

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b; D/A 6x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc804t-i-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Part Number	Vendor	Freq.	Load Cap.	Package Case	Frequency Tolerance	Mounting Type	Operating Temperature
FCR4.0M5T	TDK Corp.	4 MHz	N/A	Radial	±0.5%	TH	-40°C to +85°C
FCR8.0M5	TDK Corp.	8 MHz	N/A	Radial	±0.5%	TH	-40°C to +85°C
HWZT-10.00MD	TDK Corp.	10 MHz	N/A	Radial	±0.5%	TH	-40°C to +85°C
HWZT-20.00MD	TDK Corp.	20 MHz	N/A	Radial	±0.5%	TH	-40°C to +85°C

TABLE 2-2:	RESONATOR	RECOMMENDATIONS
------------	-----------	-----------------

Legend: TH = Through Hole

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to less than or equal to 8 MHz for start-up with PLL enabled to comply with device PLL start-up conditions. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The default PLL settings after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can initialize the PLL SFRs, CLKDIV and PLLDBF to a suitable value, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 3 or REAL ICE is selected as a debugger, it automatically initializes all of the analog-to-digital input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in this register that correspond to the analog-to-digital pins that are initialized by MPLAB ICD 3 or REAL ICE, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain analog-to-digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 3 or REAL ICE is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all analog-to-digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternatively, connect a 1k to 10k resistor between Vss and the unused pin.

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04 and
	dsPIC33FJ128MCX02/X04 family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 4. "Program
	Memory" (DS70203) of the "dsPIC33F/
	PIC24H Family Reference Manual", which
	is available from the Microchip web site
	(www.microchip.com).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 AND dsPIC33FJ128MCX02/X04 DEVICES

c	dsPIC33FJ32MC302/304	dsPIC33FJ64MCX02/X04	dsPIC33FJ128MCX02/X04
Ā	GOTO Instruction Reset Address	GOTO Instruction	GOTO Instruction 0x000000 0x000002 0x000002 0x000004
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table 0x000004
	Reserved	Reserved	Reserved 0x000100
	Alternate Vector Table	Alternate Vector Table	Alternate Vector Table 0x000104 0x0001FE
Space	User Program Flash Memory (11264 instructions)	User Program Flash Memory	0x000200
User Memory Space		(22016 instructions)	User Program Flash Memory (44032 instructions) 0x00ABFE
Use	Unimplemented (Read '0's)	Unimplemented	0x00AC00
	(11000 0 0)	(Read '0's)	0x0157FE 0x015800
			Unimplemented (Read '0's)
	Reserved	Reserved	Reserved
ory Space	Device Configuration Registers	Device Configuration Registers	Device Configuration 0xF7FFE Device Configuration 0xF80000 Registers 0xF80017
Configuration Memory Space	Reserved	Reserved	0xF80018 Reserved
Configu	DEVID (2)	DEVID (2)	DEVID (2) 0xFEFFE 0xFF0000 0xFF0000 0xFF0002
↓	Reserved	Reserved	Reserved

4.8 Interfacing Program and Data Memory Spaces

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 architecture uses a 24-bit-wide program space and a 16-bit-wide data space. The architecture is a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes or words anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for look-ups from a large table of static data. The application can only access the least significant word of the program word.

4.8.1 ADDRESSING PROGRAM SPACE

As the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the Most Significant bit of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the Most Significant bit of the EA is '1', the PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.

Table 4-42 and Figure 4-9 show how the program EA is created for table operations and remapping accesses from the data EA. Here, P<23:0> refers to a program space word, and D<15:0> refers to a data space word.

	Access		Progra	m Space A	ddress	
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>
Instruction Access	User	0		PC<22:1>		0
(Code Execution)			0xx xxxx x			
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>		
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx				
	Configuration	TBLPAG<7:0>		Data EA<15:0>		
		1	XXX XXXX	XXXX X	***	
Program Space Visibility	User	0	PSVPAG<7:0> Data EA<14		Data EA<14	:0> ⁽¹⁾
(Block Remap/Read)		0	XXXX XXX	ĸ	XXX XXXX XXXX	X XXXX

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

BROWN-OUT SITUATIONS FIGURE 6-3:

6.5 **External Reset (EXTR)**

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 31.0 "Electrical Characteristics" for minimum pulse width specifications. The External Reset (MCLR) Pin bit (EXTR) in the Reset Control register (RCON<7>) is set to indicate the MCLR Reset.

EXTERNAL SUPERVISORY CIRCUIT 6.5.0.1

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

6.5.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag bit (SWR) in the Reset Control register (RCON<6>) is set to indicate the software Reset.

6.7 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag bit (WDTO) in the Reset Control register (RCON<4>) is set to indicate the Watchdog Reset. Refer to Section 28.4 "Watchdog Timer (WDT)" for more information on Watchdog Reset.

6.8 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag bit (TRAPR) in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to Section 7.0 "Interrupt Controller" for more information on trap conflict Resets.

REGISTER 7	-3: INTCC	N1: INTERR	UPT CONTR	ROL REGISTE	ER 1		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
SFTACERR		DMACERR		ADDRERR		OSCFAIL	0-0
bit 7	DIV0ERR	DIVIACERR	MATHERR	ADDRERR	STKERR	USCFAIL	 bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15	NSTDIS: Inte	rrupt Nesting E)isable bit				
		nesting is disat					
		nesting is enab					
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit			
		caused by ove					
	-	not caused by					
bit 13		cumulator B O	•	•			
		caused by ove not caused by					
bit 12	COVAERR: A	Accumulator A	Catastrophic C	Overflow Trap F	lag bit		
				flow of Accumu			
bit 11	COVBERR: A	Accumulator B	Catastrophic (Overflow Trap F	lag bit		
				flow of Accumu			
bit 10	OVATE: Accu	imulator A Ove	rflow Trap Ena	able bit			
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator A				
bit 9	OVBTE: Accu	umulator B Ove	erflow Trap En	able bit			
	1 = Trap over 0 = Trap disa	flow of Accum bled	ulator B				
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ole bit			
	1 = Trap on c 0 = Trap disa	-	erflow of Accur	mulator A or B e	enabled		
bit 7	SFTACERR:	Shift Accumula	ator Error Statu	us bit			
				ilid accumulator invalid accumu			
bit 6	DIV0ERR: Ar	ithmetic Error \$	Status bit				
		r trap was cau r trap was not					
bit 5		DMA Controlle	-	-			
		troller error trap troller error trap					
bit 4	MATHERR: A	Arithmetic Error	Status bit				
		r trap has occu					

REGISTER 7-3:	INTCON1:	INTERRUPT	CONTROL	REGISTER 1

0 = Math error trap has not occurred

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0		
_						DMA1IP<2:0>			
bit 15	·	·					bit 8		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0		
_		AD1IP<2:0>		—		U1TXIP<2:0>			
bit 7					·		bit C		
Legend:									
R = Readab	ole bit	W = Writable I	oit	U = Unimpler	mented bit, rea	ad as '0'			
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	iown		
		upt is priority 1 upt source is disa	abled						
bit 7	Unimpleme	nted: Read as '	000 = Interrupt source is disabled Unimplemented: Read as '0'						
)						
bit 6-4	111 = Interr • • 001 = Interr	 ADC1 Convers upt is priority 7 (I upt is priority 1 upt source is disa 	sion Complet nighest priori	•	rity bits				
	111 = Interr • • • • • • • • • • • • • • • • • •	upt is priority 7 (ł	sion Complet nighest priori abled	•	rity bits				
bit 6-4 bit 3 bit 2-0	111 = Interr • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is disa	sion Complet nighest priori abled)'	ty interrupt)	rity bits				

001 = Interrupt is priority 1 000 = Interrupt source is disabled

•

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0
ROI	10,00-0	DOZE<2:0>	1.7.4.4	DOZEN ⁽¹⁾	10.00-0	FRCDIV<2:0>	10.00-0
pit 15		DO2L (2.0)		DOZEN		11(001) 12:05	bit
R/W-0	R/W-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PLLP	OST<1:0>	—			PLLPRE<4:0	>	
bit 7							bit
Legend:	l	-	-	ration bits on PC		d = = (0)	
R = Readab		W = Writable b	oit	U = Unimplem			
n = Value a	IPOR	'1' = Bit is set		'0' = Bit is clea	irea	x = Bit is unkno	own
bit 15	ROI: Recov	er on Interrupt bit					
		ots clear the DOZ		e processor clo	ck/peripheral (clock ratio is set	to 1:1
		ots have no effect					
bit 14-12	DOZE<2:0>	: Processor Cloc	k Reduction	Select bits			
	111 = FCY/1						
	110 = Fcy/6 101 = Fcy/3						
	100 = Fcy/1	-					
	011 = FCY/8	8 (default)					
	010 = Fcy/4						
	001 = Fcy/2 000 = Fcy/1						
bit 11		DZE Mode Enable	e bit ⁽¹⁾				
		2:0> field specifie		etween the perip	oheral clocks a	and the processo	or clocks
		sor clock/peripher					
bit 10-8		0>: Internal Fast	RC Oscillato	r Postscaler bits			
		divide by 256					
	110 = FRC 101 = FRC						
		divide by 32 divide by 16					
	011 = FRC	•					
	010 = FRC						
	001 = FRC		.1+)				
bit 7-6		divide by 1 (defau 1:0>: PLL VCO C	-	r Select hits (als	o denoted as	'N2' PLL poster	alor)
	11 = Output					NZ, I LL 003130	
	10 = Reser						
	01 = Output	/4 (default)					
	00 = Output	/2					
oit 5	-	nted: Read as '0					
bit 4-0		0>: PLL Phase D	etector Inpu	t Divider bits (als	so denoted as	'N1', PLL presc	aler)
	11111 = In p	out/33					
	•						
	•						
	•						
	00001 = In p	Nut/2					

Note 1: This bit is cleared when the ROI bit is set and an interrupt occurs.

2: This register is reset only on a Power-on Reset (POR).

NOTES:

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
—	_	_			QEB1R<4:0>					
bit 15	•						bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
	—	—			QEA1R<4:0>					
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable I	oit	U = Unimplemented bit, read as '0'						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-13	Unimplemen	ted: Read as ')'							
bit 12-8	QEB1R<4:0>	QEB1R<4:0>: Assign B (QEB1) to the corresponding pin								
	11111 = Inp u									
	11001 = Inpu	ut tied to RP25								
	•									
	•									
	•									
	• 00001 = Inpu									
hit 7 E	00000 = Inp u	ut tied to RP0	\ `							
	00000 = Inpu Unimplemen	ut tied to RP0 Ited: Read as '0								
bit 7-5 bit 4-0	00000 = Inpu Unimplemen QEA1R<4:0>	ut tied to RP0 Ited: Read as '(-: Assign A (QE		rresponding pir	1					
	00000 = Inpu Unimplemen QEA1R<4:0> 11111 = Inpu	ut tied to RP0 Ited: Read as '(Assign A (QE) It tied to Vss		rresponding pir	I					
bit 7-5 bit 4-0	00000 = Inpu Unimplemen QEA1R<4:0> 11111 = Inpu	ut tied to RP0 Ited: Read as '(-: Assign A (QE		rresponding pir	I					

00001 = Input tied to RP1

00000 = Input tied to RP0

15.3 Output Compare Registers

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 or 4)

bit 15							bit 8
		OCSIDL					
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Cleared in Hardware	HS = Set in Hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111).
bit 2	
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 1	6-6: PWMx	CON2: PWM	CONTROL	REGISTER 2	2			
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	
_	_	_	_		SEVO	PS<3:0>		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
				<u> </u>	IUE	OSYNC	UDIS	
bit 7					102	001110	bit C	
Legend:								
R = Readable	bit	W = Writable b	it	U = Unimplen	nented bit, rea	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	known	
	• • 0001 = 1:2 pc 0000 = 1:1 pc							
bit 7-3	Unimplemen	ted: Read as '0	,					
bit 2	1 = Updates t	te Update Enab to the active PxI to the active PxI	DC registers		ed to the PWM	l time base		
bit 1	OSYNC: Output ov	out Override Syr rerrides via the F rerrides via the F	nchronization PxOVDCON	n bit register are syr	nchronized to t	he PWM time ba	ase	
bit 0	1 = Updates f	Jpdate Disable from Duty Cycle from Duty Cycle	and Period					

REGISTER 16-6: PWMxCON2: PWM CONTROL REGISTER 2

REGISTER 16-10:	PxOVDCON: OVERRIDE CONTROL REGISTER ⁽¹⁾
-----------------	--

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L
bit 15		•					bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L
bit 7						•	bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is			nknown	
bit 15-14	Unimplemen	ted: Read as ') '				
bit 13-8	POVDxH<3:1	>:POVDxL<3:	1>: PWM Out	tput Override b	its		

 bit 13-8
 POVDXH<3: 12: POVDXL<3: 12: PWM Output Overnde bits</td>

 1 = Output on PWMx I/O pin is controlled by the PWM generator
 0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit

 bit 7-6
 Unimplemented: Read as '0'

 bit 5-0
 POUTxH<3:1>:POUTxL<3:1>: PWM Manual Output bits

 1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared

0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared

Note 1: PWM2 supports only one PWM I/O pin pair.

REGISTER 16-11: PxDC1: PWM DUTY CYCLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
						10.00-0
		PDC ²	1<15:8>			
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		PDC	1<7:0>			
						bit 0
	W = Writable bit		U = Unimplem	ented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown			
2	/W-0	W = Writable bit	PDC W = Writable bit	PDC1<7:0> W = Writable bit U = Unimplem	PDC1<7:0> W = Writable bit U = Unimplemented bit, read	PDC1<7:0> W = Writable bit U = Unimplemented bit, read as '0'

bit 15-0 PDC1<15:0>: PWM Duty Cycle 1 Value bits

REGISTER 16-12: P1DC2: PWM DUTY CYCLE REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC2	<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC2	2<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 PDC2<15:0>: PWM Duty Cycle 2 Value bits

REGISTER 16-13: P1DC3: PWM DUTY CYCLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is se			'0' = Bit is cle	ared	x = Bit is unkı	nown	

bit 15-0 PDC3<15:0>: PWM Duty Cycle 3 Value bits

24.2 Comparator Control Register

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CMIDL	_	C2EVT	C1EVT	C2EN	C1EN	C2OUTEN ⁽¹⁾	C1OUTEN ⁽²				
bit 15		•					bit 8				
R-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
C2OUT	C1OUT	C2INV	C1INV	C2NEG	C2POS	C1NEG	C1POS				
bit 7		1					bit (
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	ad as '0'					
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	x = Bit is unknown				
bit 15	1 = When de	in Idle Mode b vice enters Idle normal modul	e mode, modu		nerate interrup	ots. Module is sti	l enabled				
bit 14	Unimplemen	ted: Read as '	0'								
bit 13		parator 2 Even									
		itor output chai itor output did i		ates							
bit 12		parator 1 Even									
	1 = Comparator output changed states0 = Comparator output did not change states										
bit 11	C2EN: Comparator 2 Enable bit										
	•	tor is enabled tor is disabled									
bit 10	C1EN: Comparator 1 Enable bit										
		tor is enabled tor is disabled									
bit 9	C2OUTEN: C	omparator 2 C	utput Enable	bit ⁽¹⁾							
		itor output is di itor output is no									
bit 8	=	omparator 1 C									
	•	itor output is di itor output is no									
bit 7	-	parator 2 Outp									
	When C2INV = 0:										
	1 = C2 VIN + > C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + > C2 VIN - 0 = C2 VIN + > C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + < C2 VIN - 0 = C2 VIN + 0 = C2 V										
	When C2INV										
	0 = C2 VIN+ 2 1 = C2 VIN+ 2	-									

REGISTER 24-1: CMCON: COMPARATOR CONTROL REGISTER

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

26.5 Programmable CRC Registers

—	CSIDL								
			CSIDL VWORD<4:0>						
						bit 8			
R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CRCMPT	_	CRCGO	PLEN<3:0>						
						bit (
it	W = Writable	Writable bit U = Unimplemented bit			read as '0'				
)R	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
•									
CSIDL: CRC Stop in Idle Mode bit									
VWORD<4:0>: Pointer Value bits									
		d words in the	FIFO. Has a ma	aximum value	of 8 when PLE	N<3:0> > 7,			
CRCFUL: FIF	O Full bit								
1 = FIFO is full									
0 = FIFO is n	ot full								
CRCMPT: FIF	O Empty Bit								
1 = FIFO is empty									
		01							
•									
				<i>y</i>					
PLEN<3:0>:	Polynomial La	nath hite							
	CRCMPT bit DR Unimplement CSIDL: CRC 1 = Discontin 0 = Continue VWORD<4:0: Indicates the is or 16 when Pl CRCFUL: FIF 1 = FIFO is ft 0 = FIFO is ft 0 = FIFO is n CRCMPT: FIF 1 = FIFO is n CRCMPT: SIF 1 = SIFC SIF 1 = Start CRC	CRCMPT—bitW = WritableDR'1' = Bit is setUnimplemented: Read as 'CSIDL: CRC Stop in Idle Mo1 = Discontinue module opera0 = Continue module operaVWORD<4:0>: Pointer ValuIndicates the number of valior 16 when PLEN<3:0> \leq 7.CRCFUL: FIFO Full bit1 = FIFO is full0 = FIFO is not fullCRCMPT: FIFO Empty Bit1 = FIFO is empty0 = FIFO is not emptyUnimplemented: Read as 'CRCGO: Start CRC bit1 = Start CRC serial shifter	CRCMPT—CRCGObitW = Writable bitDR'1' = Bit is setUnimplemented: Read as '0'CSIDL: CRC Stop in Idle Mode bit1 = Discontinue module operation when c0 = Continue module operation in Idle m	CRCMPT—CRCGObitW = Writable bitU = UnimplemDR'1' = Bit is set'0' = Bit is clearUnimplemented: Read as '0'CSIDL: CRC Stop in Idle Mode bit1 = Discontinue module operation when device enters Idl0 = Continue module operation in Idle modeVWORD<4:0>: Pointer Value bitsIndicates the number of valid words in the FIFO. Has a more of the when PLEN<3:0> \leq 7.CRCFUL: FIFO Full bit1 = FIFO is full0 = FIFO is not fullCRCMPT: FIFO Empty Bit1 = FIFO is not fullCRCGO: Start CRC bit1 = Start CRC serial shifter	CRCMPTCRCGOPLEIbitW = Writable bitU = Unimplemented bit, reaDR'1' = Bit is set'0' = Bit is clearedUnimplemented: Read as '0'CSIDL: CRC Stop in Idle Mode bit1 = Discontinue module operation when device enters Idle mode0 = Continue module operation when device enters Idle mode0 = Continue module operation in Idle modeVWORD<4:0>: Pointer Value bitsIndicates the number of valid words in the FIFO. Has a maximum valueor 16 when PLEN<3:0> \leq 7.CRCFUL: FIFO Full bit1 = FIFO is full0 = FIFO is not fullCRCMPT: FIFO Empty Bit1 = FIFO is empty0 = FIFO is not emptyUnimplemented: Read as '0'CRCGO: Start CRC bit	CRCMPT CRCGO PLEN<3:0> bit W = Writable bit U = Unimplemented bit, read as '0' DR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn Unimplemented: Read as '0' CSIDL: CRC Stop in Idle Mode bit 1 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode VWORD 4:0>: Pointer Value bits Indicates the number of valid words in the FIFO. Has a maximum value of 8 when PLEI or 16 when PLEN<3:0> <7.			

REGISTER 26-1: CRCCON: CRC CONTROL REGISTER

28.5 JTAG Interface

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70207) of the *dsPIC33F/PIC24H Family Reference Manual* for further information on usage, configuration and operation of the JTAG interface.

28.6 In-Circuit Serial Programming

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

28.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, Vss, PGC, PGD and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

28.8 Code Protection and CodeGuard Security

The dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the dsPIC33FJ32MC302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices. The dsPIC33FJ32MC302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) of the "dsPIC33F/ PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

30.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

30.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

30.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline
 assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

30.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

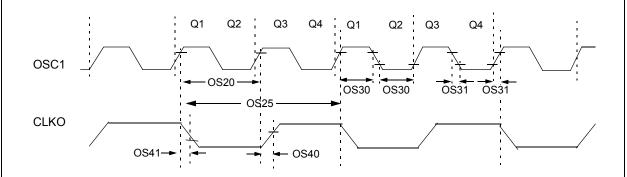
The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

30.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:


- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- · Command line interface
- · Rich directive set
- Flexible macro language
- · MPLAB IDE compatibility

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions	
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	Io∟ ≤3 mA, Vod = 3.3V See Note 1	
DO10	Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	_	_	0.4	V	IoL ⊴6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4	_	_	0.4	V	Io∟ ≤10 mA, Vdd = 3.3V See Note 1	
DO20	Vон	Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	V	Іон ≥ -3 mA, Vod = 3.3V See Note 1	
		Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V	Іон ≥ -6 mA, Voo = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	Іон ≥ -10 mA, VDD = 3.3V See Note 1	
DO20A	Vон1	Output High Voltage	1.5	_	_		IOH ≥ -6 mA, VDD = 3.3V See Note 1	
		2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.0	_	_	V	IOH ≥ -5 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1	
		Output High Voltage 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	1.5	_	_		Іон ≥ -12 mA, Voo = 3.3V See Note 1	
			2.0	_	_	V	Іон ≥ -11 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1	
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA3, RA4	1.5	_	_		IOH ≥ -16 mA, VDD = 3.3V See Note 1	
			2.0	_	_	v	IOH ≥ -12 mA, VDD = 3.3V See Note 1	
			3.0	_	_		IOH ≥ -4 mA, VDD = 3.3V See Note 1	

TABLE 31-10: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

FIGURE 31-2: EXTERNAL CLOCK TIMING

TABLE 31-16: EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)						
			Operating tem	perature	-40°C \leq TA \leq +85°C for Industrial -40°C \leq TA \leq +125°C for Extended				
Param No.	Symb	Characteristic	Min Typ ⁽¹⁾		Мах	Units	Conditions		
OS10	FIN	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	40	MHz	EC		
		Oscillator Crystal Frequency	3.5	—	10	MHz	XT		
			10	—	40	MHz	HS		
			_	—	33	kHz	Sosc		
			3.5	—	10	MHz	AUX_OSC_FIN		
OS20	Tosc	Tosc = 1/Fosc	12.5	—	DC	ns	—		
OS25	Тсү	Instruction Cycle Time ⁽²⁾	25		DC	ns	—		
OS30	TosL, TosH	External Clock in (OSC1) High or Low Time	0.375 x Tosc	—	0.625 x Tosc	ns	EC		
OS31	TosR, TosF	External Clock in (OSC1) Rise or Fall Time	-	—	20	ns	EC		
OS40	TckR	CLKO Rise Time ⁽³⁾	—	5.2		ns	—		
OS41	TckF	CLKO Fall Time ⁽³⁾	_	5.2		ns	—		
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C		

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (Tcr) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

NOTES: