

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XEI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b; D/A 6x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc804-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ32MC302/304 DEVICES WITH 4 KB RAM

						• .												
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	_	_	_			INT1R<4:0>			_	_	_	_	_	_			1F00
RPINR1	0682	_	_	_	_	_	_	_	_	_	_	_			INT2R<4:0	>		001F
RPINR3	0686	_	_	_			T3CKR<4:0>			_	_	_			T2CKR<4:0	>		1F1F
RPINR4	0688	_	_	_			T5CKR<4:0>			_	_	_			T4CKR<4:0	>		1F1F
RPINR7	068E	_	_	_			IC2R<4:0>			_	_	_			IC1R<4:0>	•		1F1F
RPINR10	0694	_	_	_			IC8R<4:0>			_	_	_			IC7R<4:0>	•		1F1F
RPINR11	0696	_	_	_	_	_	_	_		_	_	_		OCFAR<4:0> C			001F	
RPINR12	0698	_	_	_	_	_	_	_	_	_	_	_		FLTA1R<4:0> 0			001F	
RPINR13	069A	_	_	_	_	_	_	_	_	_	_	_		FLTA2R<4:0> 04			001F	
RPINR14	069C	_	_	_			QEB1R<4:0>	•		_	_	_			QEA1R<4:0)>		1F1F
RPINR15	069E	_	_	_	_	_	_	_	_	_	_	_			INDX1R<4:)>		001F
RPINR16	06A0	_	_	_			QEB2R<4:0>	•		_	_	_			QEA2R<4:0)>		1F1F
RPINR17	06A2	_	_	_	_	_	_	_	_	_	_	_			INDX2R<4:)>		001F
RPINR18	06A4	_	_	_			U1CTSR<4:0	>		_	_	_			U1RXR<4:0)>		1F1F
RPINR19	06A6	_	_	_			U2CTSR<4:0	>		_	_	_			U2RXR<4:0)>		1F1F
RPINR20	06A8	_	_	_			SCK1R<4:0>			_	_	_			SDI1R<4:0	>		1F1F
RPINR21	06AA	_	_	_	_	_	_	_	_	_	_	_			SS1R<4:0	>		001F
RPINR22	06AC	_	_	_			SCK2R<4:0>	,		_	_	_			SDI2R<4:0	>		1F1F
RPINR23	06AE	_	_	_	_	_	_	_	_	_	_	_			SS2R<4:0	>		001F
RPINR26 ⁽¹⁾	06B4	_	_	_	_	_	_	_		_	_	_			C1RXR<4:0)>		001F

TABLE 4-24: PERIPHERAL PIN SELECT INPUT REGISTER MAP

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This register is present in dsPIC33FJ128MC802/804 and dsPIC33FJ64MC802/804 devices only.

_____ IC3

DS70291G-page 57

4.8.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDH).

Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

;	Set up NVMCO	N for row programming oper	ati	ions
	MOV	#0x4001, W0	;	
	MOV	W0, NVMCON	;	Initialize NVMCON
;	Set up a poir	nter to the first program i	men	nory location to be written
;	program memo:	ry selected, and writes en	abl	Led
	MOV	#0x0000, W0	;	
	MOV	W0, TBLPAG	;	Initialize PM Page Boundary SFR
	MOV	#0x6000, W0	;	An example program memory address
;	Perform the '	TBLWT instructions to write	e t	the latches
;	Oth_program_	word		
	MOV	#LOW_WORD_0, W2	;	
	MOV	#HIGH_BYTE_0, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	lst_program_	word		
	MOV	#LOW_WORD_1, W2	;	
	MOV	#HIGH_BYTE_1, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
;	2nd_program	_word		
	MOV	#LOW_WORD_2, W2	;	
	MOV	#HIGH_BYTE_2, W3	;	
	TBLWTL	W2, [W0]	;	Write PM low word into program latch
	TBLWTH	W3, [W0++]	;	Write PM high byte into program latch
	•			
	•			
	•			
;	63rd_program	_word		
	MOV	#LOW_WORD_31, W2	;	
	MOV	#HIGH_BITE_31, W3	;	The TW law and the second labels
	TBLWTL	W2, [WU]	;	write PM low word into program latch
	.I.RTM.I.H	W3, [WU++]	;	write PM nigh byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority < 7 ; for next 5 instructions
MOV	#0x55, W0	
MOV	WO, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

bit 2	OC1IF: Output Compare Channel 1 Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	IC1IF: Input Capture Channel 1 Interrupt Flag Status bit
	 Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	INT0IF: External Interrupt 0 Flag Status bit
	1 = Interrupt request has occurred

0 = Interrupt request has not occurred

REGISTER 7	7-10: IEC0:	INTERRUPT	ENABLE C	ONTROL RE	EGISTER 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IE	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE
bit 15	·			·	÷		bit 8
DAMO		DAALO	DAMO	DAMO	D /// 0		DAAUO
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
I ZIE	OCZIE	IC2IE	DMAUE	ITTE	OCTIE	ICTIE	IN TUIE
DIL 7							DILU
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unkr	iown
bit 15	Unimplemer	nted: Read as	0'				
bit 14	DMA1IE: DM	IA Channel 1 E	ata Transfer (Complete Inte	rrupt Enable bit		
	1 = Interrupt	request enable	ed abled				
hit 13		1 Conversion (Complete Inter	runt Enable b	it		
Sit 10	1 = Interrupt	request enable	d		it.		
	0 = Interrupt	request not en	abled				
bit 12	U1TXIE: UAF	RT1 Transmitte	r Interrupt En	able bit			
	1 = Interrupt	request enable	d				
L:1 44		request not en	abled	1			
	1 = Interrunt	RTTRECEIVERT	nterrupt Enab ∘d				
	0 = Interrupt	request not en	abled				
bit 10	SPI1IE: SPI1	Event Interrup	t Enable bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 9	SPI1EIE: SP	11 Error Interru	pt Enable bit				
	1 = Interrupt 0 = Interrupt	request enable	abled				
bit 8	T3IE: Timer3	Interrupt Enab	ole bit				
	1 = Interrupt	request enable	d				
	0 = Interrupt	request not en	abled				
bit 7	T2IE: Timer2	Interrupt Enab	ole bit				
	1 = Interrupt	request enable	ed abled				
hit 6	OC2IE: Outo	ut Compare Ch	nannel 2 Interi	runt Enable bi	ŀ		
Sit 0	1 = Interrupt	request enable	d		L .		
	0 = Interrupt	request not en	abled				
bit 5	IC2IE: Input (Capture Chanr	el 2 Interrupt	Enable bit			
	1 = Interrupt	request enable	d				
h :+ 4		request not en	abled	Complete Inte	www.mt.Enchla.hit		
DIT 4	1 = Interrupt	IA Channel U L	ata Transfer (rrupt Enable bit		
	0 = Interrupt	request not en	abled				
bit 3	T1IE: Timer1	Interrupt Enab	ole bit				
	1 = Interrupt 0 = Interrupt	request enable request not en	d abled				

© 2007-2012 Microchip Technology Inc.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 7-32: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
_	_	—	—		ILI	R<3:0>	
bit 15							bit 8
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
_				VECNUM<6:0)>		
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own
bit 15-12	Unimplemen	ted: Read as 'o)'				
bit 11-8	ILR<3:0>: Ne	w CPU Interrup	ot Priority Lev	el bits			
	1111 = CPU	Interrupt Priority	Level is 15				
	•						
	•						
	• 0001 = CPU	Interrunt Priority	v Level is 1				
	0000 = CPU	Interrupt Priority	y Level is 0				
bit 7	Unimplemen	ted: Read as '0)'				
bit 6-0	VECNUM<6:	>: Vector Num	ber of Pendir	na Interrupt bits	3		
	0111111 = lr	terrupt Vector p	pending is nu	mber 135			
	•		0				
	•						
	•						
	0000001 = lr	terrupt Vector p	pending is nui	mber 9 mbor 9			
	0000000 = Ir	iterrupt vector p	benaing is hui	o lean			

8.0 DIRECT MEMORY ACCESS (DMA)

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 38. "Direct Memory Access (DMA) (Part III)" (DS70215) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read From Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	—	—
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	—
OC1 – Output Compare 1 Data	0000010	—	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)
TMR2 – Timer2	0000111	—	—
TMR3 – Timer3	0001000	—	—
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)
ADC1 – ADC1 Convert Done	0001101	0x0300 (ADC1BUF0)	—
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	—
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	—
PMP - Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)
DAC1 - Right Data Output	1001110	—	0x3F6 (DAC1RDAT)
DAC2 - Left Data Output	1001111	_	0x03F8 (DAC1LDAT)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

18.3 SPI Control Registers

R/W-0 U-0 R/W-0 U-0 U-0 U-0 U-0 U-0 SPIEN SPISIDL bit 15 bit 8 U-0 R/C-0 U-0 U-0 U-0 U-0 R-0 R-0 SPIROV SPITBF SPIRBF bit 7 bit 0 Legend: C = Clearable bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 SPIEN: SPIx Enable bit 1 = Enables module and configures SCKx, SDOx, SDIx and SSx as serial port pins 0 = Disables module bit 14 Unimplemented: Read as '0' bit 13 SPISIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-7 Unimplemented: Read as '0' bit 6 SPIROV: Receive Overflow Flag bit 1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register 0 = No overflow has occurred Unimplemented: Read as '0' bit 5-2 bit 1 SPITBF: SPIx Transmit Buffer Full Status bit 1 = Transmit not yet started, SPIxTXB is full 0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR bit 0 SPIRBF: SPIx Receive Buffer Full Status bit 1 = Receive complete, SPIxRXB is full 0 = Receive is not complete, SPIxRXB is empty Automatically set in hardware when SPIx transfers data from SPIxSR to SPIxRXB Automatically cleared in hardware when core reads SPIxBUF location, reading SPIxRXB

REGISTER 18-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

	0-0				K/VV-U		
I2CEN		IZCSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
DIT 15							DIT 8
R/M-0	R/M_0	R///-0				RW-0 HC	
GCEN	STREN			RCEN	PEN	RSEN	SEN
bit 7	OTILLI	NOILDT	NORLIN	ROEN	1 214	ROLIN	bit 0
Legend:		U = Unimpler	nented bit. rea	d as '0'			
R = Readable	bit	W = Writable	bit	HS = Set in h	nardware	HC = Cleared	in Hardware
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	12CEN: 12Cx 1	Enable bit					
	1 = Enables tl	he I2Cx modul	e and configur	es the SDAx a	and SCLx pins a	as serial port pir	าร
	0 = Disables t	the I2Cx modu	le. All I ² C™ pii	ns are controll	ed by port funct	tions	
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	I2CSIDL: Stop	p in Idle Mode	bit				
	1 = Discontinu	ue module ope	ration when de	evice enters a	n Idle mode		
bit 12			ntrol bit (when	onerating as	$l^2 C slave)$		
Dit 12	1 = Release S	SCI x clock		operating as			
	0 = Hold SCL	x clock low (clo	ock stretch)				
	<u>If STREN = 1</u> Bit is R/W (i e	software car	write '0' to ini	tiate stretch a	nd write '1' to re	elease clock) H	lardware clear
	at beginning c	of slave transm	ission. Hardwa	are clear at en	d of slave rece	otion.	
	If STREN = 0	<u>:</u>					
	Bit is R/S (i.e. transmission.	, software can	only write '1' t	o release cloc	k). Hardware cl	ear at beginning	g of slave
bit 11	IPMIEN: Intell	ligent Peripher	al Managemer	nt Interface (IP	MI) Enable bit		
	1 = IPMI mod 0 = IPMI mod	e is enabled; a e disabled	II addresses A	cknowledged			
bit 10	A10M: 10-bit	Slave Address	bit				
	1 = I2CxADD	is a 10-bit slav	e address				
	0 = I2CxADD	is a 7-bit slave	address				
bit 9	DISSLW: Disa	able Slew Rate	Control bit				
	1 = Slew rate	control disable	d d				
bit 8	SMEN: SMbu	is Innut Levels	u hit				
Sito	1 = Enable I/C	D pin threshold	s compliant wi	th SMbus spe	cification		
	0 = Disable S	Mbus input thr	esholds				
bit 7	GCEN: Gener	ral Call Enable	bit (when ope	rating as I ² C s	slave)		
	1 = Enable int	terrupt when a	general call a	ddress is recei	ived in the I2Cx	RSR	
	(module is	s enabled for re	eception)				
hit 6		an auuress uis v Clock Stratak	auleu Enable bit (w	hen operating	$a e^{12} C e^{12} (a)$		
	Used in coniu	nction with SC	IRFI hit	nen operating	as i U slave)		
	1 = Enable so	oftware or recei	ve clock stretc	hing			
	0 = Disable so	oftware or rece	ive clock strete	ching			

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

21.3 Modes of Operation

The ECAN module can operate in one of several operation modes selected by the user. These modes include:

- Initialization mode
- · Disable mode
- Normal Operation mode
- Listen Only mode
- Listen All Messages mode
- · Loopback mode

Modes are requested by setting the REQOP<2:0> bits (CiCTRL1<10:8>). Entry into a mode is Acknowledged by monitoring the OPMODE<2:0> bits (CiCTRL1<7:5>). The module does not change the mode and the OPMODE bits until a change in mode is acceptable, generally during bus Idle time, which is defined as at least 11 consecutive recessive bits.

21.3.1 INITIALIZATION MODE

In the Initialization mode, the module does not transmit or receive. The error counters are cleared and the interrupt flags remain unchanged. The user application has access to Configuration registers that are access restricted in other modes. The module protects the user from accidentally violating the CAN protocol through programming errors. All registers which control the configuration of the module can not be modified while the module is on-line. The ECAN module is not allowed to enter the Configuration mode while a transmission is taking place. The Configuration mode serves as a lock to protect the following registers:

- · All Module Control registers
- Baud Rate and Interrupt Configuration registers
- Bus Timing registers
- Identifier Acceptance Filter registers
- Identifier Acceptance Mask registers

21.3.2 DISABLE MODE

In Disable mode, the module does not transmit or receive. The module has the ability to set the WAKIF bit due to bus activity, however, any pending interrupts remains and the error counters retains their value.

If the REQOP<2:0> bits (CiCTRL1<10:8>) = 001, the module enters the Module Disable mode. If the module is active, the module waits for 11 recessive bits on the CAN bus, detect that condition as an Idle bus, then accept the module disable command. When the OPMODE<2:0> bits (CiCTRL1<7:5>) = 001, that indicates whether the module successfully went into Module Disable mode. The I/O pins reverts to normal I/O function when the module is in the Module Disable mode.

The module can be programmed to apply a low-pass filter function to the CiRX input line while the module or the CPU is in Sleep mode. The WAKFIL bit (CiCFG2<14>) enables or disables the filter.

Note: Typically, if the ECAN module is allowed to transmit in a particular mode of operation and a transmission is requested immediately after the ECAN module has been placed in that mode of operation, the module waits for 11 consecutive recessive bits on the bus before starting transmission. If the user switches to Disable mode within this 11-bit period, then this transmission is aborted and the corresponding TXABT bit is set and TXREQ bit is cleared.

21.3.3 NORMAL OPERATION MODE

Normal Operation mode is selected when the REQOP<2:0> = 000. In this mode, the module is activated and the I/O pins assumes the CAN bus functions. The module transmits and receive CAN bus messages via the CiTX and CiRX pins.

21.3.4 LISTEN ONLY MODE

If the Listen Only mode is activated, the module on the CAN bus is passive. The transmitter buffers revert to the port I/O function. The receive pins remain inputs. For the receiver, no error flags or Acknowledge signals are sent. The error counters are deactivated in this state. The Listen Only mode can be used for detecting the baud rate on the CAN bus. To use this, it is necessary that there are at least two further nodes that communicate with each other.

21.3.5 LISTEN ALL MESSAGES MODE

The module can be set to ignore all errors and receive any message. The Listen All Messages mode is activated by setting the REQOP<2:0 = 111. In this mode, the data which is in the message assembly buffer, until the time an error occurred, is copied in the receive buffer and can be read via the CPU interface.

21.3.6 LOOPBACK MODE

If the Loopback mode is activated, the module connects the internal transmit signal to the internal receive signal at the module boundary. The transmit and receive pins revert to their port I/O function.

TABLE 28-5: CODE FLASH SECURITY SEGMENT SIZES FOR 128 KB DEVICES

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000000h 0007FEh 000000h 003FFEh 004000h 007FFEh 004000h 007FFEh 00800h 007FFEh 00800h 007FFEh 00800h 007FFEh 010000h 0157FEh 0157FEh	VS = 256 IW 000000h BS = 768 IW 0007FEh 000800h 0007FEh 000200h 0007FEh 000200h 003FFEh 004000h 003FFEh 00800h 007FFEh 001000h 007FFEh	VS = 256 IW 000000h BS = 3840 IW 0007FEh 000800h 0007FEh 000800h 001FFEh 000200h 003FFEh 004000h 003FFEh 00800h 007FFEh 00000h 0007FFEh 00000h 007FFEh 00800h 007FFEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 003FFEh 004000h 003FFEh 004000h 007FFEh 00800h 007FFEh 00800h 007FFEh 00800h GS = 35840 IW 0157FEh
SSS<2:0> = x10 4K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 003800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 003FFEh 004000h 004000h 000800h 004000h 004000h 00400h 004000h 0040FFh 005800h 0040FFh 004000h 0040FFh 005800h 0040FFh 0157FFh 0157FFh	VS = 256 IW 000000h BS = 768 IW 000200h 0007FEh 000800h SS = 3072 IW 000800h 003FFEh 002000h 003FFEh 00400h 007FFEh 00400h 004BFEh 00400h 004BFEh 00400h 005800h 004BFEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 003FFEh 004000h 003FFEh 004000h 007FEFh GS = 39936 IW 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FEh 000800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 004BFEh GS = 35840 IW 0157FEh
SSS<2:0> = x01 8K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000200h 001FFEh 0003FFEh 003FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 008000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 0157FEh 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh BS = 768 IW 0007FEh 000800h 001FFEh 002000h SS = 7168 IW 003FFEh 004000h GS = 35840 IW 00FFFEh 01000h 0157FEh 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h BS = 3840 IW 0007FEh 000800h SS = 4096 IW 003FFEh 004000h GS = 35840 IW 00FFFEh 01000h 0157FEh 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 003FFEh 004000h GS = 35840 IW 000000h 007FFEh 008000h 007FFEh 008000h GS = 35840 IW 0157FEh
SSS<2:0> = x00 16K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000n 003FEFh 004000h 007FFEh 004000h 007FFEh 008000h SS = 16128 IW 0004000h 007FFEh 008000h 007FFEh 010000h GS = 27648 IW 0157FEh	VS = 256 IW 000000h 0001FEh 000200h BS = 768 IW 000200h 000800h 001FE h 002000h 001FE h 002000h SS = 15360 IW 004000h 007FE h GS = 27648 IW 0157FEh 0157FEh 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 002000h 003FFEh 004000h 007FFEh SS = 12288 IW 004000h 007FFEh 008000h 007FFEh GS = 27648 IW 0157FEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 003FEh SS = 8192 IW 004000h 003FFEh SS = 8192 IW 004000h 007FFEh GS = 27648 IW 0157FEh 0157FEh 0157FEh

TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions	
Operati	ng Voltag	e						
DC10	Supply \	/oltage						
	Vdd		3.0	_	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_		V	—	
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal			Vss	V	_	
DC17	Svdd	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Parameter No.	Typical ⁽¹⁾	Мах	Doze Units Conditions				litions	
DC73a	20	50	1:2	mA				
DC73f	17	30	1:64	mA	-40°C	3.3V	40 MIPS	
DC73g	17	30	1:128	mA				
DC70a	20	50	1:2	mA	+25°C	3.3V	40 MIPS	
DC70f	17	30	1:64	mA				
DC70g	17	30	1:128	mA				
DC71a	20	50	1:2	mA				
DC71f	17	30	1:64	mA	+85°C	3.3V	40 MIPS	
DC71g	17	30	1:128	mA				
DC72a	21	50	1:2	mA				
DC72f	18	30	1:64	mA	+125°C	3.3V	40 MIPS	
DC72g	18	30	1:128	mA				

TABLE 31-8: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Note 1: Data in the "Typical" column is at 3.3V, 25°C unless otherwise stated.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 Mhz	Table 31-33	—	_	0,1	0,1	0,1		
9 Mhz	_	Table 31-34	—	1	0,1	1		
9 Mhz		Table 31-35	—	0	0,1	1		
15 Mhz		—	Table 31-36	1	0	0		
11 Mhz	_	_	Table 31-37	1	1	0		
15 Mhz		_	Table 31-38	0	1	0		
11 Mhz		_	Table 31-39	0	0	0		

TABLE 31-32: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

FIGURE 31-14: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 31-15: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min Typ Max			Units	Conditions		
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-									
AD20a	Nr	Resolution ⁽¹⁾	1	2 data bi	ts	bits			
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb VINL = AVSS = VREFL = 0V, AV = VREFH = 3.6V			
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDE = VREFH = 3.6V		
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDE = VREFH = 3.6V		
AD24a	EOFF	Offset Error	—	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25a	—	Monotonicity	_	—	—	—	Guaranteed		
		ADC Accuracy (12-bit Mo	de) – Mea	asureme	ents with	interna	I VREF+/VREF-		
AD20a	Nr	Resolution ⁽¹⁾	12 data bits			bits			
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23a	Gerr	Gain Error	2	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24a	EOFF	Offset Error	2	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25a	—	Monotonicity				—	Guaranteed		
Dynamic Performance (12-bit Mode)									
AD30a	THD	Total Harmonic Distortion			-75	dB	_		
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	—		
AD32a	SFDR	Spurious Free Dynamic Range	80	_	—	dB	_		
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	—		
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits	—		

TABLE 31-44: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Injection currents > |0| can affect the ADC results by approximately 4 to 6 counts (i.e., VIH source > (VDD + 0.3V) or VIL source < (Vss – 0.3V).

TABLE 32-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25		—	ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns	—		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2		
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	55	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

