

Welcome to E-XFL.COM

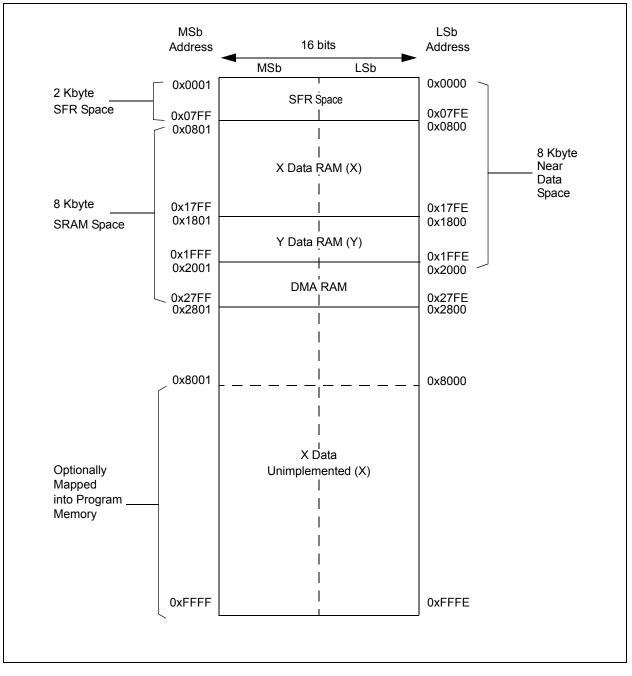
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc802-i-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS								
Pin Name	Pin Type	Buffer Type	PPS	Description				
AN0-AN8	I	Analog	No	Analog input channels.				
CLKI	 0	ST/CMOS	No No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally, functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.				
OSC1		ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS				
OSC2	I/O	_	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.				
SOSCI SOSCO	 0	ST/CMOS	No No	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.				
CN0-CN30	I	ST	No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.				
IC1-IC2 IC7-IC8		ST ST	Yes Yes	Capture inputs 1/2. Capture inputs 7/8.				
OCFA OC1-OC4	 0	ST —	Yes Yes	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare outputs 1 through 4.				
INT0	I	ST	No	External interrupt 0.				
INT1		ST	Yes	External interrupt 1.				
INT2 RA0-RA4	1	ST	Yes	External interrupt 2.				
RA0-RA4 RA7-RA10	1/O 1/O	ST ST	No No	PORTA is a bidirectional I/O port. PORTA is a bidirectional I/O port.				
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.				
RC0-RC9	I/O	ST	No	PORTC is a bidirectional I/O port.				
T1CK	I	ST	No	Timer1 external clock input.				
T2CK		ST	Yes	Timer2 external clock input.				
T3CK T4CK		ST ST	Yes Yes	Timer3 external clock input. Timer4 external clock input.				
T5CK		ST	Yes	Timer5 external clock input.				
U1CTS	1	ST	Yes	UART1 clear to send.				
U1RTS	0	_	Yes	UART1 ready to send.				
U1RX	I	ST	Yes	UART1 receive.				
U1TX	0	—	Yes	UART1 transmit.				
U2CTS	I I	ST	Yes	UART2 clear to send.				
U2RTS	0	-	Yes	UART2 ready to send.				
U2RX U2TX		ST —	Yes Yes	UART2 receive. UART2 transmit.				
SCK1 SDI1	I/O	ST ST	Yes Yes	Synchronous serial clock input/output for SPI1. SPI1 data in.				
SD01	0		Yes	SPI1 data out.				
SS1	I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.				
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.				
SDI2	I	ST	Yes	SPI2 data in.				
SDO2	0	—	Yes	SPI2 data out.				
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.				
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.				
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.				
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.				
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.				
		S compatibl						
		Frigger input eral Pin Sele		MOS levels O = Output I = Input TTL = TTL input buffer				
сг								

TABLE 1-1: PINOUT I/O DESCRIPTIONS

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJ128MC202/204 AND dsPIC33FJ64MC202/ 204 DEVICES WITH 8 KB RAM

Bit 15	Bit 14															
	DICIT	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	-	—	-	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
—	CN30IE	CN29IE	-	CN27IE	-	_	CN24IE	CN23IE	CN22IE	CN21IE	-	—	—	—	CN16IE	0000
CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	-	_	—	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
—	CN30PUE	CN29PUE	—	CN27PUE	—	_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	—	—	—	—	CN16PUE	0000
	CN15PUE	— CN30IE CN15PUE CN14PUE — CN30PUE	— CN30IE CN29IE CN15PUE CN14PUE CN13PUE — CN30PUE CN29PUE	— CN30IE CN29IE — CN15PUE CN14PUE CN13PUE CN12PUE — CN30PUE CN29PUE —	— CN30IE CN29IE — CN27IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE — CN30PUE CN29PUE — CN27PUE	- CN30IE CN29IE - CN27IE - CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN30PUE CN29PUE - CN27PUE -	CN30IE CN29IE CN27IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - - - - - CN24IE - CN30PUE CN13PUE CN12PUE CN11PUE -	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN7PUE - CN30PUE CN29PUE CN12PUE CN12PUE - - CN24PUE CN23PUE - CN30PUE CN29PUE - CN27PUE - - CN24PUE CN23PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN7PUE CN6PUE - CN30PUE CN29PUE CN27PUE - - CN24IE CN23IE CN22IE - CN30PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE - CN30PUE CN29PUE - CN27PUE - - CN24PUE CN23PUE CN22PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE CN5PUE - CN30PUE CN29PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE CN5PUE - CN30PUE CN29PUE - CN27PUE - - CN24PUE CN23PUE CN21PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE - CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN7PUE CN6PUE CN5PUE CN4PUE - CN30PUE CN29PUE CN27PUE - - CN24PUE CN29PUE CN4PUE	- CN30IE CN29IE - CN27IE - CN24IE CN23IE CN22IE CN21IE - - CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE -	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE -	- CN30IE CN29IE CN27IE - CN24IE CN23IE CN22IE CN21IE -	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE - - - CN16IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - - - CN16IE - CN30PUE CN13PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE CN5PUE CN3PUE CN2PUE CN1PUE CN0PUE - CN30PUE CN29PUE CN27PUE CN27PUE - - - CN16PUE - CN30PUE CN29PUE CN12PUE CN27PUE - - - CN16PUE - CN30PUE CN29PUE - CN27PUE - - - - CN16PUE - CN30PUE CN29PUE - CN27PUE - - - - - - CN16PUE - CN30PUE CN29PUE - - - - - - - - CN16PUE

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND dsPIC33FJ32MC304 **TABLE 4-3**:

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

4.8.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDH).

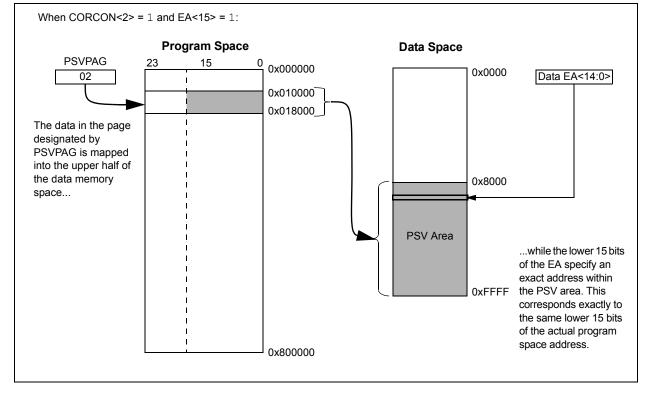
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

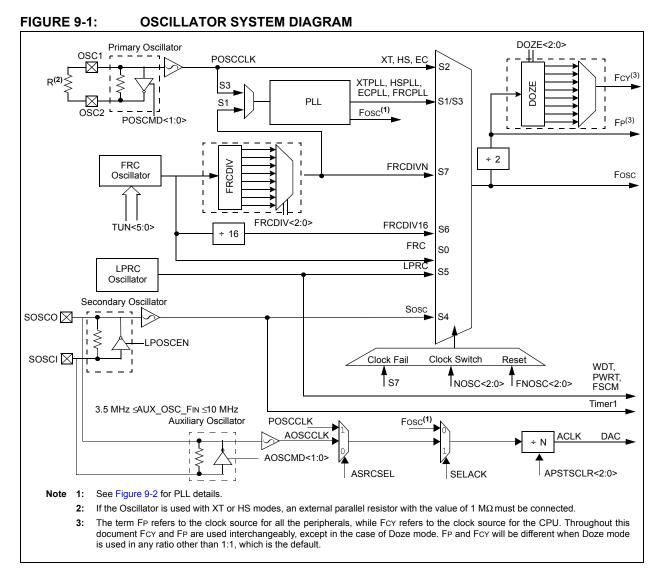
For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the ${\tt REPEAT}$ loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)


bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 39. "Oscillator (Part III)" (DS70216) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Non-volatile Configuration bits for main oscillator selection
- · An auxiliary crystal oscillator for audio DAC
- A simplified diagram of the oscillator system is shown in Figure 9-1.

9.4 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 28.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).

Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

- 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
- 3: Refer to Section 39. "Oscillator (Part III)" (DS70216) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

9.5 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2007-2012} Microchip Technology Inc.

10.5 Power-Saving Resources

Many useful resources related to power-saving modes are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

11.9 Peripheral Pin Select Registers

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 20 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR21, PRINR23, and PRINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Input and output register values can only								
	be	changed	if	the	IOI	bit			
	(OS	CCON<6>)	is	set	to	'0'.	See		
	Section 11.6.3.1 "Control Register								
	Loc	k" for a spec	cific	comm	and	seque	ence.		

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INT1R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—		—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin
	11111 = Input tied to Vss
	11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 11-19: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	—	—			SS2R<4:0>			
bit 7		·					bit 0	
Legend:								
R = Readable I	Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
-								

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25 • • • • • • • • • •

00000 = Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ ____ ____ ____ _ ___ ____ ____ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

REGISTER 11-20: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

Note 1: This register is disabled on devices without an ECAN[™] module.

15.3 Output Compare Registers

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 or 4)

bit 15							bit 8
		OCSIDL					
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0 R/W-0		
—	—	—	OCFLT	OCTSEL				
bit 7								

Legend:	HC = Cleared in Hardware	HS = Set in Hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111).
bit 2	
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_		—	_	—	—
bit 15					•		bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	_		—		DMABL<2:0>	
bit 7					•		bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimple	mented bit, rea	d as '0'	

'0' = Bit is cleared

REGISTER 22-4: AD1CON4: ADC1 CONTROL REGISTER 4

bit 15-3 Unimplemented: Read as '0'

-n = Value at POR

bit 2-0 DMABL<2:0>: Selects Number of DMA Buffer Locations per Analog Input bits

111 = Allocates 128 words of buffer to each analog input

'1' = Bit is set

110 = Allocates 64 words of buffer to each analog input

101 = Allocates 32 words of buffer to each analog input

100 = Allocates 16 words of buffer to each analog input

011 = Allocates 8 words of buffer to each analog input

010 = Allocates 4 words of buffer to each analog input

 $\tt 001$ = Allocates 2 words of buffer to each analog input

000 = Allocates 1 word of buffer to each analog input

x = Bit is unknown

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 22-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—		—	CH123N	CH123NB<1:0>	
bit 15				-			bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—		—	CH123N	VA<1:0>	CH123SA
bit 7				•			bit 0
Legend:							
R = Readable bit W = Writable bit			oit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits dsPIC33FJ32MC302, dsPIC33FJ64MC202/802 and dsPIC33FJ128MC202/802 devices only: If AD12B = 1: 11 = Reconved

- 11 = Reserved 10 = Reserved
- 01 = Reserved 00 = Reserved

If AD12B = 0:

11 = Reserved 10 = Reserved 01 = CH1, CH2, CH3 negative input is VREF-00 = CH1, CH2, CH3 negative input is VREF-

dsPIC33FJ32MC304, dsPIC33FJ64MC204/804 and dsPIC33FJ128MC204/804 devices only:

If AD12B = 1: 11 = Reserved 10 = Reserved 01 = Reserved 00 = Reserved

If AD12B = 0:

11 = Reserved

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8

01 = CH1, CH2, CH3 negative input is VREF-00 = CH1, CH2, CH3 negative input is VREF-

00

bit 8

CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit <u>If AD12B = 1:</u> 1 = Reserved

0 = Reserved

If AD12B = 0:

1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

bit 7-3 Unimplemented: Read as '0'

23.6 DAC Control Registers

R/W-0	U-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0				
DACEN		DACSIDL	AMPON			_	FORM				
bit 15							bit				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-0	R/W-1				
				DACFDIV<6:0)>						
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, read	1 as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15	DACEN: DAG	C1 Enable bit									
	1 = Enables	module									
	0 = Disables	module									
bit 14	Unimplemer	nted: Read as '	D'								
bit 13	DACSIDL: S	DACSIDL: Stop in Idle Mode bit									
	1 = Discontinue module operation when device enters Idle mode										
	0 = Continue module operation in Idle mode										
bit 12	AMPON: Enable Analog Output Amplifier in Sleep Mode/Stop-in Idle Mode bit 1 = Analog Output Amplifier is enabled during Sleep Mode/Stop-in Idle mode										
		Output Amplifier Output Amplifier									
bit 11-9	Unimplemer	nted: Read as '	0'								
bit 8	FORM: Data	Format Select	bit								
	1 = Signed integer										
	0 = Unsigned integer										
bit 7	Unimplemer	nted: Read as '	0'								
bit 6-0		:0>: DAC Clock									
	1111111 =	Divide input clo	ck by 128								
	•										
	•										
	•	.									
	0000101 =	Divide input clo	ck by 6 (defau	lit)							
	•										
	•										
	-	Divide input clo	ck by 3								
		Divide input clo									
		Divide input clo		(ida)							

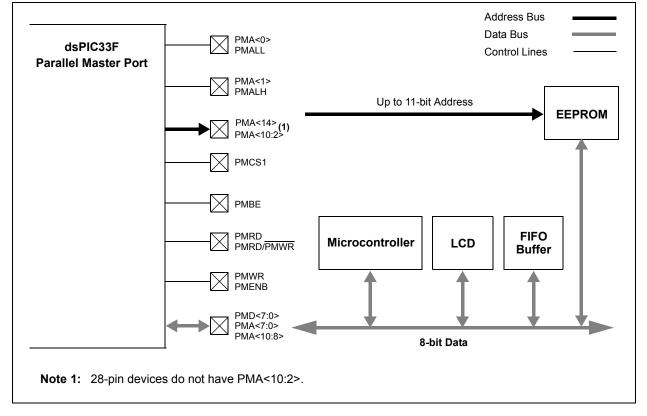
REGISTER 23-1: DAC1CON: DAC CONTROL REGISTER

REGISTER 25-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

bit 7-0	CAL<7:0>: RTC Drift Calibration bits
	11111111 = Minimum negative adjustment; subtracts 4 RTC clock pulses every one minute
	•
	•
	•
	10000000 = Maximum negative adjustment; subtracts 512 RTC clock pulses every one minute 01111111 = Maximum positive adjustment; adds 508 RTC clock pulses every one minute
	•
	•
	•
	00000001 = Minimum positive adjustment; adds 4 RTC clock pulses every one minute 00000000 = No adjustment

- Note 1: The RCFGCAL register is only affected by a POR.
 - 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

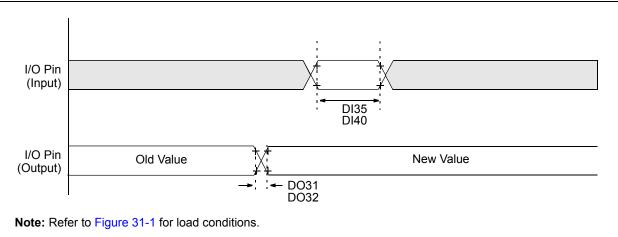
27.0 PARALLEL MASTER PORT (PMP)


- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304. of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 35. "Parallel Master Port (PMP)" (DS70299) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Parallel Master Port (PMP) module is a parallel 8-bit I/O module, specifically designed to communicate with a wide variety of parallel devices, such as communication peripherals, LCDs, external memory devices and microcontrollers. Because the interface to parallel peripherals varies significantly, the PMP is highly configurable.

FIGURE 27-1: PMP MODULE OVERVIEW

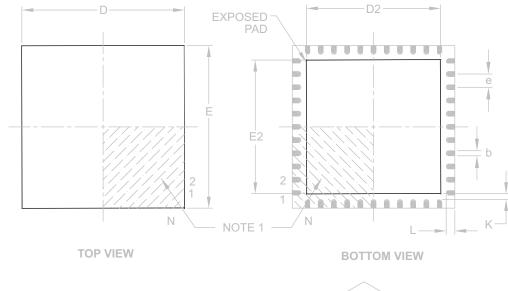
Key features of the PMP module include:

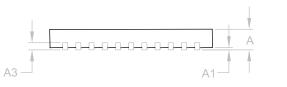

- Fully Multiplexed Address/Data Mode
 16 bits of address
- Demultiplexed or Partially Multiplexed Address/ Data mode:
 - Up to 11 address lines with single Chip Select
 - Up to 12 address lines without Chip Select
- · One Chip Select Line
- Programmable Strobe Options:
 - Individual Read and Write Strobes or;
 - Read/Write Strobe with Enable Strobe
- Address Auto-Increment/Auto-Decrement
- Programmable Address/Data Multiplexing
- · Programmable Polarity on Control Signals
- · Legacy Parallel Slave Port Support
- Enhanced Parallel Slave Support:
 - Address Support
 - 4-Byte Deep Auto-Incrementing Buffer
- Programmable Wait States
- · Selectable Input Voltage Levels

Base Instr #	Assembly Mnemonic	Assembly Syntax Description		# of Words	# of Cycles	Status Flags Affected	
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 31-3: I/O TIMING CHARACTERISTICS


TABLE 31-20: I/O TIMING REQUIREMENTS								
	Standard Operating Conditions: 3.0V to 3.6V							
	(unless otherwise stated)							


ACCHARACTERISTICS			(unless other Operating tem		-40°C ≤		°C for Inc 5°C for E	
Param No.	Symbol Character		ristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
DO31	TioR	Port Output Rise Tim	e	—	10	25	ns	—
DO32	TIOF	Port Output Fall Time	e	—	10	25	ns	—
DI35	TINP	INTx Pin High or Low Time (input)		20	_	_	ns	—
DI40	Trbp	CNx High or Low Tim	CNx High or Low Time (input)			_	TCY	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units				
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		44		
Pitch	е		0.65 BSC		
Overall Height	А	0.80	0.90	1.00	
Standoff	A1	0.00	0.02	0.05	
Contact Thickness	A3	0.20 REF			
Overall Width	E	8.00 BSC			
Exposed Pad Width	E2	6.30	6.45	6.80	
Overall Length	D	8.00 BSC			
Exposed Pad Length	D2	6.30	6.45	6.80	
Contact Width	b	0.25	0.30	0.38	
Contact Length	L	0.30	0.40	0.50	
Contact-to-Exposed Pad	K	0.20	-	_	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

3. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-103B

NOTES: