

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.3 DSP Engine Overview

The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner by dedicating certain working registers to each address space.

3.4 Special MCU Features

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14	REGISTER 7-26:	IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14
--	----------------	---

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—				QEI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		PWM1IP<2:0>				—	_
bit 7							bit 0
Legend:						-l (0)	
R = Readabl			DIL		nented bit, rea		
-n = Value at	POR	'1' = Bit is set		0° = Bit is cle	ared	x = Bit is unknown	own
L:1 4 5 44		tod. Dood oo fa	. 3				
DIL 15-11	Unimplemen	ted: Read as (
bit 10-8	QEI1IP<2:0>	: QEI1 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 7	Unimplemen	ted: Read as '0)'				
bit 6-4	PWM1IP<2:0	>: PWM1 Interr	upt Priority b	its			
	111 = Interru	pt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	nt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 3-0	Unimplemen	ted: Read as '0)'				
'							

REGISTER	7-29: IPC17	: INTERRUPT	PRIORITY	CONTROL	REGISTER 1	7	
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
	—	—	—	—		C1TXIP<2:0>(1)	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		DMA7IP<2:0>				DMA6IP<2:0>	
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15-11	Unimplemen	ted: Read as '0)'				
bit 10-8	C1TXIP<2:0>	: ECAN1 Trans	smit Data Re	quest Interrupt	Priority bits ⁽¹⁾		
	111 = Interru	pt is priority 7 (ł	nighest priori	ty interrupt)			
	•						
	•						
	• 001 - Interru	nt io priority 1					
	001 = Interru	pt is priority 1 pt source is disa	abled				
bit 7	Unimplemen	ted: Read as '0)'				
bit 6-4	DMA7IP<2.0	> DMA Channe	- ■ 7 Data Tra	insfer Complete	Interrunt Prio	rity hits	
	111 = Interru	nt is priority 7 (h	nighest priori	tv interrunt)	interrupt i ne		
	•	prio priority i (i	ingridet priori	ty monapty			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 3	Unimplemen	ted: Read as '0)'				
bit 2-0	DMA6IP<2:0	>: DMA Channe	el 6 Data Tra	insfer Complete	Interrupt Prio	rity bits	
	111 = Interru	pt is priority 7 (I	nighest priori	ty interrupt)			
	•						
	•						
	001 = Interru	nt is priority 1					
	000 = Interru	pt source is disa	abled				

_ _ . _ _ _ _ _ _ _ _ ._ ...

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

REGISTER 7-32: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0	
_	_	—	—		ILI	R<3:0>		
bit 15							bit 8	
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0	
_				VECNUM<6:0)>			
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	nown	
bit 15-12	Unimplemen	ted: Read as 'o)'					
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	el bits				
	1111 = CPU	Interrupt Priority	Level is 15					
	•							
	•							
	• 0001 = CPU	Interrunt Priority	v Level is 1					
	0000 = CPU	Interrupt Priority	y Level is 0					
bit 7	Unimplemen	ted: Read as '0)'					
bit 6-0	VECNUM<6:	>: Vector Num	ber of Pendir	na Interrupt bits	3			
	0111111 = lr	terrupt Vector p	pending is nu	mber 135				
	•		0					
	•							
	•							
	0000001 = lr	terrupt Vector p	pending is nui	mber 9 mbor 9				
	0000000 = Ir	iterrupt vector p	benaing is hui	o lean				

					D/// 0		
R/W-0	R/W-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAC)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bitW = Writable bitU = Unimplemented bit, read as '0'							
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is un				x = Bit is unkr	nown		

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—		—	—	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable I	= Writable bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

9.4 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 28.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).

Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

- 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
- 3: Refer to Section 39. "Oscillator (Part III)" (DS70216) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

9.5 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2007-2012} Microchip Technology Inc.

REGISTER 11-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP5R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP4R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-13 Unimplemented: Read as '0

bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-24: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-27: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP13R<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP12R<4:0>					
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown				

bit 15-13 Unimplemente	ed: Read as '0'
------------------------	-----------------

bit 12-8 **RP13R<4:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-28: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	_	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 11-2 for peripheral function numbers)

14.0 INPUT CAPTURE

- This data sheet summarizes the features Note 1: the dsPIC33FJ32MC302/304. of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 of family devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) of the "dsPIC33F/ PIC24H Family Reference Manual". which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications that requires frequency (period) and pulse measurement. The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices support up to four input capture channels.

The input capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- · Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - Capture timer value on every rising edge of input at ICx pin
- Capture timer value on every edge (rising and falling)
- Prescaler Capture Event modes:
 - Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each input capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

- Device wake-up from capture pin during CPU Sleep and Idle modes
- · Interrupt on input capture event
- · 4-word FIFO buffer for capture values
 - Interrupt optionally generated after 1, 2, 3 or 4 buffer locations are filled
- Use of input capture to provide additional sources of external interrupts

Note: Only IC1 and IC2 can trigger a DMA data transfer. If DMA data transfers are required, the FIFO buffer size must be set to '1' (ICI<1:0> = 00)

FIGURE 14-1: INPUT CAPTURE BLOCK DIAGRAM

© 2007-2012 Microchip Technology Inc.

FIGURE 16-2: 2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2)

-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
Legend:							
bit 7							bit 0
			PTM	R<7:0>			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
DIL 15							DIL 8
h:+ 45				1 1101 (11.0)			h:+ 0
PTDIR				PTMR<14.8>	,		
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15	PTDIR: PWM Time Base Count Direction Status bit (read-only)
	1 = PWM time base is counting down
	0 = PWM time base is counting up
bit 14-0	PTMR<14:0>: PWM Time Base Register Count Value bits

REGISTER 16-3: PxTPER: PWM TIME BASE PERIOD REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				PTPER<14:8	>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		bit	U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15 Unimplemented: Read as '0'

bit 14-0 **PTPER<14:0>:** PWM Time Base Period Value bits

REGISTER 17-2: DF	LTxCON: DIGITAL FILTER CONTROL REGISTER
-------------------	---

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_			—	_	IMV<	<1:0>	CEID			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0			
QEOUT		QECK<2:0>		—			—			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-11	Unimplemen	ted: Read as ')'							
bit 8	QEAx and QE In x4 Quadrat IMV1 = I IMV0 = I In x4 Quadrat IMV1 = S IMV0 = I CEID: Count 1 = Interrupts 0 = Interrupts OEQUIT: OEA	QEAx and QEBx input pins during an Index pulse when the POSxCNT register is to be reset. In x4 Quadrature Count Mode: IMV1 = Required State of Phase B input signal for match on index pulse IMV0 = Required State of Phase A input signal for match on index pulse IMV1 = Selects Phase input signal for Index state match (0 = Phase A, 1 = Phase B) IMV0 = Required state of the selected Phase input signal for match on index pulse CEID: Count Error Interrupt Disable bit 1 = Interrupts due to count errors are disabled 0 = Interrupts due to count errors are enabled								
bit 7	QEOUT: QEA 1 = Digital filte 0 = Digital filte	x/QEBx/INDXx er outputs enab er outputs disat	: Pin Digital Fi iled bled (normal p	ilter Output En bin operation)	able bit					
bit 6-4	QECK<2:0>: 111 = 1:256 (C) 110 = 1:128 (C) 101 = 1:64 (C) 100 = 1:32 (C) 011 = 1:16 (C) 010 = 1:4 (C) 001 = 1:2 (C) 000 = 1:1 (C)	QECK<2:0>: QEAx/QEBx/INDXx Digital Filter Clock Divide Select bits 111 = 1:256 Clock Divide 110 = 1:128 Clock Divide 101 = 1:64 Clock Divide 101 = 1:32 Clock Divide 011 = 1:16 Clock Divide 010 = 1:4 Clock Divide 001 = 1:2 Clock Divide 000 = 1:1 Clock Divide								
bit 3-0	Unimplemen	Unimplemented: Read as '0'								

-4: CiFCT	RL: ECAN™	FIFO CONT	ROL REGIS	TER				
R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
DMABS<2:0> -			—		—	—		
						bit 8		
		-				5444.4		
U-0	<u>U-0</u>	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—			FSA<4:0>				
						bit 0		
oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown					
						-		
DMABS<2:0>	>: DMA Buffer	Size bits						
111 = Reserv	ved							
110 = 32 buff	ers in DMA RA	Μ						
101 = 24 buff	ers in DMA RA	M						
100 = 16 buff	ers in DMA RA	Μ						
011 = 12 buff	ers in DMA RA	M						
010 = 8 buffe	rs in DMA RAN	1						
001 = 6 buffe	rs in DMA RAN	1						
000 = 4 buπe		1						
Unimplemen	ted: Read as ') '						
FSA<4:0>: FI	IFO Area Starts	s with Buffer b	oits					
11111 = Rea	d buffer RB31							
11110 = Rea	d buffer RB30							
	I-4: CIFCT R/W-0 DMABS<2:0> U-0	I-4: CIFCTRL: ECAN™ R/W-0 R/W-0 DMABS<2:0> U-0 U-0	I-4: CIFCTRL: ECAN™ FIFO CONT R/W-0 R/W-0 DMABS<2:0> — U-0 U-0 R/W-0 U-0 U-0 R/W-0 U-0 U-0 R/W-0 OMABS<2:0> — bit W = Writable bit OR '1' = Bit is set DMABS 2:0>: DMABS :DMABUTER Size bits 111 = Reserved 110 = 32 buffers in DMA RAM 101 = 24 buffers in DMA RAM 101 = 12 buffers in DMA RAM 100 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 010 = 8 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 001 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM 1111 = Read buffer RB31 1111 = Read buffer RB31 11110 = Read buffer RB31	I-4:CIFCTRL: ECAN™ FIFO CONTROL REGIS $R/W-0$ $R/W-0$ $U-0$ DMABS<2:0>——U-0U-0 $R/W-0$ $R/W-0$ $R/W-0$ $U-0$ $U-0$ $W=Writable bit$ $U=UnimpleiOR'1' = Bit is set'0' = Bit is cleDMABS<2:0>: DMA Buffer Size bits111 = Reserved110 = 32 buffers in DMA RAM101 = 24 buffers in DMA RAM101 = 12 buffers in DMA RAM010 = 16 buffers in DMA RAM010 = 8 buffers in DMA RAM010 = 6 buffers in DMA RAM011 = 6 buffers in DMA RAM011 = 12 buffers in DMA RAM011 = 8 buffers in DMA RAM011 = 8 buffers in DMA RAM011 = 8 buffers in DMA RAM111 = Read buffer Size Starts with Buffer bits1111 = Read buffer RB3111110 = Read buffer RB30$	I-4:CIFCTRL: ECAN™ FIFO CONTROL REGISTER $R/W-0$ $R/W-0$ $U-0$ $U-0$ DMABS<2:0>——— $U-0$ $U-0$ $R/W-0$ <t< td=""><td>I-4: CIFCTRL: ECAN™ FIFO CONTROL REGISTER $R/W-0$ $R/W-0$ $U-0$ $U-0$ $U-0$ DMABS<2:0> — — — — U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 $U-0$ U-0 R/W-0 R/W-0 R/W-0 R/W-0 $-$ — — — — — $U-0$ U-0 R/W-0 R/W-0 R/W-0 R/W-0 $-$ — — — — — — $U-0$ U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 $-$ — — — FSA<4:0> R/W-0 R/W-0 OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr DMABS DMA Buffer Size bits 111 = Reserved 111 = Reserved 110 = 32 buffers in DMA RAM 010 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 011 = 6 buffers in DMA RAM 011 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM</td></t<>	I-4: CIFCTRL: ECAN™ FIFO CONTROL REGISTER $R/W-0$ $R/W-0$ $U-0$ $U-0$ $U-0$ DMABS<2:0> — — — — U-0 U-0 R/W-0 R/W-0 R/W-0 R/W-0 $U-0$ U-0 R/W-0 R/W-0 R/W-0 R/W-0 $-$ — — — — — $U-0$ U-0 R/W-0 R/W-0 R/W-0 R/W-0 $-$ — — — — — — $U-0$ U-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 $-$ — — — FSA<4:0> R/W-0 R/W-0 OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkr DMABS DMA Buffer Size bits 111 = Reserved 111 = Reserved 110 = 32 buffers in DMA RAM 010 = 16 buffers in DMA RAM 011 = 12 buffers in DMA RAM 011 = 6 buffers in DMA RAM 011 = 6 buffers in DMA RAM 000 = 4 buffers in DMA RAM		

© 2007-2012 Microchip Technology Inc.

•

00001 = TX/RX buffer TRB1 00000 = TX/RX buffer TRB0

DS70291G-page 261

			• • • • • • • • • •							
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F7B	P<3:0>			F6BF	² <3:0>				
bit 15				·			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F5BP<3:0>				F4BF	°<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown			
bit 15-12	F7BP<3:0>	: RX Buffer Mas	k for Filter 7							
	1111 = Filte	er hits received in	n RX FIFO bu	ıffer						
	1110 = Filte	1110 = Filter hits received in RX Buffer 14								
	•									
	•	•								
	•									
	0001 = Filte	er hits received ir	n RX Buffer 1							
	0000 = Filte	er hits received in	n RX Buffer 0							
bit 11-8	F6BP<3:0>	: RX Buffer Mas	k for Filter 6 (same values as	bit 15-12)					
bit 7-4	F5BP<3:0>	: RX Buffer Mas	k for Filter 5 (same values as	bit 15-12)					
					,					

REGISTER 21-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

bit 3-0	F4BP<3:0>: RX Buffer Mask for Filter 4 (same values as bit 15-12)
---------	---

REGISTER 21-14: CIBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F11BP	2<3:0>		F10BP<3:0>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
	F9BP	<3:0>			F8BF	?<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-12	F11BP<3:0>:	RX Buffer Ma	sk for Filter 11					
	1111 = Filter	hits received in	n RX FIFO bu	ffer				
	1110 = Filter	hits received ii	n RX Buffer 14	1				
	•							
	•							
	•							
	0001 = Filter	hits received in	n RX Buffer 1					
	0000 = Filter	hits received ii	n RX Buffer 0					
bit 11-8	F10BP<3:0>	: RX Buffer Ma	sk for Filter 10) (same values	as bit 15-12)			
bit 7-4	F9BP<3:0>:	RX Buffer Mas	k for Filter 9 (s	same values as	bit 15-12)			
bit 3-0	F8BP<3:0>:	RX Buffer Mas	k for Filter 8 (s	same values as	bit 15-12)			

23.5 DAC Resources

Many useful resources related to DAC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the			
	product page using the link above, enter			
this URL in your browser:				
	http://www.microchip.com/wwwprod-			
	ucts/Devices.aspx?dDoc-			
	Name=en532315			

23.5.1 KEY RESOURCES

- Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

24.0 COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of dsPIC33FJ32MC302/304. the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section to 34. "Comparator" (DS70212) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

24.3 Comparator Voltage Reference

24.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 24-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 24-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

REGISTER 25-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—		WDAY<2:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN<1:0>		HRONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 25-7: RTCVAL (WHEN RTCPTR<1:0> = 00): **MINUTES AND SECONDS VALUE REGISTER**

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_		MINTEN<2:0>			MINON	IE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	SECTEN<2:0>				SECON	IE<3:0>	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

Unimplemented: Read as '0'
MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
Unimplemented: Read as '0'
SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

© 2007-2012 Microchip Technology Inc.

bit 7

bit 0

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le + 85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Parameter No. ⁽³⁾	Typical ⁽²⁾	Мах	Units	ts Conditions			
Idle Current (li	DLE): Core OF	F Clock ON	Base Curren	t ⁽¹⁾			
DC40d	8	10	mA	-40°C			
DC40a	8	10	mA	+25°C			
DC40b	9	10	mA	+85°C	3.3V		
DC40c	10	13	mA	+125°C			
DC41d	13	15	mA	-40°C		16 MIPS	
DC41a	13	15	mA	+25°C	3.3V		
DC41b	13	16	mA	+85°C			
DC41c	13	19	mA	+125°C			
DC42d	15	18	mA	-40°C			
DC42a	16	18	mA	+25°C	3.31/	20 MIPS	
DC42b	16	19	mA	+85°C	5.5V		
DC42c	17	22	mA	+125°C			
DC43d	23	27	mA	-40°C			
DC43a	23	26	mA	+25°C	2.21/		
DC43b	24	28	mA	+85°C	3.3V	30 IVIIF 3	
DC43c	25	31	mA	+125°C			
DC44d	31	42	mA	-40°C			
DC44a	31	36	mA	+25°C	3.31/		
DC44b	32	39	mA	+85°C	- 3.3V	40 101153	
DC44c	34	43	mA	+125°C			

TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off (i.e., Idle mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator disabled (i.e., SOSCO and SOSCI pins configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

NOTES: