

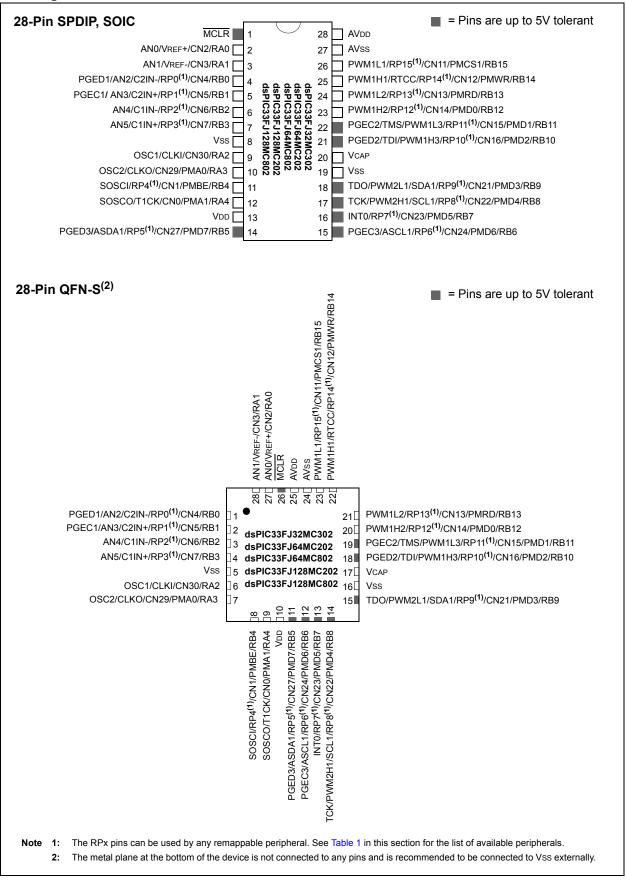
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc802-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Pin Diagrams

NOTES:

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

IABLE 6-2: USCILLATUR PARAMETERS	TABLE 6-2:	OSCILLATOR PARAMETERS
----------------------------------	-------------------	------------------------------

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

6.4 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 31.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset.

6.4.1 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

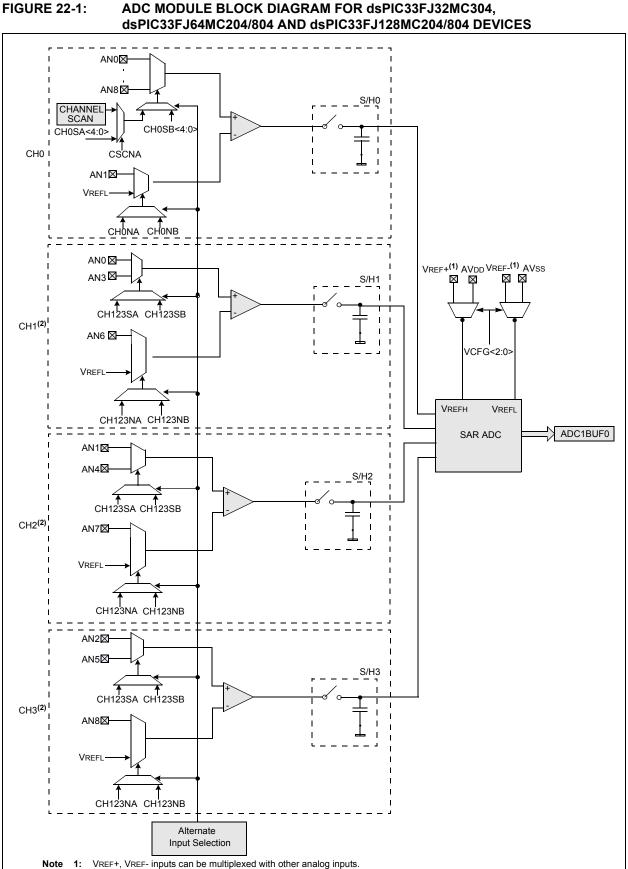
The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to **Section 28.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0			
DAC1LIF ⁽²⁾	DAC1RIF ⁽²⁾	_	—	QEI2IF	FLTA2IF	PWM2IF	—			
bit 15							bit			
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0			
	C1TXIF ⁽¹⁾	DMA7IF	DMA6IF	CRCIF	U2EIF	U1EIF				
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own			
bit 15	DAC1LIF: DA	C Left Channe	el Interrupt Fla	g Status bit ⁽²⁾						
	1 = Interrupt r	equest has oc	curred							
		equest has not								
bit 14		C Right Chan	•	lag Status bit ⁽²	2)					
		equest has oc equest has not								
bit 13-12		ted: Read as '								
bit 11	•			bit						
	QEI2IF: QEI2 Event Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 10	FLTA2IF: PWM2 Fault A Interrupt Flag Status bit									
	1 = Interrupt request has occurred									
	 0 = Interrupt request has not occurred PWM2IF: PWM2 Error Interrupt Enable bit 									
bit 9			•	t						
		equest has oc equest has not								
bit 8-7		ted: Read as '								
bit 6	-	N1 Transmit D		nterrupt Flag S	Status bit ⁽¹⁾					
	1 = Interrupt r	equest has oc equest has no	curred							
bit 5		•		`omolete Interi	runt Elan Status	bit				
bit 5	DMA7IF: DMA Channel 7 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 4				Complete Interi	rupt Flag Status	bit				
	1 = Interrupt request has occurred									
bit 3	 0 = Interrupt request has not occurred CRCIF: CRC Generator Interrupt Flag Status bit 									
bit 0										
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
bit 2	U2EIF: UART	2 Error Interru	pt Flag Status	bit						
		equest has oc equest has not								
bit 1	-	1 Error Interru		bit						
		equest has oc	-							
		equest has not								
bit 0	Unimplement	ted: Read as '	0'							
Note 1: Inte	errupts are disat	plea on devices	s without an E	:∪AN '‴ modul	e.					

REGISTER 7-9: IFS4: INTERRUPT FLAG STATUS REGISTER 4

Note 1: Interrupts are disabled on devices without an ECAN[™] module.


2: Interrupts are disabled on devices without an Audio DAC module.

	— /				B a · · · ·				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
T2IE	OC2IE	IC2IE	DMA0IE	T1IE	OC1IE	IC1IE	INTOIE		
bit 7	OOLIE	IOZIE	DIVINIOIL		OONE	IOTIL	bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
bit 15	Unimplemen	ted: Read as '	0'						
bit 14				Complete Interr	upt Enable bit				
		equest enable equest not ena							
bit 13	•	•		rupt Enable bit					
		equest enable	-						
	0 = Interrupt r	equest not ena	abled						
bit 12		RT1 Transmitte	•	ible bit					
		equest enable							
bit 11	 0 = Interrupt request not enabled U1RXIE: UART1 Receiver Interrupt Enable bit 								
	1 = Interrupt request enabled								
	0 = Interrupt request not enabled								
bit 10		Event Interrup							
		equest enable equest not ena							
bit 9	-	1 Error Interru							
bit o		equest enable							
		equest not ena							
bit 8		Interrupt Enab							
		equest enable equest not ena							
bit 7	•	•							
		T2IE: Timer2 Interrupt Enable bit 1 = Interrupt request enabled							
		equest not ena							
bit 6	OC2IE: Outpu	ut Compare Ch	annel 2 Interr	upt Enable bit					
		equest enable							
bit 5	•	equest not ena Capture Chann		Enabla bit					
DIL D		equest enable							
		request not ena							
bit 4	DMA0IE: DM	A Channel 0 D	ata Transfer C	Complete Interr	upt Enable bit				
		equest enable							
hit 2	-	equest not ena							
bit 3		Interrupt Enab equest enable							
	⊥ – monupti	Squear chable	u .						

© 2007-2012 Microchip Technology Inc.

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

2: Channels 1, 2 and 3 are not applicable for the 12-bit mode of operation.

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_	_			SAMC<4:0>(1)	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	<7:0> ⁽²⁾			
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable t	oit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown
bit 15		Conversion Clo rnal RC clock	CK Source bit				
		rived from syste	m clock				
bit 14-13		nted: Read as '0					
bit 12-8	•	: Auto Sample T					
	11111 = 31 ⁻	•					
	•						
	•						
	•						
	00001 = 1 TA 00000 = 0 TA						
bit 7-0	ADCS<7:0>:	ADC Conversion	on Clock Sele	ct bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•						
	01000000 =			T T			
	00111111 =	TCY · (ADCS<7	(:0> + 1) = 64	\cdot ICY = IAD			
	•						
	•						
	-	TCY · (ADCS<7	7.0> + 1) = 3	· TCY = TAD			
		TCY · (ADCS<7					
	00000000 =	、 <i>-</i>					

2: This bit is not used if AD1CON3<15> (ADRC) = 1.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER	22-0: AD1CI	HSU: ADCT IN	PUICHAN	NEL U SELE	CI REGISTE	R	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—	—			CH0SB<4:0>		
bit 15							bit
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA		_			CH0SA<4:0>		
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 14-13 bit 12-8	CH0SB<4:0> dsPIC33FJ32 01000 = Cha 00010 = Cha	 ited: Read as '0 Channel 0 Pos Channel 0 positive i nnel 0 positive i nnel 0 positive i 	sitive Input Se 33FJ64MC20 nput is AN8 nput is AN2			204/804 devic	es only:
		nnel 0 positive i					
	00101 = Cha • • 00010 = Cha 00001 = Cha	2MC302, dsPIC innel 0 positive i innel 0 positive i innel 0 positive i innel 0 positive i	nput is AN5 nput is AN2 nput is AN1	2/802 and dsF	PIC33FJ128MC	202/802 devic	es only:
bit 7	CH0NA: Cha 1 = Channel (nnel 0 Negative 0 negative input 0 negative input	Input Select is AN1	for Sample A b	it		
bit 6-5	Unimplemen	ted: Read as '0	,				

REGISTER 22-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

REGISTER 27-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

bit 2	BEP: Byte Enable Polarity bit
	 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

- Note 1: 28-pin devices do not have PMA<10:2>.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Register 27-2:	PMMODE: PARALLEL PORT MODE REGISTER							
R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
BUSY	IRQ	M<1:0>	INC	VI<1:0>	MODE16	MODE	=<1:0>	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
WAITB<1	:0> ⁽¹⁾		WAI	ГM<3:0>		WAITE	<1:0> ⁽¹⁾	
bit 7							bit (
Legend:								
R = Readable bi	t	W = Writable	bit	U = Unimple	mented bit, read	as '0'		
-n = Value at PC	R	'1' = Bit is se	t	ʻ0' = Bit is cle	eared	x = Bit is unkr	nown	
bit 15	BUSY: Busv	v bit (Master mo	de onlv)					
:	-	usy (not useful	• ·	cessor stall is a	ictive)			
bit 14-13	RQM<1:0>:	Interrupt Requ	est Mode bits					
	or on a 10 = No inte 11 = Interrup		peration when l, processor si the end of the	PMA<1:0> = : all activated	Write Buffer 3 is v 11 (Addressable de			
bit 12-11 I	NCM<1:0>:	Increment Mod	le bits					
	10 = Decren	ad and write bu nent ADDR<10: ent ADDR<10:0 rement or decre	0> by 1 every)> by 1 every	read/write cyc read/write cycl		()		
bit 10	MODE16: 8/	/16-bit Mode bit						
					o the data registe the data register			
bit 9-8	MODE<1:0>	·: Parallel Port	Mode Select b	vits	-			
	10 = Master	mode 2 (PMCS ced PSP, contro	61, PMRD <u>, PN</u> I signals (PM	<u>IWR, PMBE, F</u> RD, PM <u>WR, PI</u>	PMBE, PMA <x:0 PMA<x:0> and Pl MCS1, PMD<7:0 , PMWR, PMCS</x:0></x:0 	MD<7:0>) <u>></u> and PMA<1:	.0>)	
bit 7-6	NAITB<1:0	>: Data Setup to	Read/Write	Wait State Con	figuration bits ⁽¹⁾			
	10 = Data w 01 = Data w	ait of 4 Tcy; mu ait of 3 Tcy; mu ait of 2 Tcy; mu ait of 1 Tcy; mu	Itiplexed addr Itiplexed addr	ess phase of 3 ess phase of 2	TCY TCY			
bit 5-2	NAITM<3:0	>: Read to Byte	Enable Strob	e Wait State C	onfiguration bits			
	WAITM<3:0>: Read to Byte Enable Strobe Wait State Configuration bits 1111 = Wait of additional 15 Tcy							
	,							
		of additional 1 additional wait c		on forced into (ane Tcv)			
		 Data Hold Aft 	• • • •					
	11 = Wait of 10 = Wait of 11 = Wait of 10 = Wait of 10 = Wait of	4 Tcy 3 Tcy 2 Tcy						

Register 27-2: PMMODE: PARALLEL PORT MODE REGISTER

Note 1: WAITB and WAITE bits are ignored whenever WAITM3:WAITM0 = 0000.

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 007FFEh GS = 21760 IW 007FFEh 008000h 007FFEh 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 003FFEh GS = 20992 IW 000000h 0000h 003FFEh 004000h 000ABFEh 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 007FFEh GS = 17920 IW 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 003FFEh GS = 13824 IW 00000h 003FFEh 004000h 003FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 008000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 008000h 007FFEh 008000h 007FFEh 00000h 007FFEh
SSS<2:0> = x10 4K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh SS = 3840 IW 0014FEh 00200h 003FFEh 004000h 007FFEh 008000h 007FFEh GS = 17920 IW 0057FEh 008000h 007FFEh 00157FEh 0057FEh	VS = 256 IW 000000h 0001FEh 000200h BS = 768 IW 000200h 0007FEh 000800h SS = 3072 IW 001FFEh 002000h GS = 17920 IW 00800h 003FFEh 004BFEh 008000h 003FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00800h 007FFEh 0040FFEh 008000h 007FFEh 008000h 007FFEh 008000h	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh GS = 17920 IW 0157FEh	VS = 256 IW 000000h BS = 7936 IW 0007FEh 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 003FFEh 004000h 007FFEh 008000h 003FFEh 004000h 007FFEh 008000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 00157FEh
SSS<2:0> = x01 8K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 007FFEh GS = 13824 IW 00000h 000000	VS = 256 IW 000000h 0001FEh BS = 768 IW 000200h 000800h 001FFEh 000300h 001FFEh 003200h 003FFEh 004000h 007FFEh 00157FEh 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh SS = 3840 IW 0007FEh 000800h 003FFEh SS = 4096 IW 004000h 007FFEh GS = 13824 IW 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh 00400h 007FFEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 007FFEh GS = 13824 IW 0157FEh
SSS<2:0> = x00 16K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 003FFEh 004000h 003FFEh 004000h 007FFEh 008000h 003FFEh SS = 16128 IW 0007FFEh 004000h 007FFEh 008000h 007FFEh GS = 5632 IW 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 003FFEh 004000h 003FFEh 004000h 003FFEh 004000h 007FFEh SS = 15360 IW 0007FFEh 004000h 003FFEh 004000h 00ABFEh GS = 5632 IW 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 007FFEh SS = 12288 IW 004000h 007FFEh 008000h 007FFEh GS = 5632 IW 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh SS = 8192 IW 004000h 007FFEh 004000h 007FFEh GS = 5632 IW 0157FEh

TABLE 28-4: CODE FLASH SECURITY SEGMENT SIZES FOR 64 KB DEVICES

29.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/ 304. dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 29-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 29-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The ${\tt MAC}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- · The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48	MPY	MPY Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,A	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,2
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
	ļ	RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry Ma	1	1	C,N,Z
64	PINC	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
04	RLNC	RLNC	f f WDEC	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
65	PPC	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws f = Rotate Right through Carry f	1	1	N,Z C,N,Z
00	RRC	RRC	f MDEC	WREG = Rotate Right through Carry f		1	C,N,Z C,N,Z
		RRC RRC	f,WREG Ws,Wd	WREG = Rotate Right through Carry T Wd = Rotate Right through Carry Ws	1	1	C,N,Z C,N,Z

TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)

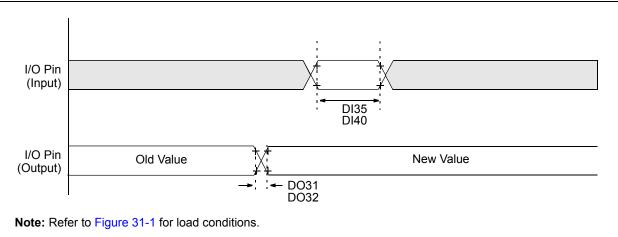
30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

30.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:


- A single graphical interface to all debugging tools
 Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

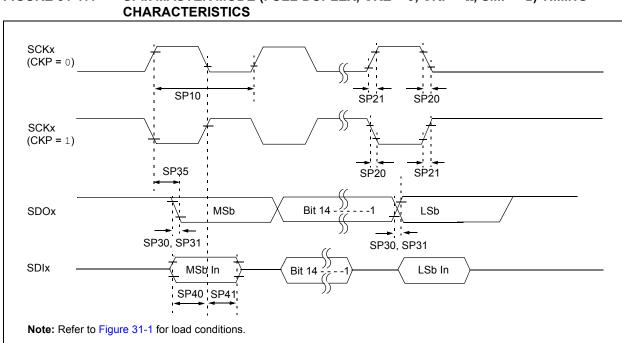

FIGURE 31-3: I/O TIMING CHARACTERISTICS

TABLE 31-20: I/O TIMING REQUIREMENTS						
		Standard Operating Conditions: 3.0V to 3.6V				
		(unless otherwise stated)				

ACCHARACTERISTICS			(unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic		Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Time		—	10	25	ns	—
DO32	TioF	Port Output Fall Time		—	10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		20	_		ns	—
DI40	Trbp	CNx High or Low Time (input)		2		_	TCY	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 31-17: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING

TABLE 31-35: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency		—	9	MHz	-40°C to +125°C and see Note 3
SP20	TscF	SCKx Output Fall Time	_	—		ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	_	-	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	_
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	_
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. 2:

- 3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	•	Cloc	k Parame	ters			•	
AD50	Tad	ADC Clock Period	117.6	_		ns	_	
AD51	tRC	ADC Internal RC Oscillator Period	-	250		ns	_	
		Cor	version R	ate				
AD55	tCONV	Conversion Time		14 Tad		ns	—	
AD56	FCNV	Throughput Rate	_	—	500	Ksps	—	
AD57	TSAMP	Sample Time	3 Tad	—	_	_	—	
		Timiı	ng Parame	eters			·	
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	—	3 Tad	—	Auto convert trigger not selected	
AD61	tpss	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad		_	
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾	—	0.5 TAD	_	_	_	
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	—	—	20	μs	—	

TABLE 31-46: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

Using the RCON Status Bits	
V	
Voltage Regulator (On-Chip)	339
W	
Watchdog Time-out Reset (WDTR)	
Watchdog Timer (WDT)	. 335, 340
Programming Considerations	
WWW Address	455
WWW, On-Line Support	9

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manag Reader Response	Total Pages Sent				
From:						
	Company Address					
	Telephone: ()					
Applic	cation (optional):					
Would	d you like a reply? Y N					
Devic	e: dsPIC33FJ32MC302/304, dsPIC33FJ128MCX02/X04	dsPIC33FJ64MCX02/X04 and Literature Number: DS70291G				
Quest	tions:					
1. W	/hat are the best features of this	ocument?				
_						
2. H	ow does this document meet yo	hardware and software development needs?				
3. D	Do you find the organization of this document easy to follow? If not, why?					
_						
4. W	/hat additions to the document d	you think would enhance the structure and subject?				
_						
5. W	/hat deletions from the documen	could be made without affecting the overall usefulness?				
6. Is	there any incorrect or misleadir	information (what and where)?				
_						
7. H	ow would you improve this docu	ent?				