

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

02-e-sp
02

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.5 CPU Resources

Many useful resources related to the CPU are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

3.5.1 KEY RESOURCES

- Section 2. "CPU" (DS70204)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 3	-2: CORC	ON: CORE C	ONTROL R	EGISTER			
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit 8
R///-0	R/W/-0	R/M_1	R/\/_0	R/C-0	R/M-0	R/M-0	R/M-0
50T0	SATB	SATDW	ACCSAT	IPI 3(2)	PSV	RND	IT IF
bit 7	ONTE	0/(10/)	//000///	11 20	100	TUD	bit 0
Legend:		C = Clear only	y bit				
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
'0' = Bit is clea	ared	'x' = Bit is unk	nown	U = Unimpler	mented bit, read	l as '0'	
hit 15-13	Unimplemen	tod: Read as '	∩ '				
bit 12		tiply Unsigned/	o Signed Contro	ol hit			
Sit 12	1 = DSP engi	ne multiplies a	re unsigned				
	0 = DSP engi	ne multiplies a	re signed				
bit 11	EDT: Early DO	Loop Termina	tion Control b	it(1)			
	1 = Terminate 0 = No effect	e executing DO	loop at end of	current loop it	eration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	_evel Status b	its			
	111 = 7 do lo	ops active					
	•						
	•						
	001 = 1 DO lo	op active					
hit 7		Saturation En	ahle hit				
bit /		tor A saturatio	n enabled				
	0 = Accumula	ator A saturatio	n disabled				
bit 6	SATB: ACCB	Saturation En	able bit				
	1 = Accumula	ator B saturatio	n enabled				
	0 = Accumula	ator B saturatio	n disabled		E		
bit 5	SAIDW: Data	a Space Write f	rom DSP Eng	line Saturation	Enable bit		
	\perp = Data space	ce write saturat	ion enabled				
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	Select bit			
	1 = 9.31 satu	ration (super sa	aturation)				
	0 = 1.31 satu	ration (normal s	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	oit 3 ⁽²⁾			
	1 = CPU inter 0 = CPU inter	rupt priority lev rupt priority lev	vel is greater t vel is 7 or less	han 7			
bit 2	PSV: Progran	n Space Visibili	ty in Data Spa	ace Enable bit			
	1 = Program	space visible ir	data space				
	0 = Program	space not visib	le in data spa	се			

_ .

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MODCON	0046	XMODEN	YMODEN	—	— — BWM<3:0>						YWM<3:0> XWM<3:0>			<3:0>		0000		
XMODSRT	0048		XS<15:1>								0	XXXX						
XMODEND	004A		XE<15:1>								1	XXXX						
YMODSRT	004C							Y	S<15:1>								0	XXXX
YMODEND	004E							Y	E<15:1>								1	XXXX
XBREV	0050	BREN							2	<b<14:0></b<14:0>								XXXX
DISICNT	0052	_	_	- Disable Interrupts Counter Register x:								XXXX						

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0				
FLTA1IF	RTCIF	DMA5IF	_	_	QEI1IF	PWM1IF	_				
bit 15					•		bit 8				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	—		—	—	—				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable b	pit	U = Unimpler	mented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own				
bit 15	FLTA1IF: PW	/M1 Fault A Inte	rrupt Flag Sta	atus bit							
	1 = Interrupt I	request has occ	urred								
		request has not	occurred								
bit 14	RTCIF: Real-	I me Clock and	Calendar Ini	terrupt Flag Sta	atus bit						
	1 = Interrupt request has occurred										
bit 13		A Channel 5 Da	ita Transfer (Complete Interr	unt Flag Status	bit					
bit 10	1 = Interrupt i	request has occ	urred		upt i lag olatas	bit					
	0 = Interrupt i	request has not	occurred								
bit 12-11	Unimplemen	ted: Read as '0	,								
bit 10	QEI1IF: QEI1	Event Interrupt	Flag Status	bit							
	1 = Interrupt i	request has occ	urred								
	0 = Interrupt i	request has not	occurred								
bit 9	PWM1IF: PW	/M1 Event Interi	rupt Flag Stat	tus bit							
	1 = Interrupt I	request has occ	urred								
	U = Interrupt I	request has not	occurrea								

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

Unimplemented: Read as '0'

bit 8-0

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. The dsPIC33F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers;

clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) the IOLOCK bit as a single operation.

Note:	MPLAB [®] C30 provides built-in C									
	OSCCON register:									
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)									
	See MPLAB IDE Help for more information.									

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY Configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 11-13: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	—	INDX2R<4:0>					
bit 7		•					bit 0	
Legend:								
R = Readable I	oit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

bit 15-5 Unimplemented: Read as '0'

bit 4-0

INDX2R<4:0>: Assign QEI2 INDEX (INDX2) to the corresponding RPn pin 11111 = Input tied to Vss

11001 = Input tied to RP25

•

00001 = Input tied to RP1 00000 = Input tied to RP0

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
FRMEN	SPIFSD	FRMPOL	_	_	—	—				
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0			
—	—	—	_	—	—	FRMDLY	—			
bit 7		•					bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit							
	1 = Framed S	PIx support en	abled (SSx pi	n used as fram	ne sync pulse in	put/output)				
	0 = Framed S	Plx support dis	sabled							
bit 14	SPIFSD: Fran	me Sync Pulse	Direction Cor	trol bit						
	1 = Frame sy	nc pulse input ((slave)							
	0 = Frame sy	nc pulse output	t (master)							
bit 13	FRMPOL: Frame Sync Pulse Polarity bit									

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame sync pulse coincides with first bit clock0 = Frame sync pulse precedes first bit clock

Unimplemented: This bit must not be set to '1' by the user application

Unimplemented: Read as '0'

bit 12-2

bit 1

bit 0

19.2 I²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en532315

19.2.1 KEY RESOURCES

- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

19.3 I²C Registers

The I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-bit Address mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	_	—	—	AMSK9	AMSK8
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
					•	bit 0
oit	W = Writable bit		U = Unimpler	nented bit, read	as '0'	
OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			lown
	U-0 — R/W-0 AMSK6 Dit	U-0 U-0 — — R/W-0 R/W-0 AMSK6 AMSK5 Dit W = Writable OR '1' = Bit is set	U-0 U-0 U-0 — — — — R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 Dit W = Writable bit OR '1' = Bit is set OR '1' = Bit is set	U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 bit W = Writable bit U = Unimpler OR '1' = Bit is set '0' = Bit is cle	U-0 U-0 U-0 U-0 U-0 — _ <th< td=""><td>U-0 U-0 U-0 U-0 R/W-0 — — — — AMSK9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 bit W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn</td></th<>	U-0 U-0 U-0 U-0 R/W-0 — — — — AMSK9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 bit W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 2 ¹	I-4: CiFCT	RL: ECAN™	FIFO CONT		TER					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	DMABS<2:0>		_	—	_	—				
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	_			FSA<4:0>					
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 15-13 bit 12-5	DMABS<2:03 111 = Reserv 110 = 32 buff 101 = 24 buff 011 = 12 buff 011 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplement	>: DMA Buffer S yed fers in DMA RA fers in DMA RA fers in DMA RA fers in DMA RAM ers in DMA RAM ers in DMA RAM ers in DMA RAM	Size bits M M M M 1 1 1 20							
bit 4-0	FSA<4:0>: F	IFO Area Starts	s with Buffer b	oits						
	111110 = Rea	id buffer RB30								

© 2007-2012 Microchip Technology Inc.

•

00001 = TX/RX buffer TRB1 00000 = TX/RX buffer TRB0

DS70291G-page 261

REGISTER	21-7: CilNTI	E: ECAN™ IN	ITERRUPT	ENABLE RE	GISTER							
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
—	—	—	—	—	—	—	—					
bit 15							bit 8					
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0					
	WAKIE	ERRIE		FIFOIE	RBOVIE	RBIE						
DIT /							Dit U					
Legend:												
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown					
bit 15-8	Unimplemen	nted: Read as '	0'									
bit 7	IVRIE: Invalio	d Message Rec	eived Interru	pt Enable bit								
	\perp = Interrupt	Request Enable	ed abled									
bit 6	WAKIE: Bus	WAKIE: Bus Wake-up Activity Interrupt Flag bit										
	1 = Interrupt	1 = Interrupt Request Enabled										
	0 = Interrupt	Request not en	abled									
bit 5	ERRIE: Error	Interrupt Enab	le bit									
	1 = Interrupt	Request Enable	ed									
	0 = Interrupt	Request not en	abled									
bit 4	Unimplemen	nted: Read as '	0'									
bit 3	FIFOIE: FIFO) Almost Full In	terrupt Enabl	e bit								
	1 = Interrupt Request Enabled											
bit 2		Buffer Overflov	w Interrunt Er	nahle hit								
Dit Z	1 = Interrupt	1 = Interrupt Request Enabled										
	0 = Interrupt	0 = Interrupt Request not enabled										
bit 1	RBIE: RX Bu	Iffer Interrupt Er	nable bit									
	1 = Interrupt	Request Enable	ed									
	0 = Interrupt	Request not en	abled									
bit 0	TBIE: TX But	ffer Interrupt En	able bit									
	\perp = interrupt	Request Enable	e0 abled									
	0 – menupt	request not en	auleu									

23.4 DAC CLOCK

The DAC clock signal clocks the internal logic of the Audio DAC module. The data sample rate of the Audio DAC is an integer division of the rate of the DAC clock. The DAC clock is generated via a clock divider circuit that accepts an auxiliary clock from the auxiliary oscillator. The divisor ratio is programmed by clock divider bits (DACFDIV<6:0>) in the DAC Control register (DAC1CON). The resulting DAC clock must not exceed 25.6 MHz. If lower sample rates are to be used, then the DAC filter clock frequency may be reduced to reduce power consumption. The DAC clock frequency is 256 times the sampling frequency.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—	—	_	—	—	—	_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15-8	Unimplemented: Read as '0'									
bit 7	CVREN: Corr	nparator Voltag	e Reference E	Enable bit						
	1 = CVREF ci	rcuit powered	on							
	0 = CVREF CI	rcuit powered	down							
bit 6	CVROE: Com	parator VREF	Output Enable	e bit						
	1 = CVREF VO 0 = CVREF VO	oltage level is c	output on CVR	EF PIN from CVREE nir	1					
bit 5	CVRR: Comp	arator VREE R	ande Selection	n hit						
bit o	1 = CVRSRC1	range should b	he 0 to 0.625 (CVRSRC with C	VRSRC/24 step s	size				
	0 = CVRSRC	range should b	e 0.25 to 0.71	9 CVRSRC with	n CVRSRC/32 ste	ep size				
bit 4	CVRSS: Corr	parator VREF S	Source Select	ion bit						
	1 = Compara	itor reference s	ource CVRSR	C = VREF+ - VF	REF-					
	0 = Compara	itor reference s	ource CVRSR	c = AVdd – AV	SS					
bit 3-0	CVR<3:0>: C	omparator VRE	F Value Selec	ction 0 ⊴CVR<3	3:0> ≤15 bits					
	When CVRR	<u>= 1:</u>								
	CVREF = (CVR)	<3:0>/ 24) • ((VRSRC)							

REGISTER 24-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

 $\frac{VREF}{CVREF} = (CVRESC) + (CVRSRC)$ $\frac{When CVRR = 0:}{CVREF} = 1/4 \cdot (CVRSRC) + (CVR < 3:0 > /32) \cdot (CVRSRC)$

FIGURE 26-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

26.2 User Interface

26.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 26.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

26.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

26.3 Operation in Power-Saving Modes

26.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

26.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

TABLE 28-3: CODE FLASH SECURITY SEGMENT SIZES FOR 32 KB DEVICES

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 0057FEh GS = 11008 IW 0157FEh	VS = 256 IW 000000h BS = 768 IW 000200h 0007FEh 000800h 001FFEh 000800h 001FFEh 000200h 003FFEh 004000h 0057FEh 004000h 0057FEh 0157FEh	VS = 256 IW 000000h 0001FEh BS = 3840 IW 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 004000h 0057FEh 0157FEh 0157FEh	VS = 256 IW 000000h BS = 7936 IW 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 00200h 003FFEh 004000h 0057FEh 004000h 0057FEh 0157FEh

Field	Description				
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}				
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}				
Wn	One of 16 working registers ∈ {W0W15}				
Wnd	One of 16 destination working registers ∈ {W0W15}				
Wns	One of 16 source working registers ∈ {W0W15}				
WREG	W0 (working register used in file register instructions)				
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }				
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }				
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}				
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}				
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}				
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}				

TABLE 29-1: \$	SYMBOLS USED IN OPCODE DESCRIPTIONS ((CONTINUED)
----------------	---------------------------------------	-------------

TABLE 32-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

CHARAC	AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) HARACTERISTICS Operating temperature -40°C ≤TA ≤+150°C for High Temperature				tated)		
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
Clock Parameters							
HAD50	Tad	ADC Clock Period ⁽¹⁾	147		_	ns	—
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾			400	Ksps	

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 32-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

AC Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) CHARACTERISTICS Operating temperature -40°C ≤TA ≤+150°C for High Temperature					ated)		
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
Clock Parameters							
HAD50	Tad	ADC Clock Period ⁽¹⁾	104	—	_	ns	_
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾	—		800	Ksps	—

Note 1: These parameters are characterized but not tested in manufacturing.

NOTES: