

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XE

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc204t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33F/PIC24H Family Reference Manual"*. These documents should be considered as the general reference for the operation of a particular module or device feature.

- Note 1: To access the documents listed below, browse to the documentation section of the dsPIC33FJ64MC804 product page of the Microchip web site (www.microchip.com) or select a family reference manual section from the following list.
 In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.
- Section 1. "Introduction" (DS70197)
- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70202)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-saving Modes" (DS70196)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 14. "Motor Control PWM" (DS70187)
- Section 15. "Quadrature Encoder Interface (QEI)" (DS70208)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 20. "Data Converter Interface (DCI)" (DS70288)
- Section 23. "CodeGuard™ Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 30. "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- Section 32. "Interrupts (Part III)" (DS70214)
- Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211)
- Section 34. "Comparator" (DS70212)
- Section 35. "Parallel Master Port (PMP)" (DS70299)
- Section 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298)
- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- Section 38. "Direct Memory Access" (DS70215)
- · Section 39. "Oscillator (Part III)" (DS70216)

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJ128MC202/204 AND dsPIC33FJ64MC202/ 204 DEVICES WITH 8 KB RAM

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

IABLE 6-2: USCILLATUR PARAMETERS	TABLE 6-2:	OSCILLATOR PARAMETERS
----------------------------------	------------	------------------------------

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

6.4 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 31.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset.

6.4.1 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to **Section 28.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
_	DMA4IE	PMPIE	_	_	—	_	_
it 15					I		bit
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		—	DMA3IE	C1IE ⁽¹⁾	C1RXIE ⁽¹⁾	SPI2IE	SPI2EIE
bit 7							bit
Legend:	1. 1.9		1.11				
R = Readab		W = Writable			mented bit, read		
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15	Unimplomor	ted: Read as	·^'				
bit 14	-		o Data Transfer C	omploto Intorr	runt Enable bit		
JIL 14		request enable		omplete inten			
		request not en					
bit 13	PMPIE: Para	Ilel Master Por	t Interrupt Ena	ble bit			
		request enable					
	•	request not en					
bit 12-5	-	Unimplemented: Read as '0'					
bit 4	DMA3IE: DMA Channel 3 Data Transfer Complete Interrupt Enable bit						
	1 = Interrupt request enabled 0 = Interrupt request not enabled						
bit 3	•	•					
511 5	C1IE: ECAN1 Event Interrupt Enable bit ⁽¹⁾ 1 = Interrupt request enabled						
		request not en					
bit 2	C1RXIE: EC/	AN1 Receive I	Data Ready Inte	errupt Enable I	oit ⁽¹⁾		
		request enable					
	-	request not en					
bit 1		Event Interrup					
		request enable					
ait O		•					
oit O	SPI2EIE: SP	I2 Error Interru request enable	pt Enable bit				

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—	_	—		DMA4IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
0-0	R/W-1	PMPIP<2:0>	K/W-U	0-0	0-0	0-0	0-0
 bit 7		FINIFIF \2.0>		_	_		bit
							DIL
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value a	t POR	'1' = Bit is set	t i i i i i i i i i i i i i i i i i i i	'0' = Bit is cle	Bit is cleared x = Bit is unknown		
bit 10-8	111 = Interr • • 001 = Interr	0>: DMA Chanr upt is priority 7 (upt is priority 1 upt source is dis	highest priorit	•	interrupt Priori	ty dits	
bit 7	Unimpleme	nted: Read as	0'				
bit 6-4	111 = Interr • •	Parallel Master upt is priority 7 (upt is priority 1					

REGISTER 7-25: IPC11: INTERRUPT PRIORITY CONTROL REGISTER 11

bit 3-0 Unimplemented: Read as '0'

REGISTER	8-1: DMAx	CON: DMA C	HANNEL x	CONTROL R	EGISTER		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0
CHEN	SIZE	DIR	HALF	NULLW	—	—	—
bit 15							bit
U-0	U-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0
	_	AMOD	E<1:0>	—	_	MODE	=<1:0>
bit 7							bit
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is clea		x = Bit is unkr	nown
bit 15	CHEN: Chan	nel Enable bit					
	1 = Channel						
	0 = Channel						
bit 14		ransfer Size bi	t				
	1 = Byte 0 = Word						
bit 13		r Direction bit (sourco/doctin	ation bus select)			
DIL 15				to peripheral add			
				o DMA RAM add			
bit 12				errupt Select bit			
	•		•	upt when half of t		een moved	
	0 = Initiate bl	ock transfer co	mplete interru	ipt when all of th	e data has be	en moved	
bit 11	NULLW: Null	I Data Peripher	al Write Mode	e Select bit			
	1 = Null data 0 = Normal o		eral in additio	n to DMA RAM	write (DIR bit	must also be cle	ear)
bit 10-6	Unimplemer	nted: Read as '	0'				
bit 5-4	AMODE<1:0	>: DMA Chann	el Operating	Mode Select bits	6		
				ct Addressing mo	ode)		
		ral Indirect Add	0				
	-	r Indirect witho r Indirect with F					
bit 3-2	•	nted: Read as '		it mode			
bit 1-0	•			ada Salaat hita			
				ode Select bits ed (one block tra	nsfer from/to (each DMA RAM	huffer)
		ous, Ping-Pong					Sunci j
	01 = One-Sh	ot, Ping-Pong	nodes disable	ed			
	00 = Continu	ous, Ping-Pong	g modes disal	bled			

. CONTROL DECISTER

REGISTER 11-33:	RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾
-----------------	---

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP25R<4:0>	>	
						bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—			RP24R<4:0	>	
						bit 0
R = Readable bit W = Writable b		bit	bit U = Unimplemented bit, read as '0'			
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
	U-0 —	— — U-0 U-0 — — Dit W = Writable	— — — U-0 U-0 R/W-0 — — — bit W = Writable bit	— — — U-0 U-0 R/W-0 — — — Dit W = Writable bit U = Unimpler	— — RP25R<4:0: U-0 U-0 R/W-0 R/W-0 — — — RP24R<4:0:	- - RP25R<4:0> U-0 U-0 R/W-0 R/W-0 R/W-0 - - RP24R<4:0>

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP25R<4:0>:** Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

15.3 Output Compare Registers

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 or 4)

bit 15							bit 8
		OCSIDL					
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Cleared in Hardware	HS = Set in Hardware	
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111).
bit 2	
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

20.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react the to complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

20.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

20.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
—	—			FBP	² <5:0>		
bit 15							bit
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
			110		B<5:0>	110	
bit 7							bit
Legend:							
R = Readab		W = Writable		U = Unimplen			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-14		anted: Deed as f	<u>,</u>				
	•	ented: Read as '					
bit 13-8		FIFO Buffer Poir RB31 buffer	iter dits				
		RB30 buffer					
	•						
	•						
	•						
	000001 =	TRB1 buffer					
	000000 = -	TRB0 buffer					
bit 7-6	Unimplem	ented: Read as '	0'				
bit 5-0	FNRB<5:0	>: FIFO Next Rea	ad Buffer Poir	nter bits			
		RB31 buffer					
	011110 =	RB30 buffer					
	•						
	•						
	•	TRB1 buffer					

FIGURE 22-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

23.6 DAC Control Registers

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0		
DACEN		DACSIDL	AMPON			_	FORM		
bit 15							bit		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1		
				DACFDIV<6:0)>				
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown		
bit 15	DACEN: DAG	C1 Enable bit							
	1 = Enables	module							
	0 = Disables	module							
bit 14	Unimplemer	nted: Read as '	D'						
bit 13	DACSIDL: S	top in Idle Mode	e bit						
		ue module ope			lle mode				
		module operat							
bit 12		able Analog Ou	• •	•	•				
		Output Amplifier Output Amplifier							
bit 11-9	Unimplemer	nted: Read as '	0'						
bit 8	FORM: Data	Format Select	bit						
	•	1 = Signed integer							
	0 = Unsigned	•							
bit 7	Unimplemer	nted: Read as '	0'						
bit 6-0		:0>: DAC Clock							
	1111111 =	Divide input clo	ck by 128						
	•								
	•								
	•								
	0000101 =	Divide input clo	ck by 6 (defau	llt)					
	•								
	•								
	-	Divide input clo	ck by 3						
		Divide input clo							
		Divide input clo		(ida)					

REGISTER 23-1: DAC1CON: DAC CONTROL REGISTER

REGISTER 27-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

bit 2	BEP: Byte Enable Polarity bit
	 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

- Note 1: 28-pin devices do not have PMA<10:2>.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

31.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 AC characteristics and timing parameters.

TABLE 31-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	_	400	pF	In I ² C™ mode

				Standard Operatin (unless otherwise Operating tempera	stated) ature -40)°C ≤Ta ≤	V to 3.6V +85°C for Industrial +125°C for Extended	
Param No. Symbol Cha		Charac	teristic	Min ⁽¹⁾	Мах	Units	Conditions	
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	_	
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			400 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	_	
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	100	ns		
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	_	1000	ns	CB is specified to be	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF	
			1 MHz mode ⁽²⁾	_	300	ns		
IM25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	_	
	Setup Time	400 kHz mode	100	—	ns			
			1 MHz mode ⁽²⁾	40	—	ns		
IM26	M26 THD:DAT Da	Data Input	100 kHz mode	0	—	μs	_	
		Hold Time	400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽²⁾	0.2	—	μs		
IM30	TSU:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	Only relevant for	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	condition	
IM31	THD:STA	Start Condition	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	After this period the	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is	
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	generated	
IM33	Tsu:sto	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	_	
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs		
IM34	THD:STO	Stop Condition	100 kHz mode	Tcy/2 (BRG + 1)	_	ns	_	
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns		
IM40	TAA:SCL	Output Valid	100 kHz mode	—	3500	ns	—	
		From Clock	400 kHz mode	—	1000	ns	—	
			1 MHz mode ⁽²⁾	—	400	ns	—	
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time bus must be free	
			400 kHz mode	1.3	_	μs	before a new	
			1 MHz mode ⁽²⁾	0.5	—	μs	transmission can start	
IM50	Св	Bus Capacitive L	oading	—	400	pF	—	
IM51	TPGD	Pulse Gobbler De	÷	65	390	ns	See Note 3	

TABLE 31-40: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)

Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site for the latest dsPIC33F/PIC24H Family Reference Manual sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

28-Lead Plastic Quad Flat, No Lead Package (MM) – 6x6x0.9 mm Body [QFN-S] with 0.40 mm Contact Length

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS			
Dimens	ion Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.70
Optional Center Pad Length	T2			4.70
Contact Pad Spacing	C1		6.00	
Contact Pad Spacing	C2		6.00	
Contact Pad Width (X28)	X1			0.40
Contact Pad Length (X28)	Y1			0.85
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2124A

TABLE A-2:	MAJOR SECTION UPDATES (C	ONTINUED)	

Section Name	Update Description
Section 11.0 "I/O Ports"	Removed Table 11-1 and added reference to pin diagrams for I/O pin availability and functionality.
	Added paragraph on ADPCFG register default values to Section 11.3 "Configuring Analog Port Pins".
	Added Note box regarding PPS functionality with input mapping to Section 11.6.2.1 "Input Mapping" .
Section 18.0 "Serial Peripheral Interface (SPI)"	Added Note 2 and 3 to the SPIxCON1 register (see Register 18-2).
Section 20.0 "Universal	Updated the Notes in the UxMODE register (see Register 20-1).
Asynchronous Receiver Transmitter (UART)"	Updated the UTXINV bit settings in the UxSTA register and added Note 1 (see Register 20-2).
Section 21.0 "Enhanced CAN (ECAN™) Module"	Changed bit 11 in the ECAN Control Register 1 (CiCTRL1) to Reserved (see Register 21-1).
Section 22.0 "10-bit/12-bit Analog- to-Digital Converter (ADC1)"	Replaced the ADC1 Module Block Diagrams with new diagrams (see Figure 22-1 and Figure 22-2).
	Updated bit values for ADCS<7:0> and added Notes 1 and 2 to the ADC1 Control Register 3 (AD1CON3) (see Register 22-3).
	Added Note 2 to the ADC1 Input Scan Select Register Low (AD1CSSL) (see Register 22-7).
	Added Note 2 to the ADC1 Port Configuration Register Low (AD1PCFGL) (see Register 22-8).
Section 23.0 "Audio Digital-to- Analog Converter (DAC)"	Updated the midpoint voltage in the last sentence of the first paragraph.
Analog Converter (DAC)	Updated the voltage swing values in the last sentence of the last paragraph in Section 23.3 "DAC Output Format" .
Section 24.0 "Comparator Module"	Updated the Comparator Voltage Reference Block Diagram (see Figure 24-2).
Section 25.0 "Real-Time Clock and Calendar (RTCC)"	Updated the minimum positive adjust value for CAL<7:0> in the RTCC Calibration and Configuration (RCFGCAL) Register (see Register 25-1).
Section 28.0 "Special Features"	Added Note 1 to the Device Configuration Register Map (see Table 28-1).
	Updated Note 1 in the dsPIC33F Configuration Bits Description (see Table 28-2).

INDEX

Α

AC Characteristics	
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
Alternate Interrupt Vector Table (AIVT)	
Analog-to-Digital Converter	
DMA	
Initialization	
Key Features	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Barrel Shifter
Bit-Reversed Addressing 66
Example67
Implementation
Sequence Table (16-Entry)67
Block Diagrams
16-bit Timer1 Module 195
ADC Module
Connections for On-Chip Voltage Regulator
Device Clock 143, 145
DSP Engine
dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04,
and dsPIC33FJ128MCX02/X0412
dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04,
and dsPIC33FJ128MCX02/X04 CPU Core 23
ECAN Module255
Input Capture
Output Compare
PLL145
PWM Module
Quadrature Encoder Interface
Reset System79
Shared Port Structure
SPI
Timer2 (16-bit)199
Timer2/3 (32-bit)
114.57
UART

С

C Compilers	
MPLAB C18	354
Clock Switching	153
Enabling	153
Sequence	153
Code Examples	
Erasing a Program Memory Page	77
Initiating a Programming Sequence	
Loading Write Buffers	
Port Write/Read	164
PWRSAV Instruction Syntax	155
Code Protection	335, 341
Comparator Module	
Configuration Bits	
Configuration Register Map	
Configuring Analog Port Pins	
CPU	

Control Register	
CPU Clocking System	
PLL Configuration	145
Selection	144
Sources	144
Customer Change Notification Service	455
Customer Notification Service	455
Customer Support	455

D

Data Accumulators and Adder/Subtracter	30
Data Space Write Saturation	
Overflow and Saturation	
Round Logic	
Write Back	
Data Address Space	
Alignment	37
Memory Map for dsPIC33FJ128MC202/204 and	
dsPIC33FJ64MC202/204 Devices	
with 8 KB RAM	39
Memory Map for dsPIC33FJ128MC802/804 and	
dsPIC33FJ64MC802/804 Devices	
with 16 KB RAM	40
Memory Map for dsPIC33FJ32MC302/304 Device	
4 KB RAM	
Near Data Space	
Software Stack	
Width	37
DC and AC Characteristics	
Graphs and Tables	425
DC Characteristics	358
Doze Current (IDOZE)	415
High Temperature	414
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Power-down Current (IPD)	
Program Memory	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	
Development Support	
DMA Module	
DMA Register Map	52
DMAC Registers	
DMAxCNT	
DMAxCON	
DMAxPAD	
DMAxREQ	
DMAXSTA	
DMAXSTB	
Doze Mode	
DSP Engine	
Multiplier	
พนแทนอา	52

Е

ECAN Module	
CiBUFPNT1 register	
CiBUFPNT2 register	
CiBUFPNT3 register	
CiBUFPNT4 register	
CiCFG1 register	