

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b; D/A 6x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc804-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-29: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on APTR<1:0>										xxxx					
ALCFGRPT	0622	ALRMEN CHIME AMASK<3:0> ALRMPTR<1:0> ARPT<7:0>										0000						
RTCVAL	0624						RTCC Value	e Register W	indow based	d on RTC	PTR<1:0>	•						XXXX
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0>				(CAL<7:0>				0000
PADCFG1	02FC	—	_	—	_	—	-	—	—	_	—	_	_	—	_	RTSECSEL	PMPTTL	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-30: CRC REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 0	All Resets		
CRCCON	0640	-	—	CSIDL		VWORD<4:0> CRCFUL CR							CRCGO		PLEN	<3:0>		0000
CRCXOR	0642								X<1	5:0>								0000
CRCDAT	0644							(CRC Data Ir	nput Registe	er							0000
CRCWDAT	0646		CRC Result Register 0000												0000			

Legend: — = unimplemented, read as '0'.

TABLE 4-31: DUAL COMPARATOR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMCON	0630	CMIDL	—	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN	C1OUTEN	C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS	0000
CVRCON	0632		-	-		-		_	_	CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>		0000

Legend: — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-32: PORTA REGISTER MAP FOR dsPIC33FJ128MC202/802, dsPIC33FJ64MC202/802 AND dsPIC33FJ32MC302

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	—	—	_	—	_	_	—	—	_		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	—	-	-	—	-	_	—	—	_	—	-	RA4	RA3	RA2	RA1	RA0	XXXX
LATA	02C4	—	_	—	_	—	_	_	—	—	—		LATA4	LATA3	LATA2	LATA1	LATA0	XXXX
ODCA	02C6	—	-	—	—	—	_	_	—	_	—	-	-	-	_	—	—	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

© 2007-2012 Microchip Technology Inc.

7.0 INTERRUPT CONTROLLER

- This data sheet summarizes the features Note 1: of dsPIC33FJ32MC302/304, the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 32. "Interrupts (Part III)" (DS70214) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement up to 53 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

7.3 Interrupt Control and Status Registers

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number bits (VECNUM<6:0>) and Interrupt level bits (ILR<3:0>) in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality.

- The CPU Status register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. The IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

7.4 Interrupts Resources

Many useful resources related to Interrupts are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

7.4.1 KEY RESOURCES

- Section 32. "Interrupts (Part III)" (DS70214)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 7-26: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14	REGISTER 7-26:	IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14
--	----------------	---

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
_	—	—				QEI1IP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
		PWM1IP<2:0>				—	_
bit 7							bit 0
Legend:						-l (0)	
R = Readabl			אנ		nented bit, rea		
-n = Value at	POR	'1' = Bit is set		0° = Bit is cle	ared	x = Bit is unknown	own
L:1 4 5 44		tod. Dood oo fa	. 3				
DIL 15-11	Unimplemen	ted: Read as (
bit 10-8	QEI1IP<2:0>	: QEI1 Interrupt	Priority bits				
	111 = Interru	pt is priority 7 (h	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	pt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 7	Unimplemen	ted: Read as '0)'				
bit 6-4	PWM1IP<2:0	>: PWM1 Interr	upt Priority b	its			
	111 = Interru	pt is priority 7 (ł	nighest priorit	y interrupt)			
	•						
	•						
	001 = Interru	nt is priority 1					
	000 = Interru	pt source is disa	abled				
bit 3-0	Unimplemen	ted: Read as '0)'				
'							

9.3 Oscillator Control Registers

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y						
_		COSC<2:0>		—		NOSC<2:0>(2)							
bit 15							bit 8						
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0						
CLKLOC	CK IOLOCK	LOCK	—	CF		LPOSCEN	OSWEN						
bit 7							bit 0						
Legend:		C = Clear only	/ bit	y = Value set	from Configura	ation bits on POR							
R = Reada	able bit	W = Writable	oit	U = Unimpler	mented bit, read	d as '0'							
-n = Value	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own						
bit 15	Unimplemen	ted: Read as ')'										
bit 14-12	COSC<2:0>:	Current Oscilla	tor Selection	bits (read-only)								
	111 = Fast R	C (FRC) oscilla	tor with Divid	e-by-n									
	110 = Fast R	110 = Fast RC (FRC) oscillator with Divide-by-16											
	101 = Low-Po	101 = Low-Power RC (LPRC) oscillator 100 = Secondary Oscillator (Sosc)											
	011 = Primar	100 = Secondary Oscillator (SOSC) 011 = Primary oscillator (XT, HS, EC) with PLL											
	010 = Primar	y oscillator (XT,	HS, EC)										
	001 = Fast R	C (FRC) oscilla	tor with divide	e-by-N and PLI	_ (FRCDIVN +	PLL)							
hit 11		ted: Read as '(נטו ז'										
bit 10-8	NOSC<2.0>	New Oscillator	Selection bits	_S (2)									
	111 = Fast R	C (FRC) oscilla	tor with Divid	e-bv-n									
	110 = Fast R	C (FRC) oscilla	tor with Divid	e-by-16									
	101 = Low-P	ower RC (LPRC	c) oscillator										
	100 = Second	dary Oscillator ((SOSC)										
	011 = Primar	v oscillator (XT.	HS. EC) with										
	001 = Fast R	C (FRC) oscilla	tor with divide	e-by-N and PLI	_ (FRCDIVN +	PLL)							
	000 = Fast R	C (FRC) oscilla	tor										
bit 7		Clock Lock Enal		disabled (FO)		$P(x, z, c_{n}) = 0 + 0.4$							
	1 = Clock switch	ing is enabled itching is disab	anu routi is led. system c	lock source is l	<u>\3ivi<1:02 (FO</u> locked	<u>1000 = (<0. 1>06</u>	1						
	0 = Clock sw	itching is enabl	ed, system cl	ock source car	n be modified b	y clock switching							
bit 6	IOLOCK: Per	ipheral Pin Sel	ect Lock bit										
	1 = Peripheri	al pin select is	locked, write	to peripheral pi	in select registe	ers not allowed							
	0 = Peripheri	al pin select is	not locked, w	rite to peripher	al pin select re	gisters allowed							
bit 5	LOCK: PLL L	ock Status bit (read-only)										
	1 = Indicates	that PLL is in I	ock, or PLL s	tart-up timer is -up timer is in r	satisfied	is disabled							
bit 4	Unimplemen	ted: Read as ')'										
2													
Note 1:	Writes to this regis in the "dsPIC33F/F	ter require an u PIC24H Family	nlock sequen <i>Reference M</i> a	ice. Refer to Se anual" (availab	ection 39. "Os le from the Mic	cillator (Part III) " rochip web site) f	' (DS70216) for details.						
2:	Direct clock switch This applies to clo	es between any ck switches in e	/ primary osci	llator mode wit	h PLL and FRC ances, the appl	PLL mode are no lication must swit	ot permitted. ch to FRC						
3.	This register is res	et only on a Po	wer-on Reset	two PLL mode	5.								
v .		e. englen a ro		· . · · · · · · · · · · · · · · · · · ·									

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

© 2007-2012 Microchip Technology Inc.

REGISTER 11-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	—		RP5R<4:0>								
bit 15							bit 8					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0					
—	—	—			RP4R<4:0>							
bit 7							bit 0					
Legend:												
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'								
-n = Value at POR '1' = Bit is set '0' = Bit is cleared						x = Bit is unkr	nown					

bit 15-13 Unimplemented: Read as '0

bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-24: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—	RP6R<4:0>						
bit 7							bit 0		

Legend:				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 11-2 for peripheral function numbers)

NOTES:

The Timer2/3 and Timer4/5 modules can operate in one of the following modes:

- · Timer mode
- · Gated Timer mode
- Synchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous Counter mode, the input clock is derived from the external clock input at TxCK pin.

The timer modes are determined by the following bits:

- TCS (TxCON<1>): Timer Clock Source Control bit
- TGATE (TxCON<6>): Timer Gate Control bit

Timer control bit settings for different operating modes are given in the Table 13-1.

TABLE 13-1: T	IMER MODE SETTINGS
---------------	--------------------

Mode	TCS	TGATE		
Timer	0	0		
Gated timer	0	1		
Synchronous counter	1	х		

13.1 16-bit Operation

To configure any of the timers for individual 16-bit operation:

- 1. Clear the T32 bit corresponding to that timer.
- 2. Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

Note:	Only Timer2 and Timer3 can trigger a	ł
	DMA data transfer.	

13.2 32-bit Operation

A 32-bit timer module can be formed by combining a Type B and a Type C 16-bit timer module. For 32-bit timer operation, the T32 control bit in the Type B Timer Control register (TxCON<3>) must be set. The Type C timer holds the most significant word (msw) and the Type B timer holds the least significant word (lsw) for 32-bit operation.

When configured for 32-bit operation, only the Type B Timer Control register (TxCON) bits are required for setup and control. Type C timer control register bits are ignored (except TSIDL bit).

For interrupt control, the combined 32-bit timer uses the interrupt enable, interrupt flag and interrupt priority control bits of the Type C timer. The interrupt control and status bits for the Type B timer are ignored during 32-bit timer operation.

The Type B and Type C timers that can be combined to form a 32-bit timer are listed in Table 13-2.

TABLE 13-2: 32-BIT TIMER

TYPE B Timer (Isw)	TYPE C Timer (msw)			
Timer2	Timer3			
Timer4	Timer5			

A block diagram representation of the 32-bit timer module is shown in Figure 13-3. The 32-timer module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- · Synchronous Counter mode

To configure the features of Timer2/3 or Timer4/5 for 32-bit operation:

- 1. Set the T32 control bit.
- 2. Select the prescaler ratio for Timer2 or Timer4 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 or PR5 contains the most significant word of the value, while PR2 or PR4 contains the least significant word.
- If interrupts are required, set the interrupt enable bits, T3IE or T5IE. Use the priority bits, T3IP<2:0> or T5IP<2:0> to set the interrupt priority. While Timer2 or Timer4 controls the timer, the interrupt appears as a Timer3 or Timer5 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2 or TMR5:TMR4, which always contains the most significant word of the count, while TMR2 or TMR4 contains the least significant word.

FIGURE 16-2: 2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2)

REGISTER 16-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DTBI	PS<1:0>		DTB<5:0>						
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DTA	PS<1:0>			DTA	<5:0>				
bit 7							bit 0		
Legend:									
R = Readabl	e bit	W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	DTBPS<1:0> 11 = Clock p 10 = Clock p 01 = Clock p 00 = Clock p	 Dead-Time U eriod for Dead- eriod for Dead- eriod for Dead- eriod for Dead- 	nit B Prescale Time Unit B is Time Unit B is Time Unit B is Time Unit B is	e Select bits s 8 Tcy s 4 Tcy s 2 Tcy s Tcy s Tcy					
bit 13-8	DTB<5:0>: L	Insigned 6-bit E	Dead-Time Va	lue for Dead-Ti	me Unit B bits				
bit 7-6	DTAPS<1:0> 11 = Clock p 10 = Clock p 01 = Clock p 00 = Clock p	DTB<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit B bits DTAPS<1:0>: Dead-Time Unit A Prescale Select bits 11 = Clock period for Dead-Time Unit A is 8 TcY 10 = Clock period for Dead-Time Unit A is 4 TcY 01 = Clock period for Dead-Time Unit A is 2 TcY							

bit 5-0 DTA<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit A bits

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
FRMEN	SPIFSD	FRMPOL	_	_	—	—			
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0		
—	—	—	_	—	—	FRMDLY	—		
bit 7		•					bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown			
bit 15	FRMEN: Fran	ned SPIx Supp	ort bit						
	1 = Framed S	PIx support en	abled (SSx pi	n used as fram	ne sync pulse in	put/output)			
	0 = Framed SPIx support disabled								
bit 14	SPIFSD: Frame Sync Pulse Direction Control bit								
	1 = Frame sync pulse input (slave)								
	0 = Frame sy	nc pulse output	t (master)						
bit 13	FRMPOL: Frame Sync Pulse Polarity bit								

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame sync pulse coincides with first bit clock0 = Frame sync pulse precedes first bit clock

Unimplemented: This bit must not be set to '1' by the user application

Unimplemented: Read as '0'

bit 12-2

bit 1

bit 0

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 21	I-2: CiCTR	L2: ECAN™	CONTROL	REGISTER 2	2		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—		—	—	_	—
bit 15							bit 8
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	—				DNCNT<4:0>		
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			nown
bit 15-5	Unimplemen	ted: Read as ')'				
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits			

10010-11111 = Invalid selection

10001 = Compare up to data byte 3, bit 6 with EID<17>

•

•

00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 2	1-3: CiVEC	: ECAN™ INT	ERRUPT	CODE REGIS	TER		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
					FILHIT<4:0>		
bit 15							bit 8
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
		110	110	ICODE<6:0>		10	
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15-13	Unimplemen	ited: Read as '0	,				
bit 12-8	FILHIT<4:0>	: Filter Hit Numb	er bits				
	10000-1111 01111 = Filte	1 = Reserved r 15					
	•						
	•						
	•						
	00001 = Filte 00000 = Filte	er 1 er O					
bit 7	Unimplemen	ted: Read as '0	3				
bit 6-0	ICODE<6:0>	: Interrupt Flag C	Code bits				
	1000101-11	11111 = Reserv	ved				
	1000100 = F	IFO almost full in Receiver overflow	nterrupt				
	1000010 = V	Vake-up interrup	t				
	1000001 = E	Fror interrupt					
	1000000 = N	lo interrupt					
	•						
	•						
	•	11111 - Decen	ved				
	00010000-01	RB15 buffer Inter	rupt				
	•						
	•						
	•						
	0001001 = F	B9 buffer interru	upt				
	0001000 = F	B8 buffer interru	ipt rupt				
	0000111 = T 0000110 = T	RB6 buffer inter	rupt				
	0000101 = T	RB5 buffer inter	rupt				
	0000100 = T	RB4 buffer inter	rupt				
	0000011 = T	RB3 buffer inter	rupt				
	0000001 = T	RB1 buffer inter	rupt				
	0000000 = T	RB0 Buffer inter	rupt				

24.0 COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of dsPIC33FJ32MC302/304. the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section to 34. "Comparator" (DS70212) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

24.3 Comparator Voltage Reference

24.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 24-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 24-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

26.5 Programmable CRC Registers

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
	_	CSIDL			VWORD<4:0)>	11.0
bit 15							bit 8
R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT		CRCGO		PLE	N<3:0>	
bit 7				·			bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	CSIDL: CRC	Stop in Idle Mo	ode bit				
	1 = Discontin 0 = Continue	ue module opera	eration when c tion in Idle mo	levice enters lo de	lle mode		
bit 12-8	VWORD<4:0	>: Pointer Valu	e bits				
	Indicates the or 16 when P	number of valio LEN<3:0> ≤7.	d words in the	FIFO. Has a m	naximum value	e of 8 when PLE	N<3:0> > 7,
bit 7	CRCFUL: FIF	O Full bit					
	1 = FIFO is f	ull					
	0 = FIFO is n	ot full					
bit 6	CRCMPT: FIF	O Empty Bit					
	1 = FIFO is e	empty					
hit 5		tod: Read as '	∩'				
bit 4	CPCCO: Star		0				
DIL 4	1 = Start CR(° serial shifter					
	0 = Turn off t	he CRC serial	shifter after th	e FIFO is empt	ty		
bit 3-0	PLEN<3:0>:	Polynomial Lei	ngth bits	·	-		
	Denotes the le	ength of the po	- lynomial to be	e generated mir	nus 1.		

REGISTER 26-1: CRCCON: CRC CONTROL REGISTER

29.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/ 304. dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 29-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 29-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The $\ensuremath{\mathtt{MAC}}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- · The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial					
Param No.	Param No. Symbol Characteristic		Min	Тур	Мах	-40°C Units	≤IA ≤+125°C for Extended Conditions	
300	TRESP	Response Time ^(1,2)	—	150	400	ns		
301	Тмс2о∨	Comparator Mode Change to Output Valid ⁽¹⁾	—	_	10	μs	_	

TABLE 31-49: COMPARATOR TIMING SPECIFICATIONS

Note 1: Parameters are characterized but not tested.

2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 31-50: COMPARATOR MODULE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min Typ Max Units C				Conditions	
D300	VIOFF	Input Offset Voltage ⁽¹⁾	_	±10	_	mV	_	
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	_	AVDD-1.5V	V	_	
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54	—	—	dB	—	

Note 1: Parameters are characterized but not tested.

DC CHARACTERISTICS			Standard Operating Con (unless otherwise state Operating temperature			nditions: 3.0V to 3.6V d) -40°C ≤TA ≤+150°C for High Temperature		
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
DO10	Vol	Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	lo∟ ≤1.8 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	_	_	0.4	V	lo∟ ≤3.6 mA, Vod = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4	—	_	0.4	V	Io∟ ⊴6 mA, VDD = 3.3V See Note 1	
DO20	Voн	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	V	Io∟ ≥ -1.8 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V	Io∟ ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	Io∟ ≥ -6 mA, Vod = 3.3V See Note 1	
	VoH1	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	1.5	_	_	V	Іон ≥ -1.9 mA, Voo = 3.3V See Note 1	
			2.0	_	_		IOH ≥ -1.85 mA, VDD = 3.3V See Note 1	
DO20A			3.0	_	_		lон ≥ -1.4 mA, VDD = 3.3V See Note 1	
		Output High Voltage 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	1.5	—	—	V	ІОн ≥ -3.9 mA, VDD = 3.3V See Note 1	
			2.0	_	_		lон ≥ -3.7 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA3, RA4	1.5	—	—		IOH ≥ -7.5 mA, VDD = 3.3V See Note 1	
			2.0	—	—	v	ІОн ≥ -6.8 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IoH ≥ -3 mA, VDD = 3.3V See Note 1	

TABLE 32-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

28-Lead Plastic Small Outline (SO) – Wide, 7.50 mm Body [SOIC]

	Units	MILLMETERS				
Dime	MIN	NOM	MAX			
Number of Pins	Ν		-			
Pitch	е	1.27 BSC				
Overall Height	A			2.65		
Molded Package Thickness	A2	2.05	_	_		
Standoff §	A1	0.10	_	0.30		
Overall Width	E	10.30 BSC				
Molded Package Width	E1	7.50 BSC				
Overall Length	D	17.90 BSC				
Chamfer (optional)	h	0.25	_	0.75		
Foot Length	L	0.40	_	1.27		
Footprint	L1		-			
Foot Angle Top	φ	0°	_	8°		
Lead Thickness	С	0.18	_	0.33		
Lead Width	b	0.31	_	0.51		
Mold Draft Angle Top	C.	5°	_	15°		
Mold Draft Angle Bottom	β	5°	_	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side.

- 4. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-052B