

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-2: CORCON: CORE CONTROL REGISTER (CONTINUED)

bit 1	RND: Rounding Mode Select bit
	1 = Biased (conventional) rounding enabled
	0 = Unbiased (convergent) rounding enabled
bit 0	IF: Integer or Fractional Multiplier Mode Select bit
	1 = Integer mode enabled for DSP multiply ops
	0 = Fractional mode enabled for DSP multiply ops

- **Note 1:** This bit is always read as '0'.
 - 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.7.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- · Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	A = x 2	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

4.1.1 PROGRAM MEMORY ORGANIZATION

The program memory space is organized in word-addressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in **Section 7.1 "Interrupt Vector Table**".

Address			X		(Isw Address)
/1001035		\sim		<u> </u>	(1500 / 1001 0005)
	23	16	8	0	
0x000001	0000000				0x000000
0x000003	0000000				0x000002
0x000005	0000000				0x000004
0x000007	0000000				0x000006
			~		
	Program Memory 'Phantom' Byte (read as '0')	Instru	ction Width		

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MODCON	0046	XMODEN	YMODEN	—	BWM<3:0> YWM<3:0> XWM<3:0>									0000				
XMODSRT	0048			XS<15:1>									0	XXXX				
XMODEND	004A							X	E<15:1>								1	XXXX
YMODSRT	004C							Y	S<15:1>								0	XXXX
YMODEND	004E							Y	E<15:1>								1	XXXX
XBREV	0050	BREN XB<14:0>											XXXX					
DISICNT	0052	Disable Interrupts Counter Register										XXXX						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9: 2-OUTPUT PWM2 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P2TCON	05C0	PTEN	—	PTSIDL	_	—	_	—	—		PTOPS	6<3:0>		PTCKPS<1:0> PTMOD<1:0>				0000
P2TMR	05C2	PTDIR							PWM Timer	Count Val	ue Register	r						0000
P2TPER	05C4	—		PWM Time Base Period Register										0000				
P2SECMP	05C6	SEVTDIR		PWM Special Event Compare Register									0000					
PWM2CON1	05C8	_	_	_	_	_	_	_	PMOD1	_	_	-	PEN1H	_	_	_	PEN1L	OOFF
PWM2CON2	05CA	_	_	_	_		SEVO	PS<3:0>		_	_	-	_	_	IUE	OSYNC	UDIS	0000
P2DTCON1	05CC	DTBPS	<1:0>			DTB	<5:0>			DTAPS	S<1:0>			DTA	\<5:0>			0000
P2DTCON2	05CE	_	_	_	_	_	_	_	_	_	_	—	_	_	_	DTS1A	DTS1I	0000
P2FLTACON	05D0	_	_	_	_	_	_	FAOV1H	FAOV1L	FLTAM	_	—	_	_	_	_	FAEN1	0000
P2OVDCON	05D4	_	_	_	_	_	_	POVD1H	POVD1L	_	_	—	_	_	_	POUT1H	POUT1L	FF00
P2DC1	05D6			PWM Duty Cycle #1 Register 00									0000					

Legend: — = unimplemented, read as '0'

TABLE 4-10: QEI1 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
QEI1CON	01E0	CNTERR	—	QEISIDL	INDX	UPDN	C	QEIM<2:0)>	SWPAB	PCDOUT	TQGATE	TQCKP	S<1:0>	POSRES	TQCS	UPDN_SRC	0000
DFLT1CON	01E2	_	_	_	_	—	IMV<	<1:0>	CEID	QEOUT		QECK<2:0>		_	_	_	—	0000
POS1CNT	01E4		Position Counter<15:0> 0									0000						
MAX1CNT	01E6	Maximum Count<15:0>											FFFF					

Legend: — = unimplemented, read as '0'

TABLE 4-11: QEI2 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
QEI2CON	01F0	CNTERR	—	QEISIDL	INDX	UPDN	C	EIM<2:0)>	SWPAB	PCDOUT	TQGATE	TQCKP	S<1:0>	POSRES	TQCS	UPDN_SRC	0000
DFLT2CON	01F2	_	_	_	_	_	IMV<	<1:0>	CEID	QEOUT		QECK<2:0>		_	_	_	—	0000
POS2CNT	01F4		Position Counter<15:0>										0000					
MAX2CNT	01F6	Maximum Count<15:0>											FFFF					

Legend: — = unimplemented, read as '0'

© 2007-2012 Microchip Technology Inc.

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set	up NVMCO	N for block erase operation		
	MOV	#0x4042, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
; Init	pointer	to row to be ERASED		
	MOV	<pre>#tblpage(PROG_ADDR), W0</pre>	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	<pre>#tbloffset(PROG_ADDR), W0</pre>	;	Initialize in-page EA[15:0] pointer
	TBLWTL	WO, [WO]	;	Set base address of erase block
	DISI	#5	;	Block all interrupts with priority < 7
			;	for next 5 instructions
	MOV	#0x55, W0		
	MOV	W0, NVMKEY	;	Write the 55 key
	MOV	#OxAA, W1	;	
	MOV	W1, NVMKEY	;	Write the AA key
	BSET	NVMCON, #WR	;	Start the erase sequence
	NOP		;	Insert two NOPs after the erase
	NOP		;	command is asserted

Vector	IVT Address	AIVT Address	Interrupt Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	0x000008	0x000108	Address Error
3	0x000000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000F	0x00010F	DMA Error
6-7	0x000010-0x000012	0x000110-0x000112	Reserved
8	0x000014	0x000114	INTO – External Interrupt 0
9	0x000016	0x000116	IC1 – Input Capture 1
10	0x000018	0x000118	OC1 – Output Compare 1
11	0x00001A	0x00011A	T1 – Timer1
12	0x00001C	0x00011C	DMA0 – DMA Channel 0
13	0x00001E	0x00011E	IC2 – Input Capture 2
14	0x000020	0x000120	OC2 – Output Compare 2
15	0x000022	0x000122	T2 – Timer2
16	0x000024	0x000124	T3 – Timer3
17	0x000026	0x000126	SPI1E – SPI1 Error
18	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	0x00002A	0x00012A	U1RX – UART1 Receiver
20	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	0x00002E	0x00012E	ADC1 – ADC 1
22	0x000030	0x000130	DMA1 – DMA Channel 1
23	0x000032	0x000132	Reserved
24	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	0x000038	0x000138	CM – Comparator Interrupt
27	0x00003A	0x00013A	Change Notification Interrupt
28	0x00003C	0x00013C	INT1 – External Interrupt 1
29	0x00003E	0x00013E	Reserved
30	0x000040	0x000140	IC7 – Input Capture 7
31	0x000042	0x000142	IC8 – Input Capture 8
32	0x000044	0x000144	DMA2 – DMA Channel 2
33	0x000046	0x000146	OC3 – Output Compare 3
34	0x000048	0x000148	OC4 – Output Compare 4
35	0x00004A	0x00014A	T4 – Timer4
36	0x00004C	0x00014C	T5 – Timer5
37	0x00004E	0x00014E	INT2 – External Interrupt 2
38	0x000050	0x000150	U2RX – UART2 Receiver
39	0x000052	0x000152	U2TX – UART2 Transmitter
40	0x000054	0x000154	SPIZE – SPIZ Error
41	UX000056	UXUUU156	SPIZ – SPIZ Transfer Done
42	0x000058	0x000158	UTRX – ECAN1 RX Data Ready
43	0x00005A	0x00015A	C1 – ECAN1 Event
44			
45-52	0x00006C	0x00015E-0x00016C	Reserved
53		UXUUU16E	
54	0x000070	0x000170	DMA – DMA Channel 4

TABLE 7-1:INTERRUPT VECTORS

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0
DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	—	_	QEI2IF	FLTA2IF	PWM2IF	—
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF	—
bit 7		1					bit 0
Legend:	1.11		1.11				
R = Readable		VV = VVritable	DIT	U = Unimple	mented bit, read		
-n = value at P	<u>'UR</u>	I = BILIS SEL		0 = Bit is cle	eared		IOWN
bit 15	DAC1LIF: DA	AC Left Channe	el Interrupt Fla	g Status bit ⁽²⁾			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred		2)		
bit 14	DAC1RIF: DA	AC Right Chan	nel Interrupt F	lag Status bit ⁽	2)		
	1 = Interrupt r	request has oc request has no	curred				
bit 13-12	Unimplemen	ted: Read as '	0'				
bit 11	OEI2IF: OFI2	Prent Interrur	ot Flag Status	bit			
2	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 10	FLTA2IF: PW	/M2 Fault A Inte	errupt Flag Sta	atus bit			
	1 = Interrupt r	request has oc	curred				
h # 0		request has no	t occurred				
bit 9	1 = Interrupt r			l			
	0 = Interrupt r	request has no	t occurred				
bit 8-7	Unimplemen	ted: Read as '	0'				
bit 6	C1TXIF: ECA	N1 Transmit D	ata Request I	nterrupt Flag S	Status bit ⁽¹⁾		
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 5	DMA7IF: DM	A Channel 7 D	ata Transfer C	Complete Interi	rupt Flag Status	bit	
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 4	DMA6IF: DM	A Channel 6 D	ata Transfer C	Complete Interi	rupt Flag Status	bit	
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 3	CRCIF: CRC	Generator Inte	errupt Flag Sta	tus bit			
	1 = Interrupt r 0 = Interrupt r	request has oc request has no	curred t occurred				
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	bit			
	1 = Interrupt r	request has oc	curred				
	0 = Interrupt r	request has no	t occurred				
bit 1	U1EIF: UART	1 Error Interru	pt Flag Status	bit			
	1 = interrupt r 0 = Interrupt r	equest has no	t occurred				
bit 0	Unimplemen	ted: Read as '	0'				
	·····						
Note 1. Into	rrunto oro dioal	blad on daviaa	a without on E		0		

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

2: Interrupts are disabled on devices without an Audio DAC module.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		T1IP<2:0>		—		OC1IP<2:0>					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
—		IC1IP<2:0>				INT0IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable I	bit	U = Unimple	mented bit, rea	ad as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cl	eared	x = Bit is unkr	nown				
bit 15	Unimpleme	ented: Read as ')'								
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits								
	111 = Interr	rupt is priority 7 (I	nighest prior	ity interrupt)							
	•										
	•										
	001 = Interr	rupt is priority 1									
	000 = Interr	upt source is dis	abled								
bit 11	Unimpleme	ented: Read as '0)'								
bit 10-8	OC1IP<2:0	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits									
	111 = Interr	rupt is priority 7 (r	nignest prior	ity interrupt)							
	•										
	•										
	001 = Interr	rupt is priority 1	ablad								
hit 7		upt source is us	abieu								
bit 6 4		Input Conturo C) bonnol 1 Int	orrupt Drigrity	aita						
DIL 0-4	111 = Inter	unt is priority 7 (k	name i m	ity interrunt)	JIIS						
	•	upt is priority 7 (i	ingricot prior	ity interrupt)							
	•										
	•	untin minute (
	001 = Interr	rupt is priority i rupt source is dis	abled								
bit 3	Unimpleme	ented: Read as ')'								
bit 2-0	INT0IP<2:0	>: External Interr	upt 0 Priority	/ bits							
	111 = Interr	rupt is priority 7 (I	nighest prior	ity interrupt)							
	•			/							
	•										
	• 001 = Interr	rupt is priority 1									
	000 = Interr	rupt source is disa	abled								

DECISTED 7 46

					D/// 0		
R/W-0	R/W-U	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAD	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PAC)<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			nown	

REGISTER 8-5: DMAXPAD: DMA CHANNEL x PERIPHERAL ADDRESS REGISTER⁽¹⁾

bit 15-0 PAD<15:0>: Peripheral Address Register bits

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

REGISTER 8-6: DMAxCNT: DMA CHANNEL x TRANSFER COUNT REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—		—	_	—	—	CNT<	9:8> ⁽²⁾
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			CNT<	7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			l as '0'				
-n = Value at POR '1' = Bit		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

bit 15-10 Unimplemented: Read as '0'

bit 9-0 CNT<9:0>: DMA Transfer Count Register bits⁽²⁾

Note 1: If the channel is enabled (i.e., active), writes to this register may result in unpredictable behavior of the DMA channel and should be avoided.

2: Number of DMA transfers = CNT<9:0> + 1.

INCOUST LIX						. 5	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	—			T3CKR<4:0	1>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		<u> </u>			T2CKR<4:0	>	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unki	nown
	11111 = Inp 11001 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0					
bit 7-5	Unimpleme	nted: Read as	'0'				
bit 4-0	T2CKR<4:0 11111 = Inp 11001 = Inp	>: Assign Time ut tied to Vss ut tied to RP25	r2 External Clo	ock (T2CK) to t	the correspond	ling RPn pin	
	00001 = Inp 00000 = Inp	ut tied to RP1 ut tied to RP0					

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

REGISTER	3-2. Tycon	. IIIVIER CO		3131 EK (y -	5 01 5)				
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
TON ⁽²⁾	—	TSIDL ⁽¹⁾		_	_	—	_		
bit 15							bit 8		
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0		
	TGATE ⁽²⁾	TCKPS	<1:0> ⁽²⁾			TCS ⁽²⁾			
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own		
		O h::(2)							
DIUTS	IUN: Timery $1 = $ Storte 16								
	1 = Starts 16-1 0 = Stops 16-1	bit Timerx							
bit 14	Unimplemen	ted: Read as ')'						
bit 13	TSIDL: Stop i	n Idle Mode bit	(1)						
	1 = Discontinu	ue timer operat	ion when dev	ice enters Idle	mode				
	0 = Continue	timer operatior	in Idle mode						
bit 12-7	Unimplemen	ted: Read as ')'						
bit 6	TGATE: Time	rx Gated Time	Accumulation	n Enable bit ⁽²⁾					
	When TCS =	<u>1:</u>							
		o.							
	1 = Gated tim	<u>o.</u> e accumulatior	n enabled						
	0 = Gated tim	e accumulatior	n disabled						
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Presca	le Select bits ⁽²)				
	11 = 1:256 pr	escale value							
	10 = 1:64 prescale value								
	01 = 1.0 pres 00 = 1:1 pres	cale value							
bit 3-2	Unimplemen	ted: Read as ') '						
bit 1	TCS: Timerx	Clock Source S	Select bit ⁽²⁾						
	1 = External o	lock from TxCl	<pin< td=""><td></td><td></td><td></td><td></td></pin<>						
	0 = Internal cl	ock (Fosc/2)							
bit 0	Unimplemen	ted: Read as ')'						

REGISTER 13-2: TyCON: TIMER CONTROL REGISTER (y = 3 or 5)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), these bits have no effect.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	_	—	—	—	_	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 15-8	Unimplemen	ted: Read as '	0'					
bit 7	CVREN: Corr	nparator Voltag	e Reference E	Enable bit				
	1 = CVREF ci	rcuit powered	on					
	0 = CVREF CI	rcuit powered	down					
bit 6	CVROE: Com	parator VREF	Output Enable	e bit				
	1 = CVREF VO 0 = CVREF VO	oltage level is c	output on CVR	EF PIN from CVREE nir	1			
bit 5	CVRR: Comp	arator VREE R	ande Selection	n hit				
bit o	1 = CVRSRC1	range should b	he 0 to 0.625 (CVRSRC with C	VRSRC/24 step s	size		
	0 = CVRSRC	range should b	e 0.25 to 0.71	9 CVRSRC with	n CVRSRC/32 ste	ep size		
bit 4	CVRSS: Corr	parator VREF S	Source Select	ion bit				
	1 = Comparator reference source CVRsRc = VREF+ – VREF-							
	0 = Compara	0 = Comparator reference source CVRSRC = AVDD – AVSS						
bit 3-0	CVR<3:0>: C	omparator VRE	F Value Selec	ction 0 ⊴CVR<3	3:0> ≤15 bits			
	When CVRR	<u>= 1:</u>						
	CVREF = (CVR)	<3:0>/ 24) • ((VRSRC)					

REGISTER 24-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

 $\frac{VREF}{CVREF} = (CVRESC) + (CVRSRC)$ $\frac{When CVRR = 0:}{CVREF} = 1/4 \cdot (CVRSRC) + (CVR < 3:0 > /32) \cdot (CVRSRC)$

REGISTER 25-2:	PADCFG1: PAD CONFIGURATION CONTROL REGISTE	ΞR
----------------	--	----

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	_	—	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			wn

bit 15-2	Unimplemented: Read as '0'
----------	----------------------------

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	1 = PMP module uses TTL input buffers0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL) needs to be set.

27.1 **PMP** Resources

Many useful resources related to PMP are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

27.1.1 KEY RESOURCES

- Section 35. "Parallel Master Port (PMP)" (DS70299)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

28.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices include the following features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

Address Bit 7 Bit 6 Bit 1 Bit 0 Name Bit 5 Bit 4 Bit 3 Bit 2 0xF80000 FBS RBS<1:0> BSS<2:0> BWRP FSS⁽¹⁾ 0xF80002 RSS<1:0> SSS<2:0> SWRP 0xF80004 GWRP FGS ____ ____ GSS<1:0> ____ ____ ____ 0xF80006 FOSCSEL FNOSC<2:0> IESO OSCIOFNC POSCMD<1:0> 0xF80008 FOSC FCKSM<1:0> **IOL1WAY** 0xF8000A FWDT FWDTEN WINDIS _ WDTPRE WDTPOST<3:0> PWMPIN 0xF8000C FPOR HPOL LPOL ALTI2C FPWRT<2:0> Reserved⁽²⁾ 0xF8000E FICD **JTAGEN** ICS<1:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3

TABLE 28-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on dsPIC33FJ32MC302/304 devices.

2: These bits are reserved for use by development tools and must be programmed as '1'.

28.1 Configuration Bits

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices provide nonvolatile memory implementations for device Configuration bits. Refer to **Section 25.** "**Device Configuration**" (DS70194) in the "*dsPIC33F/PIC24H Family Reference Manual*" for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 28-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The Device Configuration register map is shown in Table 28-1.

33.1 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units			INCHES			
Dimensi	on Limits	MIN	NOM	MAX			
Number of Pins	N		28				
Pitch	е		.100 BSC				
Top to Seating Plane	A		_	.200			
Molded Package Thickness	A2	.120	.135	.150			
Base to Seating Plane	A1	.015	_	_			
Shoulder to Shoulder Width	E	.290	.310	.335			
Molded Package Width	E1	.240	.285	.295			
Overall Length	D	1.345	1.365	1.400			
Tip to Seating Plane	L	.110	.130	.150			
Lead Thickness	С	.008	.010	.015			
Upper Lead Width	b1	.040	.050	.070			
Lower Lead Width	b	.014	.018	.022			
Overall Row Spacing §	eВ		_	.430			

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

· · · · · · · · · · · · · · · · · · ·	
Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 30-1
	Updated typical values in Thermal Packaging Characteristics in Table 30-3
	Added parameters DI11 and DI12 to Table 30-9
	Updated minimum values for parameters D136 (TRw) and D137 (TPE) and removed typical values in Table 30-12
	Added Extended temperature range to Table 30-13
	Updated Note 2 in Table 30-38
	Updated parameter AD63 and added Note 3 to Table 30-42 and Table 30-43

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)

Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-24).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-36).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).
Configuration	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 "System Clock Sources" .
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).
Section 10.0 "Power-Saving	Added the following registers:
Features"	PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)
	• PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)
	PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)

© 2007-2012 Microchip Technology Inc.

Section Name	Update Description
Section 32.0 "High Temperature Electrical Characteristics"	Updated all ambient temperature end range values to +150°C throughout the chapter.
	Updated the storage temperature end range to +160°C.
	Updated the maximum junction temperature from +145°C to +155°C.
	Updated the maximum values for High Temperature Devices in the Thermal Operating Conditions (see Table 32-2).
	Updated the ADC Module Specifications (12-bit Mode) (see Table 32-14).
	Updated the ADC Module Specifications (10-bit Mode) (see Table 32-15).
"Product Identification System"	Updated the end range temperature value for H (High) devices.