

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc204t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.3 DSP Engine Overview

The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner by dedicating certain working registers to each address space.

3.4 Special MCU Features

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of dsPIC33FJ32MC302/304, the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/ X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or rows of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or pages of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. The TBLRDL and TBLWTL instructions can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. The TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

REGISTER	10-3: PMD	3: PERIPHER	RAL MODULI	E DISABLE (CONTROL RE	EGISTER 3	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	_			_	CMPMD	RTCCMD	PMPMD
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
CRCMD	DAC1MD	QEI2MD	PWM2MD		—	—	_
bit 7							bit
Legena:	lo hit	M = Mritabla	hit	II – Unimplo	monted hit rea		
		vv = vvritable	DIL	$0^{\circ} = 0$	mented bit, rea	u as u v = Ditio upkn	0000
	IL POR				eareu		
bit 15-11	Unimplemen	ted: Read as '	0'				
bit 10	CMPMD: Cor	mparator Modu	e Disable bit				
	1 = Compara	tor module is d	isabled				
	0 = Compara	tor module is e	nabled				
bit 9	RTCCMD: R	TCC Module D	isable bit				
	1 = RTCC mo	odule is disable	ed				
	0 = RTCC mo	odule is enable	d				
bit 8	PMPMD: PM	P Module Disa	ble bit				
	1 = PMP mod 0 = PMP mod	dule is disabled					
bit 7	CRCMD: CR	C Module Disa	ble bit				
	1 = CRC mod	dule is disabled					
	0 = CRC mod	dule is enabled					
bit 6	DAC1MD: DA	AC1 Module Di	sable bit				
	1 = DAC1 mo	odule is disable	d				
	0 = DAC1 mc	odule is enable	d				
bit 5	QEI2MD: QE	I2 Module Disa	able bit				
	1 = QEI2 model = OEI2 model =	dule is disabled	1				
hit 4		WM2 Module [Disable hit				
	1 = PWM2 m	odule is disable	ed				
	0 = PWM2 m	odule is enable	ed				
bit 3-0	Unimplemen	ted: Read as '	0'				

REGISTER	11-4: RPIN	R4: PERIPHE	RAL PIN SE	ELECT INPU	T REGISTER	4	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	_			T5CKR<4:0>	•	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—			T4CKR<4:0>	•	
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown
bit 12-8 bit 7-5 bit 4-0	Unimpleme T5CKR<4:0: 11111 = Inp 11001 = Inp	nted: Read as >: Assign Timel ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0 nted: Read as >: Assign Timel ut tied to Vss ut tied to RP25	⁻⁰ ⁻⁵ External Cl ⁻⁰ , ⁻⁴ External Cl	ock (T5CK) to t ock (T4CK) to t	the correspondi	ng RPn pin ng RPn pin	
	00001 = Inp	ut tied to RP1					

00000 = Input tied to RP0

NOTES:

REGISTER 10-0. PROTOUNZ. DEAD-TIME CONTROL REGISTER 2.								
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—		DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set '0' = Bit			'0' = Bit is cle	ared	x = Bit is unkr	างพท		
bit 15-6	Unimplemen	ted: Read as '	0'					
bit 5	DTS3A: Dead-Time Select for PWMxH3 Signal Going Active bit							
	1 = Dead time provided from Unit B							
	0 = Dead time	e provided from	n Unit A					
bit 4	DTS3I: Dead-Time Select for PWMxL3 Signal Going Inactive bit							

REGISTER 16-8: PxDTCON2: DEAD-TIME CONTROL REGISTER 2⁽¹⁾

	0 – Dead time provided from Onit A
bit 4	DTS3I: Dead-Time Select for PWMxL3 Signal Going Inactive bit
	1 = Dead time provided from Unit B
	0 = Dead time provided from Unit A
bit 3	DTS2A: Dead-Time Select for PWMxH2 Signal Going Active bit
	1 = Dead time provided from Unit B
	0 = Dead time provided from Unit A
bit 2	DTS2I: Dead-Time Select for PWMxL2 Signal Going Inactive bit
	1 = Dead time provided from Unit B
	0 = Dead time provided from Unit A
bit 1	DTS1A: Dead-Time Select for PWMxH1 Signal Going Active bit
	1 = Dead time provided from Unit B
	0 = Dead time provided from Unit A
bit 0	DTS1I: Dead-Time Select for PWMxL1 Signal Going Inactive bit
	1 = Dead time provided from Unit B
	0 = Dead time provided from Unit A

Note 1: PWM2 supports only one PWM I/O pin pair.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F15MS	SK<1:0>	F14MS	K<1:0>	F13MS	SK<1:0>	F12MS	K<1:0>		
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F11MS	SK<1:0>	F10MS	K<1:0>	F9MSK<1:0>		F8MSI	< <1:0>		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable bit		U = Unimplen	nented bit, read	l as '0'			
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
	FAEMOK 44.0	Neek Cours	a fan Filtan 45	b :+					
DIL 15-14	11 = No mask			DIL					
	10 = Accepta	, nce Mask 2 reo	gisters contair	n mask					
	01 = Acceptance Mask 1 registers contain mask								
	00 = Acceptance Mask 0 registers contain mask								
bit 13-12	F14MSK<1:0>: Mask Source for Filter 14 bit (same values as bit 15-14)								
bit 11-10	F13MSK<1:0>: Mask Source for Filter 13 bit (same values as bit 15-14)								
bit 9-8	F12MSK<1:0	>: Mask Sourc	e for Filter 12	bit (same value	es as bit 15-14)	1			
bit 7-6	F11MSK<1:0	>: Mask Sourc	e for Filter 11	bit (same value	es as bit 15-14)				
bit 5-4	F10MSK<1:0>: Mask Source for Filter 10 bit (same values as bit 15-14)								

REGISTER 21-19: CiFMSKSEL2: ECAN™ FILTER 15-8 MASK SELECTION REGISTER

bit 3-2 **F9MSK<1:0>:** Mask Source for Filter 9 bit (same values as bit 15-14)

bit 1-0 F8MSK<1:0>: Mask Source for Filter 8 bit (same values as bit 15-14)

REGISTER	22-3: AD1C0	JN3: ADC1 CO	UNTRUL R	EGISTER 3			
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC		—			SAMC<4:0>	(1)	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	it	U = Unimplei	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15	ADRC: ADC 1 = ADC inter 0 = Clock der	Conversion Cloc nal RC clock ived from systen	k Source bit n clock				
bit 14-13	Unimplemen	ted: Read as '0'	,				
bit 12-8	SAMC<4:0>:	Auto Sample Ti	me bits ⁽¹⁾				
	11111 = 31 T	AD					
	•						
	•						
	•						
	00001 = 1 T A 00000 = 0 T A	D D					
bit 7-0	ADCS<7:0>:	ADC Conversion	n Clock Sele	ct bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•						
	01000000 =		05 1 1) - 64				
	•		.0> + 1) = 04	\cdot ICY = IAD			
	•						
	•						
	00000010 =	TCY · (ADCS<7)	:0> + 1) = 3	• TCY = TAD			
	00000001 =	TCY · (ADCS<7	:0> + 1) = 2	• TCY = TAD			
	00000000 =	TCY · (ADCS<7)	:0> + 1) = 1	• TCY = TAD			
Note 1: ⊤	hese bits are only	used if AD1CO	0N1<7:5> (SS	SRC<2:0>) = 1	11.		

2: This bit is not used if AD1CON3<15> (ADRC) = 1.

23.0 AUDIO DIGITAL-TO-ANALOG CONVERTER (DAC)

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, the of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211) of the dsPIC33F/PIC24H Family Reference Manual, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Audio Digital-to-Analog Converter (DAC) module is a 16-bit Delta-Sigma signal converter designed for audio applications. It has two output channels, left and right to support stereo applications. Each DAC output channel provides three voltage outputs, positive DAC output, negative DAC output, and the midpoint voltage output for the dsPIC33FJ64MC804 and dsPIC33FJ128MC804 devices.

23.1 KEY FEATURES

- 16-bit resolution (14-bit accuracy)
- Second-Order Digital Delta-Sigma Modulator
- · 256 X Over-Sampling Ratio
- 128-Tap FIR Current-Steering Analog Reconstruction Filter
- 100 KSPS Maximum Sampling Rate
- · User controllable Sample Clock
- Input Frequency 45 kHz max
- Differential Analog Outputs
- Signal-To-Noise: 90 dB
- 4-deep input Buffer
- 16-bit Processor I/O, and DMA interfaces

23.2 DAC Module Operation

The functional block diagram of the Audio DAC module is shown in Figure 23-1. The Audio DAC module provides a 4-deep data input FIFO buffer for each output channel. If the DMA module and/or the processor cannot provide output data in a timely manner, and the FIFO becomes empty, the DAC accepts data from the DAC Default Data register (DACDFLT). This safety feature is useful for industrial control applications where the DAC output controls an important processor or machinery. The DACDFLT register should be initialized with a safe output value. Often the safe output value is either the midpoint value (0x8000) or a zero value (0x0000).

The digital interpolator up-samples the input signals, where the over-sampling ratio is 256x which creates data points between the user supplied data points. The interpolator also includes processing by digital filters to provide noise shaping to move the converter noise above 20 kHz (upper limit of the pass band). The output of the interpolator drives the Sigma-Delta modulator. The serial data bit stream from the Sigma-Delta modulator is processed by the reconstruction filter. The differential outputs of the reconstruction filter are amplified by Op Amps to provide the required peak-to-peak voltage swing.

Note: The DAC module is designed specifically for audio applications and is not recommended for control type applications.

23.3 DAC Output Format

The DAC output data stream can be in a two's complement signed number format or as an unsigned number format.

The Audio DAC module features the ability to accept the 16-bit input data in a two's complement signed number format or as an unsigned number format. The data formatting is controlled by the Data Format Control bit (FORM<8>) in the DAC1CON register. The supported formats are:

- 1 = Signed (two's complement)
- 0 = Unsigned

If the FORM bit is configured for Unsigned data the user input data yields the following behavior:

- 0xFFFF = most positive output voltage
- 0x8000 = mid point output voltage
- 0x7FFF = a value just below the midpoint
- 0x0000 = minimum output voltage

If the FORM bit is configured for signed data the user input data yields the following behavior:

- 0x7FFF = most positive output voltage
- 0x0000 = mid point output voltage
- 0xFFFF = value just below the midpoint
- 0x8000 = minimum output voltage

The Audio DAC provides an analog output proportional to the digital input value. The maximum 100,000 samples per second (100 ksps) update rate provides good quality audio reproduction.

REGISTER 24-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit
	When C1INV = 0:
	1 = C1 VIN + > C1 VIN
	0 = C1 VIN + < C1 VIN -
	When C1INV = 1:
	0 = C1 VIN + > C1 VIN - 1 = C1 VIN + < C1
DIT 5	C2INV: Comparator 2 Output Inversion bit
	1 = C2 output inverted
DIT 4	CTINV: Comparator 1 Output Inversion bit
	1 = C1 output inverted
bit 3	C2NEG: Comparator 2 Negative Input Configure bit
	1 = Input is connected to VIN+
	See Figure 24-1 for Comparator modes
hit 2	C2POS: Comparator 2 Positivo Input Configuro bit
	1 = Input is connected to Vint
	$\Omega = Input is connected to CVREF$
	See Figure 24-1 for Comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit
	1 = Input is connected to ViN+
	0 = Input is connected to VIN-
	See Figure 24-1 for Comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to CVREF
	See Figure 24-1 for Comparator modes.

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

Bit Field	Register	RTSP Effect	t Description			
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected			
BSS<2:0>	FBS	Immediately	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment			
			Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE			
			010 = High security; boot program Flash segment ends at 0x000/FE			
			Boot space is 4K Instruction Words (except interrupt vectors) 101 = Standard security; boot program Flash segment, ends at 0x001FFE			
			001 = High security; boot program Flash segment ends at 0x001FFE			
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE			
	500		000 = High security; boot program Flash segment ends at 0x003FFE			
RBS<1:0>\''	FBS	Immediate	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes			
SW/DD(1)	Eee(1)	Immodiato	00 = Boot RAM is 1024 bytes			
SWRF 7	F33`'	Infinediate	1 = Secure Segment can bet written 0 = Secure Segment is write-protected			
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) x11 = No Secure program flash segment			
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End of BS, ends at 0x001FFE			
			010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE			
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE			
			001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE			
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh			
			000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE			
RSS<1:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined			
			10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM			
			00 = Secure RAM is 4096 Bytes less BS RAM			

	TABLE 28-2:	dsPIC33F CONFIGURATION BITS DESCRIPTION
--	-------------	---

Note 1: This Configuration register is not available on dsPIC33FJ32MC302/304 devices.

FIGURE 31-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 31-31: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	c ⁽¹⁾	Min	Max	Units	Conditions
TQ50	TqIL	Filter Time to Recognize with Digital Filter	3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ51	TqiH	Filter Time to Recognize with Digital Filter	3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)	
TQ55	Tqidxr	Index Pulse Recognized Counter Reset (ungated	to Position index)	3 TCY	_	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

TABLE 31-38:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended				
SP70	TscP	Maximum SCK Input Frequency	—		15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_	-	ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	—		ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	-	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow \text{to SCKx} \uparrow \text{ or SCKx Input}$	120	—	—	ns	_
SP51	TssH2doZ	SSx	10	—	50	ns	_
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
ADC Accuracy (10-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾							
HAD20b	Nr	Resolution ⁽³⁾	10 data bits		bits	—	
HAD21b	INL	Integral Nonlinearity	-3	_	3	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD23b	Gerr	Gain Error	-5	—	6	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD24b	EOFF	Offset Error	-1	_	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
ADC Accuracy (10-bit Mode) – Measurements with Internal VREF+/VREF- ⁽¹⁾							
HAD20b	Nr	Resolution ⁽³⁾	10 data bits		bits	_	
HAD21b	INL	Integral Nonlinearity	-2		2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD23b	Gerr	Gain Error	-5	—	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD24b	EOFF	Offset Error	-1.5	—	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
Dynamic Performance (10-bit Mode) ⁽²⁾							
HAD33b	Fnyq	Input Signal Bandwidth	_		400	kHz	—
Note A. These second and the second size of but are tasked at 00 loss and the							

TABLE 32-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

33.0 **PACKAGING INFORMATION**

28-Lead SPDIP

28-Lead SOIC (.300")

28-Lead QFN-S

44-Lead QFN

44-Lead TQFP

Example

Example

Example

Example

Example

XXXX XXXX XXXX O YY	XXXXXXX XXXXXXX XXXXXXX WWNNN	dsPIC 33FJ32MC304 −I/PT _@ 3 0730235		
Legend	: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.		
Note:	If the full Microchip part number cannot be marked on one line, it is carried over to the next line, thus limiting the number of available characters for customer-specific information.			

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

	MILLMETERS				
Dime	nsion Limits	MIN	NOM	MAX	
Number of Pins	N		28	-	
Pitch	е	1.27 BSC			
Overall Height	A		-	2.65	
Molded Package Thickness	A2	2.05	_	_	
Standoff §	A1	0.10	_	0.30	
Overall Width	I Width E 10.30 BSC			-	
Molded Package Width	E1	7.50 BSC			
Overall Length	D	17.90 BSC			
Chamfer (optional)	h	0.25	_	0.75	
Foot Length	L	0.40	_	1.27	
Footprint	L1		1.40 REF	-	
Foot Angle Top	φ	0°	_	8°	
Lead Thickness	С	0.18	_	0.33	
Lead Width	b	0.31	_	0.51	
Mold Draft Angle Top	C.	5°	_	15°	
Mold Draft Angle Bottom	β	5°	_	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B

Revision F (August 2011)

This revision includes typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-5: MAJOR SECTION UPDATES

Section Name	Update Description
Section 28.0 "Special Features"	Added Note 3 to the Connections for the On-chip Voltage Regulator diagram (see Figure 28-1).
Section 31.0 "Electrical Characteristics"	Removed Voltage on VCAP with respect to Vss from the Absolute Maximum Ratings.
	Removed Note 3 and parameter DC10 (VCORE) from the DC Temperature and Voltage Specifications (see Table 31-4).
	Updated the Characteristics definition and Conditions for parameter BO10 in the Electrical Characteristics: BOR (see Table 31-11).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 31-13).

Revision G (April 2012)

This revision includes typographical and formatting changes throughout the data sheet text.

In addition, where applicable, new sections were added to each peripheral chapter that provide information and links to related resources, as well as helpful tips. For examples, see **Section 9.2** "Oscillator Resources" and **Section 22.4** "ADC Helpful Tips".

All other major changes are referenced by their respective section in the following table.

TABLE A-6: MAJOR SECTION UPDATES

Section Name	Update Description
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added two new tables: • Crystal Recommendations (see Table 2-1) • Resonator Recommendations (see Table 2-2)
Section 31.0 "Electrical Characteristics"	Updated parameters DO10 and DO20 and removed parameters DO16 and DO26 in the DC Characteristics: I/O Pin Output Specifications (see Table 31-10)