

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b; D/A 6x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc804-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3	-2: CORC	ON: CORE C	ONTROL R	EGISTER					
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0		
—	—	—	US	EDT ⁽¹⁾		DL<2:0>			
bit 15							bit 8		
R///-0	R/W/-0	R/M_1	R/\/_0	R/C-0	R/M-0	R/M-0	R/M-0		
50T0	SATB	SATDW	ACCSAT	IPI 3(2)	PSV	RND	IT IF		
bit 7	ONTE	0/(10/)	//000///	11 20	101	TUD	bit 0		
Legend:		C = Clear only	y bit						
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set			
'0' = Bit is clea	ared	'x' = Bit is unk	nown	U = Unimpler	mented bit, read	l as '0'			
hit 15-13	Unimplemen	tod: Read as '	∩'						
bit 12		tiply Unsigned/	o Signed Contr	ol hit					
Sit 12	1 = DSP engi	ne multiplies a	re unsigned						
	0 = DSP engi	ne multiplies a	re signed						
bit 11	EDT: Early DO	Loop Termina	tion Control b	it(1)					
	1 = Terminate 0 = No effect	e executing DO	loop at end of	current loop it	eration				
bit 10-8	DL<2:0>: DO Loop Nesting Level Status bits								
	111 = 7 do lo	ops active							
	•								
	•								
	001 = 1 DO lo	op active							
hit 7		Saturation En	ahle hit						
bit /	JAIA: ACCA Saturation Enabled								
	0 = Accumula	ator A saturatio	n disabled						
bit 6	SATB: ACCB	Saturation En	able bit						
	1 = Accumulator B saturation enabled								
	0 = Accumula	ator B saturatio	n disabled		E				
bit 5	SAIDW: Data	a Space Write f	rom DSP Eng	line Saturation	Enable bit				
	\perp = Data space	ce write saturat	ion enabled						
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	Select bit					
	1 = 9.31 satu	ration (super sa	aturation)						
	0 = 1.31 satu	ration (normal s	saturation)						
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	oit 3 ⁽²⁾					
	1 = CPU inter 0 = CPU inter	rupt priority lev rupt priority lev	vel is greater t vel is 7 or less	han 7					
bit 2	PSV: Progran	n Space Visibili	ty in Data Spa	ace Enable bit					
	1 = Program	space visible ir	data space						
	0 = Program	space not visib	le in data spa	се					

_ .

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MODCON	0046	XMODEN	YMODEN	—	BWM<3:0> YWM<3:0> XWM<3:0>							0000						
XMODSRT	0048			XS<15:1>								0	XXXX					
XMODEND	004A		XE<15:1>								1	XXXX						
YMODSRT	004C							Y	S<15:1>								0	XXXX
YMODEND	004E							Y	E<15:1>								1	XXXX
XBREV	0050	BREN	BREN XB<14:0>									XXXX						
DISICNT	0052	_	_						Disabl	e Interrupts	Counter R	egister						XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 5-	2: NVMP	(EY: NONVOL	ATILE ME	MORY KEY F	REGISTER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	_
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	EY<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	pit	W = Writable b	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

6.9 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag bit (CM) in the Reset Control register (RCON<9>) is set to indicate the configuration mismatch Reset. Refer to **Section 11.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated reset flag is not available on all devices.

6.10 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- · Security Reset

TABLE 6-3:

The Illegal Opcode or Uninitialized W Access Reset Flag bit (IOPUWR) in the Reset Control register (RCON<14>) is set to indicate the illegal condition device Reset.

6.10.0.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of

RESET FLAG BIT OPERATION⁽¹⁾

each program memory section to store the data values. The upper 8 bits should be programmed with 3Fh, which is an illegal opcode value.

6.10.0.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all resets and is considered uninitialized until written to.

6.10.0.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

Refer to Section 28.8 "Code Protection and CodeGuard Security" for more information on Security Reset.

6.11 Using the RCON Status Bits

The user application can read the Reset Control register (RCON) after any device Reset to determine the cause of the reset.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset will be meaningful.

Table 6-3 provides a summary of the Reset flag bit operation.

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	—
POR (RCON<0>)	POR	—

Note 1: All Reset flag bits can be set or cleared by user software.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
_		T4IP<2:0>		_		OC4IP<2:0>								
bit 15	·						bit 8							
					— • • • • •									
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0							
—		0031P<2:0>		_		DMAZIP<2:0>	hit C							
DIL 7							DIEU							
Legend:														
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'								
-n = Value a	t POR	'1' = Bit is set	s set '0' = Bit is cleared x = Bit is unkno											
bit 15	Unimpleme	ented: Read as '),),											
bit 14-12	T4IP<2:0>:	limer4 Interrupt	Priority bits											
	•	rupt is priority 7 (i	nignest prior	ity interrupt)										
	•													
	•	•												
	001 = Interi 000 = Interi	rupt is priority 1 rupt source is dis	abled											
bit 11	Unimpleme	ented: Read as ')'											
bit 10-8	OC4IP<2:0>: Output Compare Channel 4 Interrupt Priority bits													
	111 = Interrupt is priority 7 (highest priority interrupt)													
	•													
	•													
	001 = Interi	rupt is priority 1												
	000 = Inter	upt source is dis	abled											
bit 7	Unimpleme	ented: Read as ')'											
bit 6-4	OC3IP<2:0	OC3IP<2:0>: Output Compare Channel 3 Interrupt Priority bits												
	111 = Interrupt is priority 7 (highest priority interrupt)													
	•													
	•													
	001 = Interi	001 = Interrupt is priority 1												
	000 = Interi	rupt source is dis	abled											
bit 3	Unimpleme	ented: Read as ')'											
bit 2-0	DMA2IP<2:	0>: DMA Channe	el 2 Data Tra	ansfer Complete	e Interrupt Prio	rity bits								
	111 = Interi	rupt is priority 7 (I	nighest prior	ity interrupt)										
	•													
	•													
	001 = Interi	upt is priority 1												
	000 = Interi	rupt source is dis	abled		000 = Interrupt source is disabled									

REGISTER 7-21: IPC6: INTERRUPT PRIORITY CONTROL REGISTER 6

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		C1IP<2:0> ⁽¹⁾		—		C1RXIP<2:0>(1))					
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
		SPI2IP<2:0>		—		SPI2EIP<2:0>	L:1 0					
Dit 7							DIT U					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown					
bit 15	Unimpleme	ented: Read as ')'									
bit 14-12	C1IP<2:0>:	ECAN1 Event In	terrupt Prior	ity bits ⁽¹⁾								
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•	•										
	001 = Inter	rupt is priority 1	abled									
bit 11		ented: Read as '	abled									
bit 10-8	C1RXIP<2:0>: ECAN1 Receive Data Ready Interrupt Priority bits ⁽¹⁾											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•		0 1	, i,								
	•											
	• 001 = Inter	rupt is priority 1										
	000 = Inter	rupt source is dis	abled									
bit 7	Unimpleme	ented: Read as ')'									
bit 6-4	SPI2IP<2:0	>: SPI2 Event Int	terrupt Priori	ty bits								
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Inter	001 = Interrupt is priority 1										
	000 = Inter	rupt source is dis	abled									
bit 3	Unimpleme	ented: Read as ')'									
bit 2-0	SPI2EIP<2	:0>: SPI2 Error Ir	terrupt Prior	ity bits								
	111 = Inter	rupt is priority 7 (I	nighest prior	ity interrupt)								
	•											
	•											
	001 = Inter	rupt is priority 1										
	000 = Interrupt source is disabled											

DECISTED 7 22

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 39. "Oscillator (Part III)"** (DS70216) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This register is reset only on a Power-on Reset (POR).

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0		
ROI		DOZE<2:0>		DOZEN ⁽¹⁾	F	RCDIV<2:0>			
oit 15	·						bi		
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
PLLP	OST<1:0>				PLLPRE<4:0>				
pit 7							b		
egend:		y = Value set	from Configu	ration bits on PC)R				
R = Readabl	e bit	W = Writable	bit	U = Unimplem	ented bit, read	as '0'			
n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkno	own		
pit 15	ROI: Recove	er on Interrupt bi	t						
	1 = Interrupt	s clear the DOZ	EN bit and th	ne processor clo EN bit	ck/peripheral cl	ock ratio is set	to 1:1		
nit 14-12		Processor Clor	k Reduction	Select hits					
11 17 12	111 = Fcy/1	28							
	110 = FCY/64	4							
	101 = Fcy/3	2							
	100 = FCY/10	6 (dofault)							
	011 = FCY/8 010 = FCY/8	(deladit)							
	001 = Fcy/2								
	000 = Fcy/1		(4)						
oit 11	DOZEN: DOZE Mode Enable bit ⁽¹⁾								
	 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks 0 = Processor clock/peripheral clock ratio forced to 1:1 								
it 10-8	FRCDIV<2:0	>: Internal Fast	RC Oscillato	r Postscaler bits					
	111 = FRC c	livide by 256							
	110 = FRC divide by 64								
	101 = FRC c	livide by 32							
	100 = FRC c	livide by 16							
	011 = FRC 0	livide by 8							
	001 = FRC c	livide by 2							
	000 = FRC c	livide by 1 (defa	ult)						
oit 7-6	PLLPOST<1:0>: PLL VCO Output Divider Select bits (also denoted as 'N2', PLL postscaler)								
	11 = Output/	8 ed							
	10 = Reserved 01 = Output/4 (default)								
	00 = Output/	2`́́							
it 5	Unimpleme	nted: Read as ')'						
it 4-0	PLLPRE<4:0	0>: PLL Phase I	Detector Inpu	t Divider bits (als	so denoted as '	N1', PLL presc	aler)		
	11111 = Inp	ut/33							
	•								
	•								
	•								
	00001 = Inp	ut/3							

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. The dsPIC33F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers;

clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) the IOLOCK bit as a single operation.

Note:	MPLAB [®] C30 provides built-in C
	language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value)
	See MPLAB IDE Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY Configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

14.1 Input Capture Resources

Many useful resources related to Input Capture are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

In the event you are not able to access the
product page using the link above, enter
this URL in your browser:
http://www.microchip.com/wwwproducts/
Devices.aspx?dDocName=en532315

14.1.1 KEY RESOURCES

- Section 12. "Input Capture" (DS70198)
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

16.3 Motor Control PWM Resources

Many useful resources related to Motor Control PWM are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

16.3.1 KEY RESOURCES

- Section 14. "Motor Control PWM" (DS70187)
- · Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 16-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTBI	PS<1:0>			DTE	8<5:0>			
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DTA	PS<1:0>			DTA	<5:0>			
bit 7							bit 0	
Legend:								
R = Readable bit		W = Writable bit		U = Unimplemented bit, read as '0'				
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15-14	DTBPS<1:0> 11 = Clock p 10 = Clock p 01 = Clock p 00 = Clock p	 Dead-Time U eriod for Dead- eriod for Dead- eriod for Dead- eriod for Dead- 	nit B Prescale Time Unit B is Time Unit B is Time Unit B is Time Unit B is	e Select bits s 8 Tcy s 4 Tcy s 2 Tcy s Tcy s Tcy				
bit 13-8	DTB<5:0>: L	Insigned 6-bit E	Dead-Time Va	lue for Dead-Ti	me Unit B bits			
bit 7-6	DTAPS<1:0> 11 = Clock p 10 = Clock p 01 = Clock p 00 = Clock p	•: Dead-Time U eriod for Dead- eriod for Dead- eriod for Dead- eriod for Dead-	nit A Prescale Time Unit A is Time Unit A is Time Unit A is Time Unit A is	e Select bits 5 8 Tcy 5 4 Tcy 5 2 Tcy 5 Tcy 5 Tcy				

bit 5-0 DTA<5:0>: Unsigned 6-bit Dead-Time Value for Dead-Time Unit A bits

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer Section to 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

FIGURE 26-1: CRC SHIFTER DETAILS

26.1 Overview

The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR bits (X<15:1>) and the CRCCON bits (PLEN<3:0>), respectively.

EQUATION 26-1: CRC EQUATION

$$x^{16} + x^{12} + x^5 + 1$$

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 26-1.

Bit Name	Bit Value			
PLEN<3:0>	1111			
X<15:1>	00010000010000			

For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 26-2.

© 2007-2012 Microchip Technology Inc.

REGISTER 26-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				—
bit 7							bit 0
Legend:							
R = Readable b	able bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

FIGURE 31-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 31-31: QEI INDEX PULSE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Max	Units	Conditions
TQ50	TqIL	Filter Time to Recognize Low, with Digital Filter		3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)		3 TCY	_	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

TABLE 31-38:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature40°C <ta <+85°c="" for="" industrial<="" th=""></ta>						
				-40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	—		15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	-	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	—		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_		ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_		ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—	-	ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—	
SP50	TssL2scH, TssL2scL	$\overline{\text{SSx}} \downarrow \text{to SCKx} \uparrow \text{ or SCKx Input}$	120	—	—	ns	_	
SP51	TssH2doZ	SSx	10	—	50	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with e	xternal	VREF+/VREF-
AD20b	Nr	Resolution ⁽¹⁾	10 data bits		bits		
AD21b	INL	Integral Nonlinearity	-1.5	—	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
AD25b	—	Monotonicity	_	—		—	Guaranteed
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal '	VREF+/VREF-
AD20b	Nr	Resolution ⁽¹⁾	10 data bits		bits		
AD21b	INL	Integral Nonlinearity	-1	_	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
AD25b	—	Monotonicity	_	—			Guaranteed
Dynamic Performance (10-bit Mode)							
AD30b	THD	Total Harmonic Distortion	—	_	-64	dB	—
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_
AD32b	SFDR	Spurious Free Dynamic Range	72	_	_	dB	_
AD33b	Fnyq	Input Signal Bandwidth	l —	—	550	kHz	_
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits	_

TABLE 31-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

Revision D (November 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Added information on high temperature operation (see " Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 20.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Updated the ADC block diagrams (see Figure 22-1 and Figure 22-2).
Section 23.0 "Audio Digital-to-Analog	Removed last sentence of the first paragraph in the section.
Converter (DAC)"	Added a shaded note to Section 23.2 "DAC Module Operation".
	Updated Figure 23-2: "Audio DAC Output for Ramp Input (Unsigned)".
Section 28.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 28.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 28-1).
Section 31.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Removed parameters DI26, DI28 and DI29 from the I/O Pin Input Specifications (see Table 31-9).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 31-17).
	Removed Table 31-45: Audio DAC Module Specifications. Original contents were updated and combined with Table 31-44 of the same name.
Section 32.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.