 7							bit (
Legend:																	
R = Readable bit W = Writable bit				U = Unimple	mented bit, rea	d as '0'											
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own										
bit 14 bit 13	0 = Interrupt RTCIF: Real 1 = Interrupt 0 = Interrupt DMA5IF: DM 1 = Interrupt	 FLTA1IF: PWM1 Fault A Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred RTCIF: Real-Time Clock and Calendar Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred DMA5IF: DMA Channel 5 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred D = Interrupt request has occurred 0 = Interrupt request has not occurred 															
bit 12-11	Unimpleme	nted: Read as '0	,														
bit 10	1 = Interrupt	1 Event Interrupt request has occ request has not	urred	s bit													
bit 9	PWM1IF: PV	VM1 Event Interr	upt Flag Sta	atus bit													
							1 = Interrupt request has occurred 0 = Interrupt request has not occurred										


REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

Unimplemented: Read as '0'

bit 8-0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		C1IP<2:0> ⁽¹⁾				C1RXIP<2:0>(1)					
bit 15							bit				
		D444 0	DANO								
U-0	R/W-1	R/W-0 SPI2IP<2:0>	R/W-0	U-0	R/W-1	R/W-0 SPI2EIP<2:0>	R/W-0				
bit 7		011211 32.07				0112211 42.05	bit				
Legend:	a hit		:4		nonted bit no						
R = Readabl		W = Writable b	ut.	0 = Onimpler	mented bit, rea						
-n = Value at	PUR	'1' = Bit is set			areu	x = Bit is unkno	own				
bit 15	Unimpleme	ented: Read as '0	,								
bit 14-12	C1IP<2:0>: ECAN1 Event Interrupt Priority bits ⁽¹⁾										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•		0	,							
	•										
	• 001 - Intor	rupt is priority 1									
		rupt source is disa	bled								
bit 11		ented: Read as '0									
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits ⁽¹⁾										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•		•	/							
	•										
	• 001 - Inter	rupt is priority 1									
		rupt source is disa	bled								
bit 7		ented: Read as '0									
bit 6-4	SPI2IP<2:0>: SPI2 Event Interrupt Priority bits										
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•		0	,							
	•										
	• 001 = Inter	rupt is priority 1									
		rupt source is disa	bled								
bit 3		ented: Read as '0									
bit 2-0	-	:0>: SPI2 Error Int		itv bits							
		rupt is priority 7 (h	-	-							
	•		- ' '								
	•										
	•										
	001 - Intor	rupt is priority 1									

DECISTED 7 22

—		R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		FLTA1IP<2:0>				RTCIP<2:0>	
bit 15							bit
U-0	R/W-1						
—		DMA5IP<2:0>		—	—	—	—
bit 7							bit
Legend:							
R = Readable	bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	lown
bit 14-12 bit 11 bit 10-8	111 = Interr • • • • • • • • • • • • • • • • • •	 10>: PWM Fault A upt is priority 7 (h upt is priority 1 upt source is disa ented: Read as '0 Real-Time Cloo 	nighest priori abled	ty interrupt)	lag Status bits		
	111 = Interr • • • • • • • • • • • • • • • • • •	upt is priority 7 (f upt is priority 1 upt source is disa	nighest priori abled	-			
bit 7	Unimpleme	ented: Read as '0)'				
bit 6-4	111 = Interr • •	0>: DMA Channe upt is priority 7 (h upt is priority 1		•	Interrupt Prior	ity bits	
	000 = Interr	upt source is disa					

bit 3-0 Unimplemented: Read as '0'

R/W-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
FORCE ⁽¹⁾	_	—	_		—		—
bit 15					•		bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_				IRQSEL<6:0>	(2)		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	FORCE: For	rce DMA Transfe	er bit ⁽¹⁾				
		single DMA trans	•	,			
	0 = Automat	ic DMA transfer	initiation by D	MA request			
bit 14-7	Unimpleme	nted: Read as '0)'				

Note 1: This bit cannot be cleared by the user. It is cleared by hardware when the forced DMA transfer is complete.

000000-1111111 = DMAIRQ0-DMAIRQ127 selected to be Channel DMAREQ

2: Refer to Table 7-1 for a complete listing of IRQ numbers for all interrupt sources.

IRQSEL<6:0>: DMA Peripheral IRQ Number Select bits⁽²⁾

bit 6-0

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

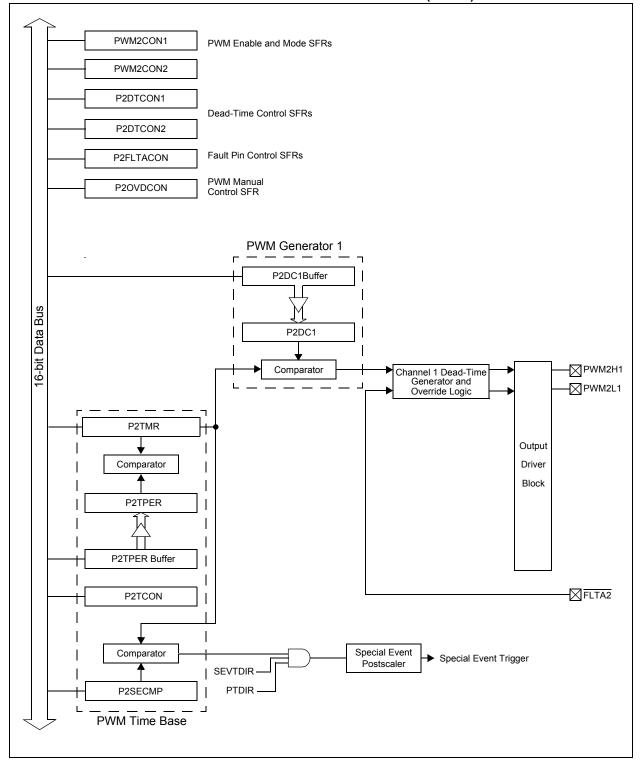
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	_	—	—	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	—	INTR2R<4:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at Po	OR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is ur			x = Bit is unkı	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin

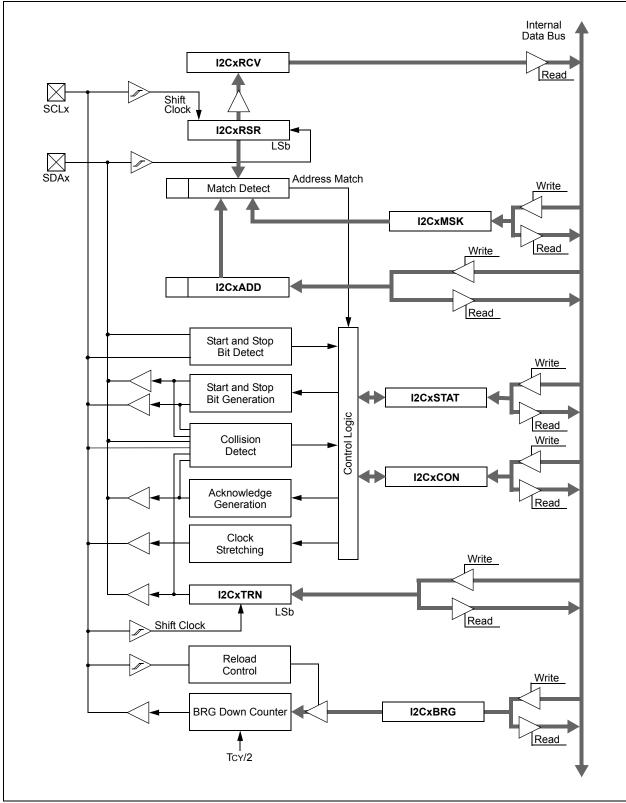
11111 = Input tied to Vss 11001 = Input tied to RP25 •

00001 = Input tied to RP1 00000 = Input tied to RP0


U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	—	—			T3CKR<4:0	>				
bit 15										
11.0										
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	_	—			T2CKR<4:0	>	L :4			
bit 7							bit			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
	11001 = Input tied to RP25									
		put tied to RP1 put tied to RP0								
bit 7-5	-	ented: Read as '	0'							
bit 4-0	T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin									
	11111 = Input tied to Vss 11001 = Input tied to RP25									
		put tied to Vss			·					
		put tied to Vss		. ,	·					
		put tied to Vss			·					

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_		_		QEB1R<4:0>				
bit 15	·	·					bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	_	_			QEA1R<4:0>	>		
bit 7							bit 0	
Lonondi								
Legend: R = Readable bit W = Writable bit				U = Unimplei	mented bit, rea	d as '0'		
-n = Value at POR '1' = Bit is set			t	'0' = Bit is cleared x = Bit is unknown				
bit 12-8	11111 = Inp 11001 = Inp • • • • 00001 = Inp	>: Assign B (Q out tied to Vss out tied to RP25 out tied to RP1 out tied to RP0		rresponding pi	n			
bit 7-5	Unimpleme	nted: Read as	'0'					
bit 4-0	QEA1R<4:0	>: Assign A (Q	EA1) to the co	rresponding pi	n			
		out tied to Vss out tied to RP25						
	•							
	•							


DIN SELECT INDUT DECISTEDS 14 40

00001 = Input tied to RP1 00000 = Input tied to RP0 NOTES:

FIGURE 16-2: 2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2)

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
511 15							DIL

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:					
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 21-12: CIBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

REGISTER	ZI-1Z. CIDU	FFINIT. ECAN		U-3 DUFFER		EGISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F3BP<3:0>			F2BP<3:0>						
bit 15				-			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BP<3:0>				F0BI	><3:0>			
bit 7							bit 0		
Legend:									
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'					
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-12	F3BP<3:0>: RX Buffer mask for Filter 3								
	1111 = Filter hits received in RX FIFO buffer								
	1110 = Filte	r hits received ir	n RX Buffer 1	4					
	•								
	•								
	•								
	0001 = Filter hits received in RX Buffer 1								
	0000 = Filte	r hits received ir	n RX Buffer 0						
bit 11-8	F2BP<3:0>: RX Buffer mask for Filter 2 (same values as bit 15-12)								
bit 7-4		RX Buffer mas	-		-				
bit 3-0		RX Buffer mas							

23.0 AUDIO DIGITAL-TO-ANALOG CONVERTER (DAC)

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, the of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211) of the dsPIC33F/PIC24H Family Reference Manual, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Audio Digital-to-Analog Converter (DAC) module is a 16-bit Delta-Sigma signal converter designed for audio applications. It has two output channels, left and right to support stereo applications. Each DAC output channel provides three voltage outputs, positive DAC output, negative DAC output, and the midpoint voltage output for the dsPIC33FJ64MC804 and dsPIC33FJ128MC804 devices.

23.1 KEY FEATURES

- 16-bit resolution (14-bit accuracy)
- Second-Order Digital Delta-Sigma Modulator
- · 256 X Over-Sampling Ratio
- 128-Tap FIR Current-Steering Analog Reconstruction Filter
- 100 KSPS Maximum Sampling Rate
- · User controllable Sample Clock
- Input Frequency 45 kHz max
- Differential Analog Outputs
- Signal-To-Noise: 90 dB
- 4-deep input Buffer
- 16-bit Processor I/O, and DMA interfaces

23.2 DAC Module Operation

The functional block diagram of the Audio DAC module is shown in Figure 23-1. The Audio DAC module provides a 4-deep data input FIFO buffer for each output channel. If the DMA module and/or the processor cannot provide output data in a timely manner, and the FIFO becomes empty, the DAC accepts data from the DAC Default Data register (DACDFLT). This safety feature is useful for industrial control applications where the DAC output controls an important processor or machinery. The DACDFLT register should be initialized with a safe output value. Often the safe output value is either the midpoint value (0x8000) or a zero value (0x0000).

The digital interpolator up-samples the input signals, where the over-sampling ratio is 256x which creates data points between the user supplied data points. The interpolator also includes processing by digital filters to provide noise shaping to move the converter noise above 20 kHz (upper limit of the pass band). The output of the interpolator drives the Sigma-Delta modulator. The serial data bit stream from the Sigma-Delta modulator is processed by the reconstruction filter. The differential outputs of the reconstruction filter are amplified by Op Amps to provide the required peak-to-peak voltage swing.

Note: The DAC module is designed specifically for audio applications and is not recommended for control type applications.

23.3 DAC Output Format

The DAC output data stream can be in a two's complement signed number format or as an unsigned number format.

The Audio DAC module features the ability to accept the 16-bit input data in a two's complement signed number format or as an unsigned number format. The data formatting is controlled by the Data Format Control bit (FORM<8>) in the DAC1CON register. The supported formats are:

- 1 = Signed (two's complement)
- 0 = Unsigned

If the FORM bit is configured for Unsigned data the user input data yields the following behavior:

- 0xFFFF = most positive output voltage
- 0x8000 = mid point output voltage
- 0x7FFF = a value just below the midpoint
- 0x0000 = minimum output voltage

If the FORM bit is configured for signed data the user input data yields the following behavior:

- 0x7FFF = most positive output voltage
- 0x0000 = mid point output voltage
- 0xFFFF = value just below the midpoint
- 0x8000 = minimum output voltage

The Audio DAC provides an analog output proportional to the digital input value. The maximum 100,000 samples per second (100 ksps) update rate provides good quality audio reproduction.

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

30.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

TABLE 31-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	—	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—		—	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	_
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	120		—	ns	_
SP51	TssH2doZ	SSx	10	_	50	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after	—		50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.