



Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

| Product Status             | Active                                                                           |
|----------------------------|----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                            |
| Core Size                  | 16-Bit                                                                           |
| Speed                      | 40 MIPs                                                                          |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                          |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT               |
| Number of I/O              | 21                                                                               |
| Program Memory Size        | 128KB (128K x 8)                                                                 |
| Program Memory Type        | FLASH                                                                            |
| EEPROM Size                | -                                                                                |
| RAM Size                   | 16K x 8                                                                          |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                        |
| Data Converters            | A/D 6x10b/12b                                                                    |
| Oscillator Type            | Internal                                                                         |
| Operating Temperature      | -40°C ~ 125°C (TA)                                                               |
| Mounting Type              | Surface Mount                                                                    |
| Package / Case             | 28-VQFN Exposed Pad                                                              |
| Supplier Device Package    | 28-QFN-S (6x6)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc802-e-mm |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong



#### 2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7  $\mu$ F to 47  $\mu$ F.

## 2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7  $\mu$ F and 10  $\mu$ F, preferably surface mount connected within one-eights inch of the VCAP pin connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 28.2 "On-Chip Voltage Regulator" for details.

## 2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.



## EXAMPLE OF MCLR PIN CONNECTIONS



2:  $\underline{R1} \leq 470\Omega$  will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

#### FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ32MC302/304 DEVICES WITH 4 KB RAM



## 7.6 Interrupt Setup Procedures

#### 7.6.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

**Note:** At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

## 7.6.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

#### 7.6.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

#### 7.6.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the  ${\tt POP}$  instruction can be used to restore the previous SR value.

| Note: | Only user interrupts with a priority level of |
|-------|-----------------------------------------------|
|       | 7 or lower can be disabled. Trap sources      |
|       | (level 8-level 15) cannot be disabled.        |

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

| REGISTER 8      | -1: DMAX                                                                                    | CON: DMA C                      | HANNEL X                          | CONTROL                                   | REGISTER         |                 |         |  |  |  |
|-----------------|---------------------------------------------------------------------------------------------|---------------------------------|-----------------------------------|-------------------------------------------|------------------|-----------------|---------|--|--|--|
| R/W-0           | R/W-0                                                                                       | R/W-0                           | R/W-0                             | R/W-0                                     | U-0              | U-0             | U-0     |  |  |  |
| CHEN            | SIZE                                                                                        | DIR                             | HALF                              | NULLW                                     |                  |                 | —       |  |  |  |
| bit 15          |                                                                                             | ·                               |                                   | ·                                         | -<br>-           |                 | bit 8   |  |  |  |
|                 |                                                                                             |                                 |                                   |                                           |                  |                 |         |  |  |  |
| U-0             | U-0                                                                                         | R/W-0                           | R/W-0                             | U-0                                       | U-0              | R/W-0           | R/W-0   |  |  |  |
|                 | —                                                                                           | AMOD                            | E<1:0>                            | —                                         | —                | MODE            | -1:0>   |  |  |  |
| bit 7           |                                                                                             |                                 |                                   |                                           |                  |                 | bit 0   |  |  |  |
|                 |                                                                                             |                                 |                                   |                                           |                  |                 |         |  |  |  |
| Legend:         |                                                                                             |                                 |                                   |                                           |                  |                 |         |  |  |  |
| R = Readable    | bit                                                                                         | W = Writable                    | bit                               | U = Unimplei                              | mented bit, read | as '0'          |         |  |  |  |
| -n = Value at F | POR                                                                                         | '1' = Bit is set                |                                   | '0' = Bit is cle                          | eared            | x = Bit is unkn | iown    |  |  |  |
| 6# 4 <i>C</i>   |                                                                                             | nal Enchla hit                  |                                   |                                           |                  |                 |         |  |  |  |
| DIL 15          |                                                                                             |                                 |                                   |                                           |                  |                 |         |  |  |  |
|                 | 0 = Channel o                                                                               | disabled                        |                                   |                                           |                  |                 |         |  |  |  |
| bit 14          | SIZE: Data Tr                                                                               | ransfer Size bit                |                                   |                                           |                  |                 |         |  |  |  |
|                 | 1 = Byte                                                                                    |                                 |                                   |                                           |                  |                 |         |  |  |  |
|                 | 0 <b>= Word</b>                                                                             |                                 |                                   |                                           |                  |                 |         |  |  |  |
| bit 13          | DIR: Transfer                                                                               | Direction bit (s                | source/destina                    | ation bus selec                           | t)               |                 |         |  |  |  |
|                 | 1 = Read from<br>0 = Read from                                                              | n DMA RAM ao<br>n peripheral ad | ddress, write t<br>dress, write t | to peripheral ac                          | ddress<br>ddress |                 |         |  |  |  |
| bit 12          | HALE: Farly I                                                                               | Block Transfer                  | Complete Inte                     | errupt Select b                           | it               |                 |         |  |  |  |
|                 | 1 = Initiate blo                                                                            | ock transfer co                 | mplete interru                    | rupt when half of the data has been moved |                  |                 |         |  |  |  |
|                 | 0 = Initiate block transfer complete interrupt when all of the data has been moved          |                                 |                                   |                                           |                  |                 |         |  |  |  |
| bit 11          | NULLW: Null                                                                                 | Data Periphera                  | al Write Mode                     | Select bit                                |                  |                 |         |  |  |  |
|                 | 1 = Null data write to peripheral in addition to DMA RAM write (DIR bit must also be clear) |                                 |                                   |                                           |                  |                 |         |  |  |  |
|                 | 0 = Normal op                                                                               | peration                        | - 1                               |                                           |                  |                 |         |  |  |  |
| bit 10-6        | Unimplemen                                                                                  | ted: Read as                    | 0'<br>- 1 On tin 1                |                                           | 4-               |                 |         |  |  |  |
| DIT 5-4         |                                                                                             | >: DMA Chann                    | el Operating I                    |                                           | IS<br>nodo)      |                 |         |  |  |  |
|                 | 11 = Reserved (acts as Peripheral Indirect Addressing mode)                                 |                                 |                                   |                                           |                  |                 |         |  |  |  |
|                 | 01 = Register Indirect without Post-Increment mode                                          |                                 |                                   |                                           |                  |                 |         |  |  |  |
|                 | 00 = Register                                                                               | Indirect with F                 | Post-Incremen                     | t mode                                    |                  |                 |         |  |  |  |
| bit 3-2         | Unimplemen                                                                                  | ted: Read as '                  | 0'                                |                                           |                  |                 |         |  |  |  |
| bit 1-0         | MODE<1:0>:                                                                                  | DMA Channel                     | Operating Mo                      | ode Select bits                           |                  |                 |         |  |  |  |
|                 | 11 = One-Sho                                                                                | ot, Ping-Pong r                 | nodes enable                      | d (one block tr                           | ansfer from/to e | ach DMA RAM     | buffer) |  |  |  |
|                 | 01 = One-Sho                                                                                | ot, Ping-Pong                   | nodes disable                     | ed                                        |                  |                 |         |  |  |  |
|                 | 00 = Continue                                                                               | ous, Ping-Pong                  | modes disat                       | oled                                      |                  |                 |         |  |  |  |
|                 |                                                                                             |                                 |                                   |                                           |                  |                 |         |  |  |  |

#### . CONTROL DECISTER

# dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

| REGISTER     | 11-6: RPIN                               | R10: PERIPH                                                                                 | IERAL PIN S         | ELECT INPU           | JT REGISTER     | RS 10              |       |
|--------------|------------------------------------------|---------------------------------------------------------------------------------------------|---------------------|----------------------|-----------------|--------------------|-------|
| U-0          | U-0                                      | U-0                                                                                         | R/W-1               | R/W-1                | R/W-1           | R/W-1              | R/W-1 |
|              |                                          |                                                                                             |                     |                      | IC8R<4:0>       |                    |       |
| bit 15       |                                          |                                                                                             |                     |                      |                 |                    | bit 8 |
| U-0          | U-0                                      | U-0                                                                                         | R/W-1               | R/W-1                | R/W-1           | R/W-1              | R/W-1 |
|              | _                                        | _                                                                                           |                     |                      | IC7R<4:0>       |                    |       |
| bit 7        |                                          | <b>I</b>                                                                                    |                     |                      |                 |                    | bit 0 |
|              |                                          |                                                                                             |                     |                      |                 |                    |       |
| Legend:      |                                          |                                                                                             |                     |                      |                 |                    |       |
| R = Readab   | le bit                                   | W = Writable                                                                                | e bit               | U = Unimple          | mented bit, rea | d as '0'           |       |
| -n = Value a | t POR                                    | '1' = Bit is se                                                                             | •t                  | '0' = Bit is cleared |                 | x = Bit is unknown |       |
| bit 12-8     | IC8R<4:0>:<br>11111 = Inp<br>11001 = Inp | Assign Input C<br>but tied to Vss<br>but tied to RP25<br>but tied to RP1<br>but tied to RP0 | o<br>apture 8 (IC8) | to the corresp       | onding RPn pin  |                    |       |
| DIT 7-5      | Unimpleme                                | Accient Input C                                                                             | (0)                 | to the corresp       | anding DDn nin  |                    |       |
| UIL 4-U      | 11111 = Inp<br>11001 = Inp               | but tied to Vss<br>but tied to RP25                                                         | арште / (тС/)       | to the corresp       | onaing KPn pin  |                    |       |

00001 = Input tied to RP1 00000 = Input tied to RP0

#### © 2007-2012 Microchip Technology Inc.

| 11.0          |                                    | 11.0                      |               |                      |                 |                 |                    |  |  |  |
|---------------|------------------------------------|---------------------------|---------------|----------------------|-----------------|-----------------|--------------------|--|--|--|
| 0-0           | 0-0                                | 0-0                       | R/W-I         | R/W-1                |                 | R/W-1           | F(/ VV- I          |  |  |  |
|               | _                                  |                           |               |                      | QEBIR<4:0       | >               |                    |  |  |  |
| DIT 15        |                                    |                           |               |                      |                 |                 | DIT                |  |  |  |
| 11.0          |                                    | 11.0                      |               |                      |                 |                 |                    |  |  |  |
| 0-0           | 0-0                                | 0-0                       | K/W-1         | R/W-1                |                 | N/W-1           | r///-I             |  |  |  |
|               | _                                  |                           |               |                      | QEATR-4.0       | -               | hit (              |  |  |  |
| DIL 7         |                                    |                           |               |                      |                 |                 | DILU               |  |  |  |
| Legend:       |                                    |                           |               |                      |                 |                 |                    |  |  |  |
| R = Readable  | e bit                              | W = Writable              | bit           | U = Unimpler         | mented bit, rea | ad as '0'       |                    |  |  |  |
| -n = Value at | -n = Value at POR '1' = Bit is set |                           |               | '0' = Bit is cleared |                 | x = Bit is unki | x = Bit is unknown |  |  |  |
|               |                                    |                           |               |                      |                 |                 |                    |  |  |  |
| bit 15-13     | Unimplemer                         | ted: Read as '            | 0'            |                      |                 |                 |                    |  |  |  |
| bit 12-8      | QEB1R<4:0>                         | -: Assign B (QE           | B1) to the co | prresponding pir     | า               |                 |                    |  |  |  |
|               | 11111 <b>= Inp</b> u               | ut tied to Vss            |               |                      |                 |                 |                    |  |  |  |
|               | 11001 <b>= Inp</b>                 | ut tied to RP25           |               |                      |                 |                 |                    |  |  |  |
|               | •                                  |                           |               |                      |                 |                 |                    |  |  |  |
|               | •                                  |                           |               |                      |                 |                 |                    |  |  |  |
|               | •                                  |                           |               |                      |                 |                 |                    |  |  |  |
|               | 00001 <b>= Inp</b>                 | 00001 = Input tied to RP1 |               |                      |                 |                 |                    |  |  |  |
|               | 00000 <b>= Inp</b> i               | ut tied to RP0            |               |                      |                 |                 |                    |  |  |  |
| bit 7-5       | Unimplemer                         | ted: Read as '            | 0'            |                      |                 |                 |                    |  |  |  |
| bit 4-0       | QEA1R<4:0>                         | -: Assign A (QE           | A1) to the co | prresponding pir     | า               |                 |                    |  |  |  |
|               | 11111 = Input tied to Vss          |                           |               |                      |                 |                 |                    |  |  |  |
|               | 11001 <b>= Inp</b>                 | ut tied to RP25           |               |                      |                 |                 |                    |  |  |  |
|               | •                                  |                           |               |                      |                 |                 |                    |  |  |  |
|               | •                                  |                           |               |                      |                 |                 |                    |  |  |  |

00001 = Input tied to RP1

00000 = Input tied to RP0

NOTES:

#### SERIAL PERIPHERAL 18.0 **INTERFACE (SPI)**

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304. the of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) the "dsPIC33F/PIC24H Family of Reference Manual", which is available the Microchip from web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with Motorola® SPI and SIOP.

Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of 4 pins:

- SDIx (serial data input)
- · SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active-low slave select)

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.



**FIGURE 18-1:** SPI MODULE BLOCK DIAGRAM

# dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

| R/W-0                 | U-0                                                                                                                               | U-0                                                                                                                                                                              | R/W-0                                                                                                                  | R/W-0                                   | R/W-0                    | R/W-0           | R/W-0    |
|-----------------------|-----------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------------|-----------------|----------|
| CH0NB                 |                                                                                                                                   | _                                                                                                                                                                                |                                                                                                                        |                                         | CH0SB<4:0>               |                 |          |
| bit 15                |                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                        |                                         |                          |                 | bit 8    |
|                       |                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                        |                                         |                          |                 |          |
| R/W-0                 | U-0                                                                                                                               | U-0                                                                                                                                                                              | R/W-0                                                                                                                  | R/W-0                                   | R/W-0                    | R/W-0           | R/W-0    |
| CH0NA                 | _                                                                                                                                 | —                                                                                                                                                                                |                                                                                                                        |                                         | CH0SA<4:0>               |                 |          |
| bit 7                 |                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                        |                                         |                          |                 | bit 0    |
|                       |                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                        |                                         |                          |                 |          |
| Legend:               |                                                                                                                                   |                                                                                                                                                                                  |                                                                                                                        |                                         |                          |                 |          |
| R = Readable          | e bit                                                                                                                             | W = Writable b                                                                                                                                                                   | oit                                                                                                                    | U = Unimpler                            | mented bit, rea          | d as '0'        |          |
| -n = Value at         | POR                                                                                                                               | '1' = Bit is set                                                                                                                                                                 |                                                                                                                        | '0' = Bit is cle                        | ared                     | x = Bit is unkr | nown     |
| bit 14-13<br>bit 12-8 | 1 = Channel (<br>0 = Channel (<br>Unimplemen<br>CH0SB<4:0><br>dsPIC33FJ32<br>01000 = Cha                                          | D negative input<br>D negative input<br>ted: Read as '0<br>: Channel 0 Pos<br>2MC304, dsPIC<br>nnel 0 positive i<br>nnel 0 positive i<br>nnel 0 positive i                       | is AN1<br>is VREF-<br>sitive Input Se<br><b>33FJ64MC20</b><br>nput is AN8<br>nput is AN2<br>nput is AN1<br>nput is AN0 | elect for Sample<br>04/804 and dsF      | e B bits<br>PIC33FJ128MC | :204/804 devic  | es only: |
| bit 7<br>bit 6-5      | dsPIC33FJ32<br>00101 = Cha<br>•<br>•<br>00010 = Cha<br>00001 = Cha<br>00000 = Cha<br>CH0NA: Cha<br>1 = Channel (<br>0 = Channel ( | 2MC302, dsPIC<br>nnel 0 positive i<br>nnel 0 positive i<br>nnel 0 positive i<br>nnel 0 positive i<br>nnel 0 Negative<br>0 negative input<br>0 negative input<br>1 negative input | 33FJ64MC20<br>nput is AN5<br>nput is AN2<br>nput is AN1<br>nput is AN0.<br>Input Select<br>is AN1<br>is VREF-          | <b>)2/802 and dsF</b><br>for Sample A b | PIC33FJ128MC             | :202/802 devic  | es only: |
| 0-0                   | Unimplemen                                                                                                                        | iea: Read as 10                                                                                                                                                                  |                                                                                                                        |                                         |                          |                 |          |

## REGISTER 22-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

## 23.0 AUDIO DIGITAL-TO-ANALOG CONVERTER (DAC)

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, the of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 33. "Audio Digital-to-Analog Converter (DAC)" (DS70211) of the dsPIC33F/PIC24H Family Reference Manual, which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Audio Digital-to-Analog Converter (DAC) module is a 16-bit Delta-Sigma signal converter designed for audio applications. It has two output channels, left and right to support stereo applications. Each DAC output channel provides three voltage outputs, positive DAC output, negative DAC output, and the midpoint voltage output for the dsPIC33FJ64MC804 and dsPIC33FJ128MC804 devices.

# 23.1 KEY FEATURES

- 16-bit resolution (14-bit accuracy)
- Second-Order Digital Delta-Sigma Modulator
- · 256 X Over-Sampling Ratio
- 128-Tap FIR Current-Steering Analog Reconstruction Filter
- 100 KSPS Maximum Sampling Rate
- · User controllable Sample Clock
- Input Frequency 45 kHz max
- Differential Analog Outputs
- Signal-To-Noise: 90 dB
- 4-deep input Buffer
- 16-bit Processor I/O, and DMA interfaces

## 23.2 DAC Module Operation

The functional block diagram of the Audio DAC module is shown in Figure 23-1. The Audio DAC module provides a 4-deep data input FIFO buffer for each output channel. If the DMA module and/or the processor cannot provide output data in a timely manner, and the FIFO becomes empty, the DAC accepts data from the DAC Default Data register (DACDFLT). This safety feature is useful for industrial control applications where the DAC output controls an important processor or machinery. The DACDFLT register should be initialized with a safe output value. Often the safe output value is either the midpoint value (0x8000) or a zero value (0x0000).

The digital interpolator up-samples the input signals, where the over-sampling ratio is 256x which creates data points between the user supplied data points. The interpolator also includes processing by digital filters to provide noise shaping to move the converter noise above 20 kHz (upper limit of the pass band). The output of the interpolator drives the Sigma-Delta modulator. The serial data bit stream from the Sigma-Delta modulator is processed by the reconstruction filter. The differential outputs of the reconstruction filter are amplified by Op Amps to provide the required peak-to-peak voltage swing.

Note: The DAC module is designed specifically for audio applications and is not recommended for control type applications.

# 23.3 DAC Output Format

The DAC output data stream can be in a two's complement signed number format or as an unsigned number format.

The Audio DAC module features the ability to accept the 16-bit input data in a two's complement signed number format or as an unsigned number format. The data formatting is controlled by the Data Format Control bit (FORM<8>) in the DAC1CON register. The supported formats are:

- 1 = Signed (two's complement)
- 0 = Unsigned

If the FORM bit is configured for Unsigned data the user input data yields the following behavior:

- 0xFFFF = most positive output voltage
- 0x8000 = mid point output voltage
- 0x7FFF = a value just below the midpoint
- 0x0000 = minimum output voltage

If the FORM bit is configured for signed data the user input data yields the following behavior:

- 0x7FFF = most positive output voltage
- 0x0000 = mid point output voltage
- 0xFFFF = value just below the midpoint
- 0x8000 = minimum output voltage

The Audio DAC provides an analog output proportional to the digital input value. The maximum 100,000 samples per second (100 ksps) update rate provides good quality audio reproduction.

# 23.6 DAC Control Registers

| R/W-0           | U-0                          | R/W-0                                | R/W-0                  | U-0                      | U-0                 | U-0             | R/W-0 |
|-----------------|------------------------------|--------------------------------------|------------------------|--------------------------|---------------------|-----------------|-------|
| DACEN           |                              | DACSIDL                              | AMPON                  |                          | _                   | _               | FORM  |
| bit 15          |                              |                                      |                        |                          |                     |                 | bit 8 |
|                 |                              |                                      |                        |                          |                     |                 |       |
| U-0             | R/W-0                        | R/W-0                                | R/W-0                  | R/W-0                    | R/W-1               | R/W-0           | R/W-1 |
|                 |                              |                                      |                        | DACFDIV<6:               | 0>                  |                 |       |
| bit 7           |                              |                                      |                        |                          |                     |                 | bit 0 |
|                 |                              |                                      |                        |                          |                     |                 |       |
| Legend:         |                              |                                      |                        |                          |                     |                 |       |
| R = Readable    | bit                          | W = Writable                         | DIt                    |                          | mented bit, read    |                 |       |
| -n = value at I | POR                          | "1" = Bit is set                     |                        | $0^{\circ} = Bit is cle$ | eared               | X = BIT IS UNKI | nown  |
| bit 15          |                              | 1 Enable bit                         |                        |                          |                     |                 |       |
| bit 10          | 1 = Enables r                | nodule                               |                        |                          |                     |                 |       |
|                 | 0 = Disables                 | module                               |                        |                          |                     |                 |       |
| bit 14          | Unimplemen                   | ted: Read as '                       | )'                     |                          |                     |                 |       |
| bit 13          | DACSIDL: St                  | op in Idle Mode                      | e bit                  |                          |                     |                 |       |
|                 | 1 = Discontin                | ue module ope                        | ration when d          | evice enters lo          | dle mode            |                 |       |
|                 |                              | module operati                       | on in Idle mo          | de<br>. ol               | (Q) · · · · · · · · |                 |       |
| bit 12          | AMPON: Ena                   | able Analog Out                      | put Amplifier          | In Sleep Mode            | e/Stop-in Idle Mo   | ode bit         |       |
|                 | 1 = Analog O<br>0 = Analog O | utput Amplifier                      | is disabled du         | uring Sleep Mo           | ode/Stop-in Idle    | mode            |       |
| bit 11-9        | Unimplemen                   | ted: Read as '                       | )'                     | <b>.</b>                 | ·                   |                 |       |
| bit 8           | FORM: Data                   | Format Select                        | bit                    |                          |                     |                 |       |
|                 | 1 = Signed in                | teger                                |                        |                          |                     |                 |       |
|                 | 0 = Unsigned                 | integer                              |                        |                          |                     |                 |       |
| bit 7           | Unimplemen                   | ted: Read as '                       | )'                     |                          |                     |                 |       |
| bit 6-0         | DACFDIV<6:                   | 0>: DAC Clock                        | Divider bits           |                          |                     |                 |       |
|                 | 1111111 = L                  | Divide input clo                     | ck by 128              |                          |                     |                 |       |
|                 | •                            |                                      |                        |                          |                     |                 |       |
|                 | •                            |                                      |                        |                          |                     |                 |       |
|                 | 0000101 = [                  | Divide input clo                     | ck by 6 (defau         | ult)                     |                     |                 |       |
|                 | •                            | ·                                    |                        | ,                        |                     |                 |       |
|                 | •                            |                                      |                        |                          |                     |                 |       |
|                 | •                            |                                      |                        |                          |                     |                 |       |
|                 | 0000010 = [                  | Divide input clo                     | ck by 3                |                          |                     |                 |       |
|                 | 0000001 = L<br>0000000 = [   | Divide input clo<br>Divide input clo | скby∠<br>ckby1 (no div | vide)                    |                     |                 |       |

## REGISTER 23-1: DAC1CON: DAC CONTROL REGISTER

## 24.1 Comparator Resources

Many useful resources related to Comparators are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

| Note: | In the event you are not able to access the |
|-------|---------------------------------------------|
|       | product page using the link above, enter    |
|       | this URL in your browser:                   |
|       | http://www.microchip.com/wwwprod-           |
|       | ucts/Devices.aspx?dDoc-                     |
|       | Name=en532315                               |

## 24.1.1 KEY RESOURCES

- Section 34. "Comparators" (DS70212)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

# 26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer Section to 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

## FIGURE 26-1: CRC SHIFTER DETAILS

## 26.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR bits (X<15:1>) and the CRCCON bits (PLEN<3:0>), respectively.

## EQUATION 26-1: CRC EQUATION

$$x^{16} + x^{12} + x^5 + 1$$

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 26-1.

| Bit Name  | Bit Value      |  |  |  |
|-----------|----------------|--|--|--|
| PLEN<3:0> | 1111           |  |  |  |
| X<15:1>   | 00010000010000 |  |  |  |

For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 26-2.



© 2007-2012 Microchip Technology Inc.

| CONFIG BITS           | BSS<2:0> = x11 0K                                                                                                                                                                                                        | BSS<2:0> = x10 1K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | BSS<2:0> = x01 4K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | BSS<2:0> = x00 8K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| SSS<2:0> = x11<br>0K  | VS = 256 IW         000000h<br>0001FEh<br>000200h           0007FEh<br>000800h         001FFEh<br>002000h           003FFEh<br>004000h         003FFEh<br>004000h           GS = 21760 IW         00800h                 | VS = 256 IW         000000h<br>0001FEh<br>000200h<br>0007FEh           BS = 768 IW         000800h<br>001FFEh<br>002000h<br>003FFEh           GS = 20992 IW         004000h<br>00ABFEh                                                                                                                                                                                                                                                                                                                                                          | VS = 256 IW         000000h<br>0001FEh<br>000200h<br>0007FEh<br>000800h<br>001FFEh<br>002000h<br>001FFEh<br>002000h<br>003FFEh<br>004000h<br>007FFEh<br>004000h<br>007FFEh<br>004000h<br>007FFEh           GS = 17920 IW         000000h<br>0008000h<br>0008000h                                                                                                                                                                                                                                                           | VS = 256 IW         000000h           BS = 7936 IW         000200h           0007FEh         000800h           001FFEh         0003800h           001FFEh         002000h           003FFEh         004000h           007FFEh         008000h           007FFEh         008000h           007FFEh         008000h           007FFEh         008000h                                                                                     |
|                       | 0157FEh                                                                                                                                                                                                                  | 0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SSS<2:0> = x10        | VS = 256 IW 00000h<br>0001FEh<br>000200h<br>0007FEh<br>000800h<br>001FFEh<br>002200h                                                                                                                                     | VS = 256 IW         000000h<br>0001FEh           BS = 768 IW         000200h           SS = 3072 IW         000800h           002200h         001FFEh           002200h         002200h                                                                                                                                                                                                                                                                                                                                                         | VS = 256 IW         000000h<br>0001FEh           BS = 3840 IW         000200h<br>0007FEh           000800h         001FFEh           002200h         001FFEh           002200h         002700h                                                                                                                                                                                                                                                                                                                             | VS = 256 IW         000000h           0001FEh         000200h           0007FEh         0007FEh           000800h         001FFEh           002000h         001FFEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 4К                    | GS = 17920 IW<br>0157FEh<br>008000h<br>000ABFEh<br>0157FEh                                                                                                                                                               | GS = 17920 IW<br>0157FEh<br>008000h<br>000ABFEh<br>0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | GS = 17920 IW<br>003FFEh<br>004000h<br>007FFEh<br>008000h<br>00ABFEh<br>0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                            | GS = 13824 IW<br>0037FEh<br>004000h<br>007FFEh<br>008000h<br>00ABFEh<br>0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SSS<2:0> = x01<br>8K  | VS = 256 IW         000000h<br>0001FEh<br>000200h           000200h         0007FEh<br>000800h           SS = 7936 IW         003FFEh<br>004000h           GS = 13824 IW         00800h                                  | VS = 256 IW         000000h<br>0001FEh           BS = 768 IW         000200h<br>0007FEh           000800h         001FFEh           000800h         001FFEh           00200h         003FFEh           004000h         007FFEh           004000h         007FFEh           00800h         007FFEh           004000h         007FFEh           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh | VS = 256 IW         000000h<br>0001FEh           BS = 3840 IW         000200h<br>0007FEh           SS = 4096 IW         003FFEh           004000h         007FFEh           GS = 13824 IW         00800h           004BFEh         004000h           007FFEh         004000h           007FFEh         004000h           007FFEh         004000h           007FFEh         004000h           007FFEh         004800h           007FFEh         008000h           007FFEh         008000h           00ABFEh         004000h | VS = 256 IW         000000h           BS = 7936 IW         000200h           000800h         0007FEh           000200h         000800h           001FFEh         00200h           003FFEh         004000h           007FFEh         004000h           007FFEh         004000h           007FFEh         008000h           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh           008000h         007FFEh                                                                                                                         |
|                       | 0157FEh                                                                                                                                                                                                                  | 0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0157FEh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SSS<2:0> = x00<br>16K | VS = 256 IW         000000h<br>0001FEh<br>000200h<br>0007FEh<br>000800h<br>001FFEh<br>000800h<br>003FFEh           SS = 16128 IW         003FFEh<br>004000h<br>003FFEh           GS = 5632 IW         004000h<br>00ABFEh | VS = 256 IW         000000h<br>0001FEh<br>000200h<br>0007FEh<br>000800h<br>001FFEh<br>000800h<br>003FFEh<br>002000h<br>003FFEh<br>004000h<br>007FFEh<br>004000h<br>007FFEh           SS = 15360 IW         00800h<br>003FFEh<br>004000h<br>007FFEh           GS = 5632 IW         00800h<br>00ABFEh                                                                                                                                                                                                                                             | VS = 256 IW         000000h<br>0001FEh<br>000200h<br>0007FEh<br>000800h<br>001FFEh<br>002000h           SS = 3840 IW         0007FEh<br>000800h<br>003FFEh<br>002000h           SS = 12288 IW         003FFEh<br>004000h<br>003FFEh           GS = 5632 IW         00800h<br>00ABFEh                                                                                                                                                                                                                                       | VS = 256 IW         000000h           BS = 7936 IW         0007FEh           000800h         0007FEh           0002000h         0007FEh           0002000h         003FFEh           004000h         003FFEh           004000h         007FFEh           008000h         003FFEh           004000h         007FFEh           008000h         007FFEh           004000h         0007FFEh           0008000h         0007FFEh |

## TABLE 28-4: CODE FLASH SECURITY SEGMENT SIZES FOR 64 KB DEVICES

## dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

| DC CHARACTERISTICS              |                                                                     |     | Standard Op<br>(unless other<br>Operating te | perating Conditions<br>erwise stated)<br>emperature -40°C<br>-40°C | s: 3.0V to 3.6V<br>≤TA ≤+ 85°C for Indu<br>≤TA ≤+125°C for Ext | ıstrial<br>ended |  |  |  |
|---------------------------------|---------------------------------------------------------------------|-----|----------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------|------------------|--|--|--|
| Parameter<br>No. <sup>(3)</sup> | Typical <sup>(2)</sup>                                              | Мах | Units                                        |                                                                    | Conditions                                                     |                  |  |  |  |
| Idle Current (li                | Idle Current (IIDLE): Core OFF Clock ON Base Current <sup>(1)</sup> |     |                                              |                                                                    |                                                                |                  |  |  |  |
| DC40d                           | 8                                                                   | 10  | mA                                           | -40°C                                                              |                                                                |                  |  |  |  |
| DC40a                           | 8                                                                   | 10  | mA                                           | +25°C                                                              |                                                                |                  |  |  |  |
| DC40b                           | 9                                                                   | 10  | mA                                           | +85°C                                                              | 3.3V                                                           |                  |  |  |  |
| DC40c                           | 10                                                                  | 13  | mA                                           | +125°C                                                             |                                                                |                  |  |  |  |
| DC41d                           | 13                                                                  | 15  | mA                                           | -40°C                                                              |                                                                |                  |  |  |  |
| DC41a                           | 13                                                                  | 15  | mA                                           | +25°C                                                              | 3.31/                                                          | 16 MIPS          |  |  |  |
| DC41b                           | 13                                                                  | 16  | mA                                           | +85°C                                                              | 3.3V                                                           |                  |  |  |  |
| DC41c                           | 13                                                                  | 19  | mA                                           | +125°C                                                             |                                                                |                  |  |  |  |
| DC42d                           | 15                                                                  | 18  | mA                                           | -40°C                                                              |                                                                |                  |  |  |  |
| DC42a                           | 16                                                                  | 18  | mA                                           | +25°C                                                              | 3.31/                                                          | 20 MIPS          |  |  |  |
| DC42b                           | 16                                                                  | 19  | mA                                           | +85°C                                                              | 5.5V                                                           |                  |  |  |  |
| DC42c                           | 17                                                                  | 22  | mA                                           | +125°C                                                             |                                                                |                  |  |  |  |
| DC43d                           | 23                                                                  | 27  | mA                                           | -40°C                                                              |                                                                |                  |  |  |  |
| DC43a                           | 23                                                                  | 26  | mA                                           | +25°C                                                              | 2.21/                                                          |                  |  |  |  |
| DC43b                           | 24                                                                  | 28  | mA                                           | +85°C                                                              | 3.3V                                                           | 30 IVIIF 3       |  |  |  |
| DC43c                           | 25                                                                  | 31  | mA                                           | +125°C                                                             |                                                                |                  |  |  |  |
| DC44d                           | 31                                                                  | 42  | mA                                           | -40°C                                                              |                                                                |                  |  |  |  |
| DC44a                           | 31                                                                  | 36  | mA                                           | +25°C                                                              | 3.31/                                                          |                  |  |  |  |
| DC44b                           | 32                                                                  | 39  | mA                                           | +85°C                                                              | 3.3V                                                           | 40 101153        |  |  |  |
| DC44c                           | 34                                                                  | 43  | mA                                           | +125°C                                                             |                                                                |                  |  |  |  |

#### TABLE 31-6: DC CHARACTERISTICS: IDLE CURRENT (lidle)

Note 1: Base IIDLE current is measured as follows:

 CPU core is off (i.e., Idle mode), oscillator is configured in EC mode and external clock active, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator disabled (i.e., SOSCO and SOSCI pins configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- 3: These parameters are characterized but not tested in manufacturing.

## TABLE 31-11: ELECTRICAL CHARACTERISTICS: BOR

| DC CHARACTERISTICS |        |                                         | Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                    |     |      |       |            |
|--------------------|--------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|------|-------|------------|
| Param<br>No.       | Symbol | Characteristic                          |                                                                                                                                                                                                      | Min <sup>(1)</sup> | Тур | Max  | Units | Conditions |
| BO10               | VBOR   | BOR Event on VDD transition high-to-low |                                                                                                                                                                                                      | 2.40               | _   | 2.55 | V     | Vdd        |

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

#### TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY

| DC CHARACTERISTICS |        |                                      | Standard Operating Co<br>(unless otherwise state<br>Operating temperature |                    |      | proditions: 3.0V to 3.6V<br>(a)<br>$-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial<br>$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |                                                                  |  |
|--------------------|--------|--------------------------------------|---------------------------------------------------------------------------|--------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Param<br>No.       | Symbol | Characteristic                       | Min                                                                       | Typ <sup>(1)</sup> | Max  | Units                                                                                                                                            | Conditions                                                       |  |
|                    |        | Program Flash Memory                 |                                                                           |                    |      |                                                                                                                                                  |                                                                  |  |
| D130               | Eр     | Cell Endurance                       | 10,000                                                                    |                    | —    | E/W                                                                                                                                              | -40° C to +125° C                                                |  |
| D131               | Vpr    | VDD for Read                         | VMIN                                                                      |                    | 3.6  | V                                                                                                                                                | VMIN = Minimum operating voltage                                 |  |
| D132B              | VPEW   | VDD for Self-Timed Write             | VMIN                                                                      |                    | 3.6  | V                                                                                                                                                | VMIN = Minimum operating voltage                                 |  |
| D134               | TRETD  | Characteristic Retention             | 20                                                                        | —                  | —    | Year                                                                                                                                             | Provided no other specifications are violated, -40° C to +125° C |  |
| D135               | IDDP   | Supply Current during<br>Programming | _                                                                         | 10                 | —    | mA                                                                                                                                               | _                                                                |  |
| D136a              | Trw    | Row Write Time                       | 1.32                                                                      | _                  | 1.74 | ms                                                                                                                                               | Trw = 11064 FRC cycles,<br>Ta = +85°C, See <b>Note 2</b>         |  |
| D136b              | Trw    | Row Write Time                       | 1.28                                                                      | _                  | 1.79 | ms                                                                                                                                               | Trw = 11064 FRC cycles,<br>Ta = +125°C, See <b>Note 2</b>        |  |
| D137a              | TPE    | Page Erase Time                      | 20.1                                                                      | _                  | 26.5 | ms                                                                                                                                               | TPE = 168517 FRC cycles,<br>TA = +85°C, See <b>Note 2</b>        |  |
| D137b              | TPE    | Page Erase Time                      | 19.5                                                                      | _                  | 27.3 | ms                                                                                                                                               | TPE = 168517 FRC cycles,<br>TA = +125°C, See <b>Note 2</b>       |  |
| D138a              | Tww    | Word Write Cycle Time                | 42.3                                                                      | _                  | 55.9 | μs                                                                                                                                               | Tww = 355 FRC cycles,<br>TA = +85°C, See <b>Note 2</b>           |  |
| D138b              | Tww    | Word Write Cycle Time                | 41.1                                                                      | _                  | 57.6 | μs                                                                                                                                               | Tww = 355 FRC cycles,<br>TA = +125°C, See <b>Note 2</b>          |  |

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'011111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 31-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations".

## TABLE 31-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

| Standard Operating Conditions (unless otherwise stated):Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended |        |                                                   |     |     |     |       |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|---------------------------------------------------|-----|-----|-----|-------|----------------------------------------------------|
| Param<br>No.                                                                                                                                                                             | Symbol | Characteristics                                   | Min | Тур | Max | Units | Comments                                           |
|                                                                                                                                                                                          | CEFC   | External Filter Capacitor<br>Value <sup>(1)</sup> | 4.7 | 10  | _   | μF    | Capacitor must be low series resistance (< 5 ohms) |

**Note 1:** Typical VCAP voltage = 2.5V when VDD  $\geq$  VDDMIN.

NOTES:

## 33.1 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

**Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



|                            | INCHES    |          |       |       |  |  |
|----------------------------|-----------|----------|-------|-------|--|--|
| Dimensi                    | on Limits | MIN      | NOM   | MAX   |  |  |
| Number of Pins             | N         | 28       |       |       |  |  |
| Pitch                      | е         | .100 BSC |       |       |  |  |
| Top to Seating Plane       | A         |          | _     | .200  |  |  |
| Molded Package Thickness   | A2        | .120     | .135  | .150  |  |  |
| Base to Seating Plane      | A1        | .015     | _     | _     |  |  |
| Shoulder to Shoulder Width | E         | .290     | .310  | .335  |  |  |
| Molded Package Width       | E1        | .240     | .285  | .295  |  |  |
| Overall Length             | D         | 1.345    | 1.365 | 1.400 |  |  |
| Tip to Seating Plane       | L         | .110     | .130  | .150  |  |  |
| Lead Thickness             | С         | .008     | .010  | .015  |  |  |
| Upper Lead Width           | b1        | .040     | .050  | .070  |  |  |
| Lower Lead Width           | b         | .014     | .018  | .022  |  |  |
| Overall Row Spacing §      | eВ        |          | _     | .430  |  |  |

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

## **READER RESPONSE**

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

| TO:<br>RE: | Technical Publications Manag<br>Reader Response    | Total Pages Sent                                        |
|------------|----------------------------------------------------|---------------------------------------------------------|
| From       | Name                                               |                                                         |
|            | Company<br>Address<br>City / State / ZIP / Country |                                                         |
|            | Telephone: ()                                      | FAX: (                                                  |
| Applic     | cation (optional):                                 |                                                         |
| Would      | d you like a reply? Y N                            |                                                         |
| Devic      | e: dsPIC33FJ32MC302/304,<br>dsPIC33FJ128MCX02/X04  | dsPIC33FJ64MCX02/X04 and Literature Number: DS70291G    |
| Quest      | tions:                                             |                                                         |
| 1. W       | /hat are the best features of this                 | ocument?                                                |
| _          |                                                    |                                                         |
| 2. H       | ow does this document meet yo                      | hardware and software development needs?                |
|            |                                                    |                                                         |
| 3. D       | o you find the organization of thi                 | document easy to follow? If not, why?                   |
| _          |                                                    |                                                         |
| 4. W       | /hat additions to the document d                   | you think would enhance the structure and subject?      |
| _          |                                                    |                                                         |
| 5. W       | /hat deletions from the documen                    | could be made without affecting the overall usefulness? |
|            |                                                    |                                                         |
| 6. Is      | there any incorrect or misleadir                   | information (what and where)?                           |
| _          |                                                    |                                                         |
| 7. H       | ow would you improve this docu                     | ent?                                                    |
| _          |                                                    |                                                         |
|            |                                                    |                                                         |

NOTES: