

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b; D/A 6x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc804-h-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.7.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

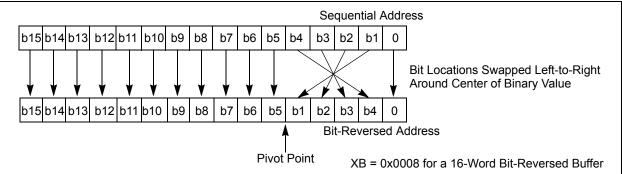
3.8 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:


- · Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

	Algebraic ACC Write								
Instruction	Algebraic Operation	Back							
CLR	A = 0	Yes							
ED	$A = (x - y)^2$	No							
EDAC	$A = A + (x - y)^2$	No							
MAC	$A = A + (x \bullet y)$	Yes							
MAC	A = A + x2	No							
MOVSAC	No change in A	Yes							
MPY	$A = x \bullet y$	No							
MPY	A = x 2	No							
MPY.N	$A = -x \bullet y$	No							
MSC	$A = A - x \bullet y$	Yes							

TABLE 4-41: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

Normal Address						Bit-Reversed Address			
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal
0	0	0	0	0	0	0	0	0	0
0	0	0	1	1	1	0	0	0	8
0	0	1	0	2	0	1	0	0	4
0	0	1	1	3	1	1	0	0	12
0	1	0	0	4	0	0	1	0	2
0	1	0	1	5	1	0	1	0	10
0	1	1	0	6	0	1	1	0	6
0	1	1	1	7	1	1	1	0	14
1	0	0	0	8	0	0	0	1	1
1	0	0	1	9	1	0	0	1	9
1	0	1	0	10	0	1	0	1	5
1	0	1	1	11	1	1	0	1	13
1	1	0	0	12	0	0	1	1	3
1	1	0	1	13	1	0	1	1	11
1	1	1	0	14	0	1	1	1	7
1	1	1	1	15	1	1	1	1	15

7.3 Interrupt Control and Status Registers

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number bits (VECNUM<6:0>) and Interrupt level bits (ILR<3:0>) in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality.

- The CPU Status register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. The IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

7.4 Interrupts Resources

Many useful resources related to Interrupts are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

7.4.1 KEY RESOURCES

- Section 32. "Interrupts (Part III)" (DS70214)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	1 = Oscillator failure trap has occurred0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

bit 2	OC1IE: Output Compare Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	IC1IE: Input Capture Channel 1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 0	INTOIE: External Interrupt 0 Flag Status bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
U2TXIE	U2RXIE	INT2IE	T5IE	T4IE	OC4IE	OC3IE	DMA2IE				
bit 15	·	·	·	• •			bit 8				
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
IC8IE	IC7IE		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE				
bit 7							bit 0				
Legend:	I I.:.		L :4								
R = Readab		W = Writable			nented bit, rea						
-n = Value a	t POR	'1' = Bit is set	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15		RT2 Transmitte	r Intorrunt En	abla hit							
DIL 15		request enable	-								
		request not en									
bit 14	U2RXIE: UA	RT2 Receiver I	nterrupt Enab	le bit							
	1 = Interrupt	request enable	d								
	0 = Interrupt	request not ena	abled								
bit 13		rnal Interrupt 2									
		 1 = Interrupt request enabled 0 = Interrupt request not enabled 									
bit 12	-	-									
DIL 12		i Interrupt Enab request enable									
		request not enable									
bit 11	T4IE: Timer4	Interrupt Enab	le bit								
	1 = Interrupt	Interrupt request enabled									
	0 = Interrupt	request not ena	abled								
bit 10	-	out Compare Ch		upt Enable bit							
		request enable									
hit 0	•	request not ena		unt Enchlo hit							
bit 9	•	out Compare Ch request enable		upt Enable bit							
		request not enable									
bit 8	-	-		Complete Interr	upt Enable bit						
		DMA2IE: DMA Channel 2 Data Transfer Complete Interrupt Enable bit 1 = Interrupt request enabled									
	0 = Interrupt	request not ena	abled								
bit 7	IC8IE: Input	Capture Chann	el 8 Interrupt	Enable bit							
		request enable									
	•	request not en									
bit 6	-	Capture Chann	-	Enable bit							
		request enable request not ena									
hit 5		ntequest not only									

bit 5Unimplemented: Read as '0'bit 4INT1IE: External Interrupt 1 Enable

bit 4 INT1IE: External Interrupt 1 Enable bit 1 = Interrupt request enabled 0 = Interrupt request not enabled

bit 3 CNIE: Input Change Notification Interrupt Enable bit

- 1 = Interrupt request enabled
- 0 = Interrupt request not enabled

11.6.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. The dsPIC33F devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

11.6.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers;

clearing IOLOCK allows writes.

To set or clear the IOLOCK bit, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) the IOLOCK bit as a single operation.

Note:	MPLAB [®] C30 provides built-in C language functions for unlocking the OSCCON register:
	builtin_write_OSCCONL(value) builtin_write_OSCCONH(value) See MPLAB IDE Help for more information.

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

11.6.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset is triggered.

11.6.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY Configuration bit (FOSC<5>) blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure does not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

20.3 UART Control Registers

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15							bit 8

R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEL	<1:0>	STSEL
bit 7							bit 0

Legend:	HC = Hardware cleared				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15	UARTEN: UARTx Enable bit
	 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾
	 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	 1 = UxRTS pin in Simplex mode 0 = UxRTS pin in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits
	 11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by port latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit
	 1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 0 = No wake-up enabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	 1 = Enable Loopback mode 0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement disabled or completed
Note 1:	Refer to Section 17. "UART" (DS70188) in the <i>"dsPIC33F/PIC24H Family Reference Manual"</i> for information on enabling the UART module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0
	_	_			FILHIT<4:0>		
oit 15							bit
U-0	R-1	R-0	R-0	R-0	R-0	R-0	R-0
		IX U	i t u	ICODE<6:0>	-	IX U	i t u
oit 7							bit
_egend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	•	Filter Hit Num					
	10000-1111	1 = Reserved					
	01111 = Filte	er 15					
	•						
	•						
	•						
	00001 = Filte 00000 = Filte						
bit 7		ted: Read as '	0'				
bit 6-0	-	Interrupt Flag					
		11111 = Rese					
		IFO almost full					
		leceiver overflo					
	1000010 = V 1000001 = E	Vake-up interru rror interrupt	ρι				
	1000000 = N						
	•						
	•						
	•						
		11111 = Rese					
	0001111 = R	B15 buffer Inte	errupt				
	•						
	•						
	0001001 = R	B9 buffer inter	rupt				
	0001000 = R	B8 buffer inter	rupt				
		RB7 buffer inte	•				
		RB6 buffer inte RB5 buffer inte					
		RB4 buffer inte					
	0000011 = T	RB3 buffer inte	errupt				
		RB2 buffer inte					
	0000001 = 1	RB1 buffer inte	HUDL				

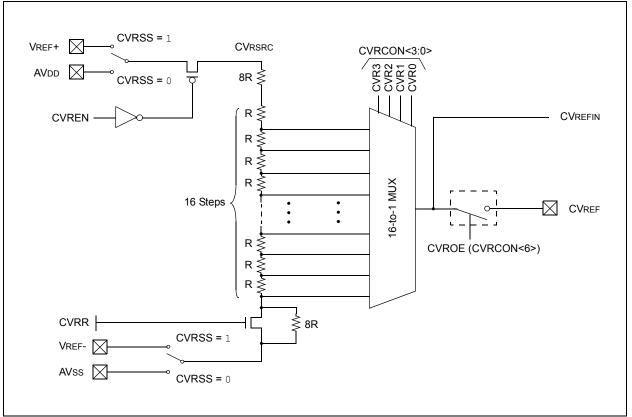
U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x			
_	WAKFIL	_	_	_		SEG2PH<2:0>				
bit 15							bit			
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x			
SEG2PHTS	SAM		SEG1PH<2:0>	>		PRSEG<2:0>				
bit 7							bit			
Legend:										
R = Readable	bit	W = Writable	e bit	U = Unimpler	mented bit, re	ad as '0'				
-n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is cle		x = Bit is unkno	wn			
bit 15	Unimplemen	ted: Read as	ʻ0 '							
bit 14	WAKFIL: Sel	ect CAN Bus	Line Filter for V	Vake-up bit						
		bus line filter								
			ot used for wake	e-up						
bit 13-11	•	ted: Read as								
bit 10-8	SEG2PH<2:0>: Phase Segment 2 bits									
	111 = Length	i is 8 x TQ								
	•									
	•									
	•	·								
L :+ 7	000 = Length			-4 1- :4						
bit 7		-	ent 2 Time Sele	Ct Dit						
	1 = Freely pro		nite or Informati	ion Processing	Time (IPT)	vhichever is greate	ar.			
bit 6				ion nocessing	j mne (n 1 <i>)</i> , v	villenevel is greate	51			
DIT O	SAM: Sample of the CAN Bus Line bit 1 = Bus line is sampled three times at the sample point									
	0 = Bus line is sampled once at the sample point									
bit 5-3)>: Phase Seg	-	·						
	111 = Length									
	•									
	•									
	•									
	000 = Length	is 1 x Tq								
bit 2-0	PRSEG<2:0>	-: Propagation	Time Segmen	t bits						
	111 = Length	is 8 x Tq								
	•									
	•									
	•									

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER	22-0: AD1CI	HSU: ADCT IN	PUICHAN	NEL U SELE	CI REGISTE	R	
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB	—	—			CH0SB<4:0>		
bit 15							bit
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA		_			CH0SA<4:0>		
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown
bit 14-13 bit 12-8	CH0SB<4:0> dsPIC33FJ32 01000 = Cha 00010 = Cha	 ited: Read as '0 Channel 0 Pos Channel 0 positive i nnel 0 positive i nnel 0 positive i 	sitive Input Se 33FJ64MC20 nput is AN8 nput is AN2			204/804 devic	es only:
		nnel 0 positive i					
	00101 = Cha • • 00010 = Cha 00001 = Cha	2MC302, dsPIC innel 0 positive i innel 0 positive i innel 0 positive i innel 0 positive i	nput is AN5 nput is AN2 nput is AN1	2/802 and dsF	PIC33FJ128MC	202/802 devic	es only:
bit 7	CH0NA: Cha 1 = Channel (nnel 0 Negative 0 negative input 0 negative input	Input Select is AN1	for Sample A b	it		
bit 6-5	Unimplemen	ted: Read as '0	,				

REGISTER 22-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

24.3 Comparator Voltage Reference


24.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 24-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 24-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

25.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

25.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 25-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 25-1:	RTCVAL	REGISTER	MAPPING
-------------	--------	----------	---------

RTCPTR	RTCC Value Register Window					
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>				
00	MINUTES	SECONDS				
01	WEEKDAY	HOURS				
10	MONTH	DAY				
11	—	YEAR				

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 25-2).

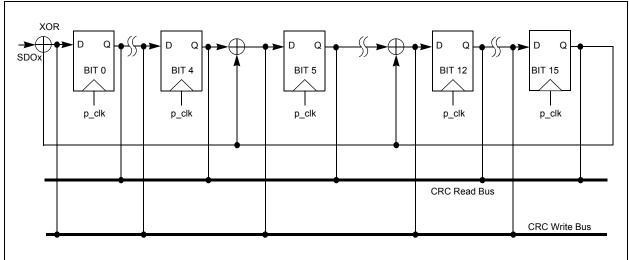
By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 25-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window					
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>				
00	ALRMMIN	ALRMSEC				
01	ALRMWD	ALRMHR				
10	ALRMMNTH	ALRMDAY				
11	—	—				

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and								
	not write operations.								


25.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 25-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 25-1.

EXAMPLE 25-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

FIGURE 26-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

26.2 User Interface

26.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 26.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

26.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

26.3 Operation in Power-Saving Modes

26.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

26.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

Base Instr #			# of Words	# of Cycles	Status Flags Affected		
66 RRNC		RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z
69	SETM	SETM	f	f = 0xFFFF	1	1	None
		SETM	WREG	WREG = 0xFFFF	1	1	None
		SETM	Ws	Ws = 0xFFFF	1	1	None
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB SA,SB,SAB
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB SA,SB,SAB
		SUB	f	f = f – WREG	1	1	C,DC,N,OV,2
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,2
		SUB	#lit10,Wn	Wn = Wn - lit10	1	1	C,DC,N,OV,2
		SUB	Wb,Ws,Wd	Wd = Wb – Ws	1	1	C,DC,N,OV,2
		SUB	Wb,#lit5,Wd	Wd = Wb – lit5	1	1	C,DC,N,OV,2
73	SUBB	SUBB	f	f = f - WREG - (C)	1	1	C,DC,N,OV,Z
		SUBB	f,WREG	WREG = $f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,2
		SUBB	Wb,#lit5,Wd	$Wd = Wb - Iit5 - (\overline{C})$	1	1	C,DC,N,OV,Z
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,2
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,2
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,2
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	f,WREG	WREG = WREG – f – (\overline{C})	1	1	C,DC,N,OV,Z
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
		SUBBR	Wb,#lit5,Wd	$Wd = lit5 - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z
76	SWAP	SWAP.b	Wn	Wn = nibble swap Wn	1	1	None
		SWAP	Wn	Wn = byte swap Wn	1	1	None
77	TBLRDH	TBLRDH	Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None
80	TBLWTL	TBLWTL	Ws,Wd	Write Ws to Prog<15:0>	1	2	None
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None
82	XOR	XOR	f	f = f .XOR. WREG	1	1	N,Z
		XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z
		XOR	Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N

TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
		ADC Accuracy (10-bit Mode	e) – Meas	urement	ts with e	xternal	VREF+/VREF-	
AD20b	Nr	Resolution ⁽¹⁾	1() data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
AD25b	—	Monotonicity	—	—		_	Guaranteed	
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal V	VREF+/VREF-	
AD20b	Nr	Resolution ⁽¹⁾	1() data bi	ts	bits		
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
AD25b	—	Monotonicity	_		_	-	Guaranteed	
		Dynamic	Performa	nce (10-	bit Mode	e)		
AD30b	THD	Total Harmonic Distortion		—	-64	dB	—	
AD31b	SINAD	Signal to Noise and Distortion	57	58.5	_	dB	_	
AD32b	SFDR	Spurious Free Dynamic Range	72	_	_	dB	_	
AD33b	Fnyq	Input Signal Bandwidth	- 1	_	550	kHz	—	
AD34b	ENOB	Effective Number of Bits	9.16	9.4		bits		

TABLE 31-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +150°C for High Temperature				≤Ta ≤+150°C for High			
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions			
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	lo∟ ≤1.8 mA, Vdd = 3.3V See Note 1			
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	_	_	0.4	V	Io∟ ≤3.6 mA, VDD = 3.3V See Note 1			
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4		_	0.4	V	IoL ⊴6 mA, VDD = 3.3V See Note 1			
	Vон	Vон			Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	V	IoL ≥ -1.8 mA, VDD = 3.3V See Note 1
DO20			Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V	Io∟ ≥ -3 mA, Vod = 3.3V See Note 1		
			Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1		
		Output High Voltage	1.5	_	_		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1			
		2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.0	—	—	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1			
			3.0	_	_		IOH ≥ -1.4 mA, VDD = 3.3V See Note 1			
		Output High Voltage 4x Source Driver Pins - RA0,	1.5	_	_		IOH ≥ -3.9 mA, VDD = 3.3V See Note 1			
DO20A	Vон1	RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1			
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1			
		Output High Voltage	1.5	_			IOH ≥ -7.5 mA, VDD = 3.3V See Note 1			
		8x Source Driver Pins - RA3, RA4	2.0			V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1			
			3.0	_	_		Юн ≥ -3 mA, VDD = 3.3V See Note 1			

TABLE 32-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

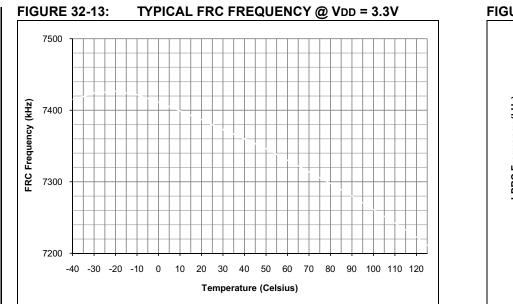
Note 1: Parameters are characterized, but not tested.

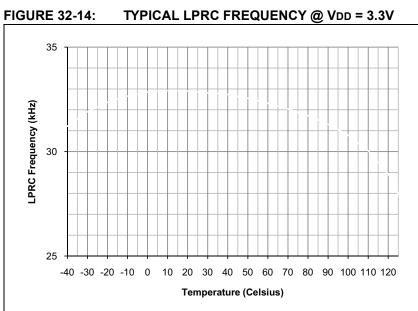
TABLE 32-14: ADC MODULE SPECIFICATIONS							
AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
Reference Inputs							
HAD08	IREF	Current Drain		250 —	600 50	μΑ μΑ	ADC operating, See Note 1 ADC off, See Note 1

TABLE 32-14: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.


TABLE 32-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)


AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
ADC Accuracy (12-bit Mode) – Measurements with External VREF+/VREF- ⁽¹⁾							
HAD20a	Nr	Resolution ⁽³⁾	12 data bits		bits		
HAD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD22a	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD23a	Gerr	Gain Error	-2	—	10	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
HAD24a	EOFF	Offset Error	-3	—	5	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V
ADC Accuracy (12-bit Mode) – Measurements with Internal VREF+/VREF- ⁽¹⁾							
HAD20a	Nr	Resolution ⁽³⁾	12 data bits		bits		
HAD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD22a	DNL	Differential Nonlinearity	> -1		< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD23a	Gerr	Gain Error	2		20	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD24a	EOFF	Offset Error	2	—	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V
Dynamic Performance (12-bit Mode) ⁽²⁾							
HAD33a	Fnyq	Input Signal Bandwidth			200	kHz	

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

INDEX

Α

AC Characteristics	
ADC Module	
ADC Module (10-bit Mode)	
ADC Module (12-bit Mode)	
Internal RC Accuracy	
Load Conditions	
ADC Module	
ADC11 Register Map	
Alternate Interrupt Vector Table (AIVT)	89
Analog-to-Digital Converter	
DMA	
Initialization	
Key Features	
Arithmetic Logic Unit (ALU)	
Assembler	
MPASM Assembler	

В

Barrel Shifter	1
Bit-Reversed Addressing 66	3
Example67	7
Implementation66	3
Sequence Table (16-Entry)67	7
Block Diagrams	
16-bit Timer1 Module 195	5
ADC Module	3
Connections for On-Chip Voltage Regulator)
Device Clock 143, 145	5
DSP Engine	I
dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04,	
and dsPIC33FJ128MCX02/X0412	2
dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04,	
and dsPIC33FJ128MCX02/X04 CPU Core 23	3
ECAN Module 255	5
ECAN Module	
	5
Input Capture	5
Input Capture	5
Input Capture	5955
Input Capture	595579
Input Capture	595579
Input Capture	5955793
Input Capture205Output Compare209PLL145PWM Module214, 215Quadrature Encoder Interface227Reset System79Shared Port Structure163	59557933
Input Capture205Output Compare209PLL145PWM Module214, 215Quadrature Encoder Interface227Reset System79Shared Port Structure163SPI233	595579339
Input Capture205Output Compare209PLL145PWM Module214, 215Quadrature Encoder Interface227Reset System79Shared Port Structure163SPI233Timer2 (16-bit)199	59557933917

С

C Compilers	
MPLAB C18	354
Clock Switching	153
Enabling	153
Sequence	153
Code Examples	
Erasing a Program Memory Page	77
Initiating a Programming Sequence	
Loading Write Buffers	
Port Write/Read	164
PWRSAV Instruction Syntax	155
Code Protection	335, 341
Comparator Module	
Configuration Bits	335
Configuration Register Map	
Configuring Analog Port Pins	
CPU	

Control Register	
CPU Clocking System	
PLL Configuration	145
Selection	144
Sources	144
Customer Change Notification Service	455
Customer Notification Service	455
Customer Support	455

D

Data Accumulators and Adder/Subtracter	30
Data Space Write Saturation	
Overflow and Saturation	
Round Logic	
Write Back	
Data Address Space	
Alignment	37
Memory Map for dsPIC33FJ128MC202/204 and	
dsPIC33FJ64MC202/204 Devices	
with 8 KB RAM	39
Memory Map for dsPIC33FJ128MC802/804 and	
dsPIC33FJ64MC802/804 Devices	
with 16 KB RAM	40
Memory Map for dsPIC33FJ32MC302/304 Device	
4 KB RAM	
Near Data Space	
Software Stack	
Width	37
DC and AC Characteristics	
Graphs and Tables	425
DC Characteristics	358
Doze Current (IDOZE)	415
High Temperature	414
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IIDLE)	
Operating Current (IDD)	
Operating MIPS vs. Voltage	
Power-Down Current (IPD)	
Power-down Current (IPD)	
Program Memory	
Temperature and Voltage	
Temperature and Voltage Specifications	
Thermal Operating Conditions	
Development Support	
DMA Module	
DMA Register Map	52
DMAC Registers	
DMAxCNT	
DMAxCON	
DMAxPAD	
DMAxREQ	
DMAXSTA	
DMAXSTB	
Doze Mode	
DSP Engine	
Multiplier	
พนแทนอา	52

Е

ECAN Module	
CiBUFPNT1 register	
CiBUFPNT2 register	
CiBUFPNT3 register	
CiBUFPNT4 register	
CiCFG1 register	