

Welcome to E-XFL.COM

#### What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

#### Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

#### Details

E·XE

| Product Status             | Active                                                                            |
|----------------------------|-----------------------------------------------------------------------------------|
| Core Processor             | dsPIC                                                                             |
| Core Size                  | 16-Bit                                                                            |
| Speed                      | 40 MIPs                                                                           |
| Connectivity               | CANbus, I <sup>2</sup> C, IrDA, LINbus, SPI, UART/USART                           |
| Peripherals                | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT                |
| Number of I/O              | 35                                                                                |
| Program Memory Size        | 128KB (128K x 8)                                                                  |
| Program Memory Type        | FLASH                                                                             |
| EEPROM Size                | -                                                                                 |
| RAM Size                   | 16K x 8                                                                           |
| Voltage - Supply (Vcc/Vdd) | 3V ~ 3.6V                                                                         |
| Data Converters            | A/D 9x10b/12b; D/A 6x16b                                                          |
| Oscillator Type            | Internal                                                                          |
| Operating Temperature      | -40°C ~ 85°C (TA)                                                                 |
| Mounting Type              | Surface Mount                                                                     |
| Package / Case             | 44-TQFP                                                                           |
| Supplier Device Package    | 44-TQFP (10x10)                                                                   |
| Purchase URL               | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj128mc804t-i-pt |

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

### 1.0 DEVICE OVERVIEW

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
  - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This document contains device specific information for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 Digital Signal Controller (DSC) devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high performance 16-bit Microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 families of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

NOTES:





# TABLE 4-25: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128MC202/802, dsPIC33FJ64MC202/802 AND dsPIC33FJ32MC302

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11     | Bit 10   | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5      | Bit 4        | Bit 3       | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|------|--------|--------|--------|--------|------------|----------|-------|-------|-------|-------|------------|--------------|-------------|-------|-------|-------|---------------|
| RPOR0     | 06C0 | _      | _      | —      |        | RP1R<4:0>  |          |       |       |       | _     | _          |              | RP0R<4:0> 0 |       |       |       |               |
| RPOR1     | 06C2 | _      | _      | _      |        | RP3R<4:0>  |          |       |       |       | _     | _          | RP2R<4:0> 00 |             |       |       |       | 0000          |
| RPOR2     | 06C4 | _      | _      | —      |        | RP5R<4:0>  |          |       |       |       | _     | _          | RP4R<4:0> 00 |             |       |       |       | 0000          |
| RPOR3     | 06C6 | _      | _      | _      |        | RP7R<4:0>  |          |       |       | —     | _     | _          | RP6R<4:0>    |             |       |       |       | 0000          |
| RPOR4     | 06C8 | _      | _      | _      |        |            | RP9R<4:0 | >     |       | —     | _     | _          | RP8R<4:0>    |             |       |       |       | 0000          |
| RPOR5     | 06CA | _      | _      | _      |        | RP11R<4:0> |          |       |       | —     | _     | _          | RP10R<4:0>   |             |       |       |       | 0000          |
| RPOR6     | 06CC | _      | _      | _      |        | RP13R<4:0> |          |       | _     | _     | _     | RP12R<4:0> |              |             | 0000  |       |       |               |
| RPOR7     | 06CE |        | _      | _      |        | RP15R<4:0> |          |       |       |       | _     | _          | RP14R<4:0>   |             |       |       | 0000  |               |

**Legend:** x = unknown value on Reset, — = unimplemented, read as '0'.

## TABLE 4-26: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND dsPIC33FJ32MC304

| File Name | Addr | Bit 15 | Bit 14 | Bit 13 | Bit 12 | Bit 11     | Bit 10    | Bit 9 | Bit 8 | Bit 7 | Bit 6 | Bit 5      | Bit 4                     | Bit 3      | Bit 2 | Bit 1 | Bit 0 | All<br>Resets |
|-----------|------|--------|--------|--------|--------|------------|-----------|-------|-------|-------|-------|------------|---------------------------|------------|-------|-------|-------|---------------|
| RPOR0     | 06C0 | _      | _      | -      |        |            | RP1R<4:0  | >     |       | _     | _     | _          | RP0R<4:0>                 |            |       |       |       | 0000          |
| RPOR1     | 06C2 | _      | _      | _      |        |            | RP3R<4:0  | >     |       | —     | —     | _          | RP2R<4:0> 0               |            |       |       | 0000  |               |
| RPOR2     | 06C4 | _      | _      | _      |        |            | RP5R<4:0  | >     |       | —     | —     | _          | <b>RP4R&lt;4:0&gt;</b> 00 |            |       |       |       | 0000          |
| RPOR3     | 06C6 | _      | _      | _      |        | RP7R<4:0>  |           |       |       | —     | —     | _          | RP6R<4:0> 00              |            |       |       |       | 0000          |
| RPOR4     | 06C8 | _      | _      | _      |        | RP9R<4:0>  |           |       |       | _     | _     | _          | RP8R<4:0> 00              |            |       |       |       | 0000          |
| RPOR5     | 06CA | _      | _      | _      |        | RP11R<4:0> |           |       | _     | _     | _     |            |                           | RP10R<4:0> | •     |       | 0000  |               |
| RPOR6     | 06CC | _      | _      | _      |        | RP13R<4:0> |           |       | _     | _     | _     | RP12R<4:0> |                           |            | 0000  |       |       |               |
| RPOR7     | 06CE | _      | _      | _      |        |            | RP15R<4:0 | >     |       | —     | —     | _          | RP14R<4:0>                |            |       | 0000  |       |               |
| RPOR8     | 06D0 | _      | _      | _      |        |            | RP17R<4:0 | >     |       | _     | —     | _          | RP16R<4:0>                |            |       | 0000  |       |               |
| RPOR9     | 06D2 | _      | _      | _      |        | RP19R<4:0> |           |       | _     | —     | _     | RP18R<4:0> |                           |            | 0000  |       |       |               |
| RPOR10    | 06D4 | _      | _      | _      |        | RP21R<4:0> |           |       | _     | —     | _     |            |                           | RP20R<4:0> | >     |       | 0000  |               |
| RPOR11    | 06D6 | _      | _      | —      |        | RP23R<4:0> |           |       | _     | —     | _     | RP22R<4:0> |                           |            | 0000  |       |       |               |
| RPOR12    | 06D8 | _      | _      | _      |        | RP25R<4:0> |           |       |       | _     | _     | _          | RP24R<4:0>                |            |       |       | 0000  |               |

**Legend:** x = unknown value on Reset, — = unimplemented, read as '0'.





#### TABLE 4-41: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

|    |    | Norma | al Addres | SS      | Bit-Reversed Address |    |    |    |         |  |
|----|----|-------|-----------|---------|----------------------|----|----|----|---------|--|
| A3 | A2 | A1    | A0        | Decimal | A3                   | A2 | A1 | A0 | Decimal |  |
| 0  | 0  | 0     | 0         | 0       | 0                    | 0  | 0  | 0  | 0       |  |
| 0  | 0  | 0     | 1         | 1       | 1                    | 0  | 0  | 0  | 8       |  |
| 0  | 0  | 1     | 0         | 2       | 0                    | 1  | 0  | 0  | 4       |  |
| 0  | 0  | 1     | 1         | 3       | 1                    | 1  | 0  | 0  | 12      |  |
| 0  | 1  | 0     | 0         | 4       | 0                    | 0  | 1  | 0  | 2       |  |
| 0  | 1  | 0     | 1         | 5       | 1                    | 0  | 1  | 0  | 10      |  |
| 0  | 1  | 1     | 0         | 6       | 0                    | 1  | 1  | 0  | 6       |  |
| 0  | 1  | 1     | 1         | 7       | 1                    | 1  | 1  | 0  | 14      |  |
| 1  | 0  | 0     | 0         | 8       | 0                    | 0  | 0  | 1  | 1       |  |
| 1  | 0  | 0     | 1         | 9       | 1                    | 0  | 0  | 1  | 9       |  |
| 1  | 0  | 1     | 0         | 10      | 0                    | 1  | 0  | 1  | 5       |  |
| 1  | 0  | 1     | 1         | 11      | 1                    | 1  | 0  | 1  | 13      |  |
| 1  | 1  | 0     | 0         | 12      | 0                    | 0  | 1  | 1  | 3       |  |
| 1  | 1  | 0     | 1         | 13      | 1                    | 0  | 1  | 1  | 11      |  |
| 1  | 1  | 1     | 0         | 14      | 0                    | 1  | 1  | 1  | 7       |  |
| 1  | 1  | 1     | 1         | 15      | 1                    | 1  | 1  | 1  | 15      |  |



#### **BROWN-OUT SITUATIONS** FIGURE 6-3:

#### 6.5 **External Reset (EXTR)**

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 31.0 "Electrical Characteristics" for minimum pulse width specifications. The External Reset (MCLR) Pin bit (EXTR) in the Reset Control register (RCON<7>) is set to indicate the MCLR Reset.

#### EXTERNAL SUPERVISORY CIRCUIT 6.5.0.1

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

#### 6.5.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

#### 6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag bit (SWR) in the Reset Control register (RCON<6>) is set to indicate the software Reset.

#### 6.7 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag bit (WDTO) in the Reset Control register (RCON<4>) is set to indicate the Watchdog Reset. Refer to Section 28.4 "Watchdog Timer (WDT)" for more information on Watchdog Reset.

#### 6.8 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag bit (TRAPR) in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to Section 7.0 "Interrupt Controller" for more information on trap conflict Resets.

### REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

| bit 2 | CMIE: Comparator Interrupt Enable bit                                                     |
|-------|-------------------------------------------------------------------------------------------|
|       | <ul><li>1 = Interrupt request enabled</li><li>0 = Interrupt request not enabled</li></ul> |
| bit 1 | MI2C1IE: I2C1 Master Events Interrupt Enable bit                                          |
|       | <ul><li>1 = Interrupt request enabled</li><li>0 = Interrupt request not enabled</li></ul> |
| bit 0 | SI2C1IE: I2C1 Slave Events Interrupt Enable bit                                           |
|       | <ul><li>1 = Interrupt request enabled</li><li>0 = Interrupt request not enabled</li></ul> |

| U-0           | R/W-1             | R/W-0                                                                     | R/W-0             | U-0             | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |  |  |
|---------------|-------------------|---------------------------------------------------------------------------|-------------------|-----------------|-----------------|-----------------|-------|--|--|--|--|--|--|
| —             |                   | T1IP<2:0>                                                                 |                   | —               |                 | OC1IP<2:0>      |       |  |  |  |  |  |  |
| bit 15        |                   |                                                                           |                   |                 |                 |                 | bit 8 |  |  |  |  |  |  |
|               |                   |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
| U-0           | R/W-1             | R/W-0                                                                     | R/W-0             | U-0             | R/W-1           | R/W-0           | R/W-0 |  |  |  |  |  |  |
| —             |                   | IC1IP<2:0>                                                                |                   |                 |                 | INT0IP<2:0>     |       |  |  |  |  |  |  |
| bit 7         |                   |                                                                           |                   |                 |                 |                 | bit 0 |  |  |  |  |  |  |
| Legend:       |                   |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
| R = Readable  | e bit             | W = Writable I                                                            | bit               | U = Unimple     | mented bit, rea | ad as '0'       |       |  |  |  |  |  |  |
| -n = Value at | POR               | '1' = Bit is set                                                          |                   | '0' = Bit is cl | eared           | x = Bit is unkr | nown  |  |  |  |  |  |  |
|               |                   |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
| bit 15        | Unimpleme         | ented: Read as '                                                          | )'                |                 |                 |                 |       |  |  |  |  |  |  |
| bit 14-12     | T1IP<2:0>:        | Timer1 Interrupt                                                          | Priority bits     |                 |                 |                 |       |  |  |  |  |  |  |
|               | 111 = Interr      | rupt is priority 7 (I                                                     | nighest prior     | ity interrupt)  |                 |                 |       |  |  |  |  |  |  |
|               | •                 |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | •                 |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | 001 = Interr      | rupt is priority 1                                                        |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | 000 = Interr      | upt source is dis                                                         | abled             |                 |                 |                 |       |  |  |  |  |  |  |
| bit 11        | Unimpleme         | ented: Read as '0                                                         | )'                |                 |                 |                 |       |  |  |  |  |  |  |
| bit 10-8      | OC1IP<2:0         | <b>DC1IP&lt;2:0&gt;:</b> Output Compare Channel 1 Interrupt Priority bits |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | 111 = Interr      | rupt is priority 7 (r                                                     | nignest prior     | ity interrupt)  |                 |                 |       |  |  |  |  |  |  |
|               | •                 |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | •                 |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | 001 = Interr      | rupt is priority 1                                                        | ablad             |                 |                 |                 |       |  |  |  |  |  |  |
| hit 7         |                   | upt source is us                                                          | abieu             |                 |                 |                 |       |  |  |  |  |  |  |
| bit 6 4       |                   | Input Conturo C                                                           | )<br>bonnol 1 Int | orrupt Drigrity | aita            |                 |       |  |  |  |  |  |  |
| DIL 0-4       | 111 = Inter       | unt is priority 7 (k                                                      | name i m          | ity interrunt)  | JIIS            |                 |       |  |  |  |  |  |  |
|               | •                 | upt is priority 7 (i                                                      | ingricot prior    | ity interrupt)  |                 |                 |       |  |  |  |  |  |  |
|               | •                 |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | •                 | untin minute (                                                            |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | 001 = Interr      | rupt is priority i<br>rupt source is dis                                  | abled             |                 |                 |                 |       |  |  |  |  |  |  |
| bit 3         | Unimpleme         | ented: Read as '                                                          | )'                |                 |                 |                 |       |  |  |  |  |  |  |
| bit 2-0       | INT0IP<2:0        | >: External Interr                                                        | upt 0 Priority    | / bits          |                 |                 |       |  |  |  |  |  |  |
|               | 111 = Interr      | rupt is priority 7 (I                                                     | nighest prior     | ity interrupt)  |                 |                 |       |  |  |  |  |  |  |
|               | •                 |                                                                           |                   | /               |                 |                 |       |  |  |  |  |  |  |
|               | •                 |                                                                           |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | •<br>001 = Interr | rupt is priority 1                                                        |                   |                 |                 |                 |       |  |  |  |  |  |  |
|               | 000 = Interr      | rupt source is disa                                                       | abled             |                 |                 |                 |       |  |  |  |  |  |  |

#### DECISTED 7 16

#### **I/O PORTS** 11.0

- This data sheet summarizes the features Note 1: the dsPIC33FJ32MC302/304. of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 of family devices. It is not intended to be a comprehensive reference source. То complement the information in this data sheet, refer to Section 10. "I/O Ports" (DS70193) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
  - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, Vss, MCLR and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

#### Parallel I/O (PIO) Ports 11.1

Generally, a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents loop through, in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 11-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.

When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', then the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device is disabled. This means the corresponding LATx and TRISx registers and the port pin are read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.



| U-0                                          | U-0                  | U-0                  | U-0                  | U-0              | R/W-0                | R/W-0                | R/W-0                |  |
|----------------------------------------------|----------------------|----------------------|----------------------|------------------|----------------------|----------------------|----------------------|--|
| —                                            | —                    | —                    | _                    | —                | PMOD3                | PMOD2                | PMOD1                |  |
| bit 15                                       |                      |                      |                      |                  |                      |                      | bit 8                |  |
|                                              |                      |                      |                      |                  |                      |                      |                      |  |
| U-0                                          | R/W-1                | R/W-1                | R/W-1                | U-0              | R/W-1                | R/W-1                | R/W-1                |  |
|                                              | PEN3H <sup>(1)</sup> | PEN2H <sup>(1)</sup> | PEN1H <sup>(1)</sup> |                  | PEN3L <sup>(1)</sup> | PEN2L <sup>(1)</sup> | PEN1L <sup>(1)</sup> |  |
| bit 7                                        |                      |                      |                      |                  |                      |                      | bit 0                |  |
|                                              |                      |                      |                      |                  |                      |                      |                      |  |
| Legend:                                      |                      |                      |                      |                  |                      |                      |                      |  |
| R = Readable                                 | bit                  | W = Writable         | bit                  | U = Unimpler     | mented bit, read     | d as '0'             |                      |  |
| -n = Value at F                              | POR                  | '1' = Bit is set     |                      | '0' = Bit is cle | ared                 | x = Bit is unknown   |                      |  |
|                                              |                      |                      |                      |                  |                      |                      |                      |  |
| bit 15-11                                    | Unimplemen           | ted: Read as '       | 0'                   |                  |                      |                      |                      |  |
| bit 10-8 PMOD3:PMOD1: PWM I/O Pair Mode bits |                      |                      |                      |                  |                      |                      |                      |  |
|                                              | 1 = PWM I/O          | pin pair is in th    | e Independer         | t PWM Output     | mode                 |                      |                      |  |
|                                              | 0 = PWM I/O          | pin pair is in th    | e Complemer          | ntary Output m   | ode                  |                      |                      |  |

### REGISTER 16-5: PWMxCON1: PWM CONTROL REGISTER 1<sup>(2)</sup>

| bit 7   | Unimplemented: Read as '0'                        |
|---------|---------------------------------------------------|
| bit 6-4 | PEN3H:PEN1H: PWMxH I/O Enable bits <sup>(1)</sup> |

| 1 = | P\//MyH | nin i | s ens | hled | for | P\//M | output |
|-----|---------|-------|-------|------|-----|-------|--------|

- 0 = PWMxH pin disabled, I/O pin becomes general purpose I/O
- bit 3 Unimplemented: Read as '0'

| bit 2-0 | PEN3L:PEN1L: PWMxL | I/O Enable bits <sup>(1)</sup> |
|---------|--------------------|--------------------------------|
|---------|--------------------|--------------------------------|

- 1 = PWMxL pin is enabled for PWM output
  - 0 = PWMxL pin disabled, I/O pin becomes general purpose I/O
- **Note 1:** Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.
  - 2: PWM2 supports only one PWM I/O pin pair.

| REGISTER 10-0. PRDTCONZ. DEAD-TIME CONTROL REGISTER 21 |                                                              |                   |              |                  |                  |                 |       |  |
|--------------------------------------------------------|--------------------------------------------------------------|-------------------|--------------|------------------|------------------|-----------------|-------|--|
| U-0                                                    | U-0                                                          | U-0               | U-0          | U-0              | U-0              | U-0             | U-0   |  |
| —                                                      | —                                                            | —                 | _            | —                | —                | _               | —     |  |
| bit 15                                                 |                                                              |                   |              |                  |                  |                 | bit 8 |  |
|                                                        |                                                              |                   |              |                  |                  |                 |       |  |
| U-0                                                    | U-0                                                          | R/W-0             | R/W-0        | R/W-0            | R/W-0            | R/W-0           | R/W-0 |  |
| —                                                      |                                                              | DTS3A             | DTS3I        | DTS2A            | DTS2I            | DTS1A           | DTS1I |  |
| bit 7                                                  |                                                              |                   |              |                  |                  |                 | bit 0 |  |
|                                                        |                                                              |                   |              |                  |                  |                 |       |  |
| Legend:                                                |                                                              |                   |              |                  |                  |                 |       |  |
| R = Readable                                           | bit                                                          | W = Writable      | bit          | U = Unimpler     | mented bit, read | l as '0'        |       |  |
| -n = Value at P                                        | OR                                                           | '1' = Bit is set  |              | '0' = Bit is cle | ared             | x = Bit is unkr | างพท  |  |
|                                                        |                                                              |                   |              |                  |                  |                 |       |  |
| bit 15-6                                               | Unimplemen                                                   | ted: Read as '    | 0'           |                  |                  |                 |       |  |
| bit 5                                                  | DTS3A: Dead                                                  | d-Time Select for | or PWMxH3 \$ | Signal Going A   | ctive bit        |                 |       |  |
|                                                        | 1 = Dead time                                                | e provided from   | n Unit B     |                  |                  |                 |       |  |
|                                                        | 0 = Dead time                                                | e provided from   | n Unit A     |                  |                  |                 |       |  |
| bit 4                                                  | DTS3I: Dead-Time Select for PWMxL3 Signal Going Inactive bit |                   |              |                  |                  |                 |       |  |

## REGISTER 16-8: PxDTCON2: DEAD-TIME CONTROL REGISTER 2<sup>(1)</sup>

|       | 0 - Dead time provided from Onit A                           |
|-------|--------------------------------------------------------------|
| bit 4 | DTS3I: Dead-Time Select for PWMxL3 Signal Going Inactive bit |
|       | 1 = Dead time provided from Unit B                           |
|       | 0 = Dead time provided from Unit A                           |
| bit 3 | DTS2A: Dead-Time Select for PWMxH2 Signal Going Active bit   |
|       | 1 = Dead time provided from Unit B                           |
|       | 0 = Dead time provided from Unit A                           |
| bit 2 | DTS2I: Dead-Time Select for PWMxL2 Signal Going Inactive bit |
|       | 1 = Dead time provided from Unit B                           |
|       | 0 = Dead time provided from Unit A                           |
| bit 1 | DTS1A: Dead-Time Select for PWMxH1 Signal Going Active bit   |
|       | 1 = Dead time provided from Unit B                           |
|       | 0 = Dead time provided from Unit A                           |
| bit 0 | DTS1I: Dead-Time Select for PWMxL1 Signal Going Inactive bit |
|       | 1 = Dead time provided from Unit B                           |
|       | 0 = Dead time provided from Unit A                           |

Note 1: PWM2 supports only one PWM I/O pin pair.

| ILCIGILIN 21-24. CINAOVI I. LOAN |         | RECEIVE        | DOLLEVON          |                  |                    |        |        |
|----------------------------------|---------|----------------|-------------------|------------------|--------------------|--------|--------|
| R/C-0                            | R/C-0   | R/C-0          | R/C-0             | R/C-0            | R/C-0              | R/C-0  | R/C-0  |
| RXOVF15                          | RXOVF14 | RXOVF13        | RXOVF12           | RXOVF11          | RXOVF10            | RXOVF9 | RXOVF8 |
| bit 15                           |         |                |                   |                  |                    |        | bit 8  |
|                                  |         |                |                   |                  |                    |        |        |
| R/C-0                            | R/C-0   | R/C-0          | R/C-0             | R/C-0            | R/C-0              | R/C-0  | R/C-0  |
| RXOVF7                           | RXOVF6  | RXOVF5         | RXOVF4            | RXOVF3           | RXOVF2             | RXOVF1 | RXOVF0 |
| bit 7                            |         |                |                   |                  |                    |        | bit 0  |
|                                  |         |                |                   |                  |                    |        |        |
| Legend:                          |         | C = Writable b | oit, but only '0' | can be writter   | n to clear the bit |        |        |
| R = Readable bit W = Writable b  |         | bit            | U = Unimpler      | mented bit, read | as '0'             |        |        |
|                                  |         |                |                   |                  |                    |        |        |

'0' = Bit is cleared

x = Bit is unknown

### REGISTER 21-24: CIRXOVF1: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 1

bit 15-0

-n = Value at POR

RXOVF<15:0>: Receive Buffer n Overflow bits

'1' = Bit is set

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

#### REGISTER 21-25: CIRXOVF2: ECAN™ RECEIVE BUFFER OVERFLOW REGISTER 2

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF31 | RXOVF30 | RXOVF29 | RXOVF28 | RXOVF27 | RXOVF26 | RXOVF25 | RXOVF24 |
| bit 15  |         |         |         |         |         |         | bit 8   |

| R/C-0   |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXOVF23 | RXOVF22 | RXOVF21 | RXOVF20 | RXOVF19 | RXOVF18 | RXOVF17 | RXOVF16 |
| bit 7   |         |         |         |         |         |         | bit 0   |

| Legend:           | C = Writable bit, but only '0' can be written to clear the bit |                                         |  |  |  |
|-------------------|----------------------------------------------------------------|-----------------------------------------|--|--|--|
| R = Readable bit  | W = Writable bit                                               | U = Unimplemented bit, read as '0'      |  |  |  |
| -n = Value at POR | '1' = Bit is set                                               | '0' = Bit is cleared x = Bit is unknown |  |  |  |

bit 15-0

RXOVF<31:16>: Receive Buffer n Overflow bits

1 = Module attempted to write to a full buffer (set by module)

0 = No overflow condition

#### REGISTER 22-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

| U-0 | U-0                                   | U-0                                                                              | U-0                                                                                                                                                                                                                                                                                                           | R/W-0                                                                                                                                                                                                                                                         | R/W-0                                                                                                                                                                                                                                                                     | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|---------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | —                                     | _                                                                                | —                                                                                                                                                                                                                                                                                                             | CH123N                                                                                                                                                                                                                                                        | VB<1:0>                                                                                                                                                                                                                                                                   | CH123SB                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | · · · · · · · · · · · · · · · · · · · |                                                                                  |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           | bit 8                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                       |                                                                                  |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| U-0 | U-0                                   | U-0                                                                              | U-0                                                                                                                                                                                                                                                                                                           | R/W-0                                                                                                                                                                                                                                                         | R/W-0                                                                                                                                                                                                                                                                     | R/W-0                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| _   | —                                     | _                                                                                | —                                                                                                                                                                                                                                                                                                             | CH123N                                                                                                                                                                                                                                                        | NA<1:0>                                                                                                                                                                                                                                                                   | CH123SA                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | · · · · · · · · · · · · · · · · · · · |                                                                                  |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           | bit 0                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |                                       |                                                                                  |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |                                       |                                                                                  |                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| it  | W = Writable b                        | oit                                                                              | U = Unimpler                                                                                                                                                                                                                                                                                                  | nented bit, rea                                                                                                                                                                                                                                               | d as '0'                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| OR  | '1' = Bit is set                      |                                                                                  | '0' = Bit is cle                                                                                                                                                                                                                                                                                              | '0' = Bit is cleared x = Bit is unknown                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                           | nown                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | U-0<br>—<br>U-0<br>—<br>it<br>DR      | U-0 U-0<br>— — —<br>U-0 U-0<br>— — —<br>it W = Writable b<br>DR '1' = Bit is set | U-0 $U-0$ $U-0$ $   U-0$ $U-0$ $U-0$ $   U$ $U-0$ $U-0$ $   U$ $U$ $U-0$ $U-0$ $U-0$ $U-0$ $   U$ $U$ | U-0       U-0       U-0       U-0         -       -       -       -         U-0       U-0       U-0       U-0         -       -       -       -         it       W = Writable bit       U = Unimpler         DR       '1' = Bit is set       '0' = Bit is cle | U-0     U-0     U-0     U-0     R/W-0       —     —     —     —     CH123N       U-0     U-0     U-0     U-0     R/W-0       —     —     —     CH123N       it     W = Writable bit     U = Unimplemented bit, rea       DR     '1' = Bit is set     '0' = Bit is cleared | U-0       U-0       U-0       R/W-0       R/W-0         —       —       —       —       CH123NB<1:0>         U-0       U-0       U-0       U-0       R/W-0         —       —       —       CH123NB<1:0>         U-0       U-0       U-0       R/W-0         —       —       —       CH123NA<1:0>         it       W = Writable bit       U = Unimplemented bit, read as '0'         OR       '1' = Bit is set       '0' = Bit is cleared       x = Bit is unk |

#### bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits dsPIC33FJ32MC302, dsPIC33FJ64MC202/802 and dsPIC33FJ128MC202/802 devices only: If AD12B = 1: 11 = Reconved

- 11 = Reserved 10 = Reserved
- 01 = Reserved 00 = Reserved

If AD12B = 0:

11 = Reserved 10 = Reserved 01 = CH1, CH2, CH3 negative input is VREF-00 = CH1, CH2, CH3 negative input is VREF-

#### dsPIC33FJ32MC304, dsPIC33FJ64MC204/804 and dsPIC33FJ128MC204/804 devices only:

If AD12B = 1: 11 = Reserved 10 = Reserved 01 = Reserved 00 = Reserved

#### If AD12B = 0:

11 = Reserved

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8

01 = CH1, CH2, CH3 negative input is VREF-00 = CH1, CH2, CH3 negative input is VREF-

00

bit 8

CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit <u>If AD12B = 1:</u> 1 = Reserved

0 = Reserved

#### If AD12B = 0:

1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

#### bit 7-3 Unimplemented: Read as '0'

| U-0             | U-0                                                                      | U-0               | U-0            | U-0                      | U-0              | U-0             | U-0   |
|-----------------|--------------------------------------------------------------------------|-------------------|----------------|--------------------------|------------------|-----------------|-------|
| _               | —                                                                        |                   | _              | —                        | —                | —               | _     |
| bit 15          |                                                                          |                   |                |                          |                  |                 | bit 8 |
|                 |                                                                          |                   |                |                          |                  |                 |       |
| R/W-0           | R/W-0                                                                    | R/W-0             | R/W-0          | R/W-0                    | R/W-0            | R/W-0           | R/W-0 |
| CVREN           | CVROE                                                                    | CVRR              | CVRSS          |                          | CVR              | <3:0>           |       |
| bit 7           |                                                                          |                   |                |                          |                  |                 | bit 0 |
|                 |                                                                          |                   |                |                          |                  |                 |       |
| Legend:         |                                                                          |                   |                |                          |                  |                 |       |
| R = Readable    | bit                                                                      | W = Writable      | bit            | U = Unimpler             | mented bit, read | as '0'          |       |
| -n = Value at I | POR                                                                      | '1' = Bit is set  |                | '0' = Bit is cle         | ared             | x = Bit is unkr | nown  |
|                 |                                                                          |                   |                |                          |                  |                 |       |
| bit 15-8        | Unimplemen                                                               | ted: Read as '    | 0'             |                          |                  |                 |       |
| bit 7           | CVREN: Corr                                                              | nparator Voltag   | e Reference E  | Enable bit               |                  |                 |       |
|                 | 1 = CVREF ci                                                             | rcuit powered     | on             |                          |                  |                 |       |
|                 | 0 = CVREF CI                                                             | rcuit powered     | down           |                          |                  |                 |       |
| bit 6           | CVROE: Com                                                               | parator VREF      | Output Enable  | e bit                    |                  |                 |       |
|                 | 1 = CVREF VO 0 = CVREF VO                                                | oltage level is c | output on CVR  | EF PIN<br>from CVREE nir | 1                |                 |       |
| bit 5           | CVRR: Comp                                                               | arator VREE R     | ande Selection | n hit                    |                  |                 |       |
| bit o           | 1 = CVPSPC range should be 0 to 0.625 CVPSPC with CVPSPC/24 step size    |                   |                |                          |                  |                 |       |
|                 | 0 = CVRsRc range should be 0.25 to 0.719 CVRsRc with CVRsRc/32 step size |                   |                |                          |                  |                 |       |
| bit 4           | CVRSS: Comparator VREF Source Selection bit                              |                   |                |                          |                  |                 |       |
|                 | 1 = Comparator reference source CVRSRC = VREF+ – VREF-                   |                   |                |                          |                  |                 |       |
|                 | 0 = Comparator reference source CVRSRC = AVDD – AVSS                     |                   |                |                          |                  |                 |       |
| bit 3-0         | CVR<3:0>: Comparator VREF Value Selection 0 ⊴CVR<3:0> ≤15 bits           |                   |                |                          |                  |                 |       |
|                 | When CVRR                                                                | <u>= 1:</u>       |                |                          |                  |                 |       |
|                 | CVREF = (CVR)                                                            | <3:0>/ 24) • ((   | VRSRC)         |                          |                  |                 |       |

#### REGISTER 24-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

 $\frac{VREF}{CVREF} = (CVRESC) + (CVRSRC)$   $\frac{When CVRR = 0:}{CVREF} = 1/4 \cdot (CVRSRC) + (CVR < 3:0 > /32) \cdot (CVRSRC)$ 

## **REGISTER 25-6: RTCVAL (WHEN RTCPTR<1:0> =** 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER<sup>(1)</sup>

| U-0    | U-0 | U-0 | U-0 | U-0 | R/W-x | R/W-x     | R/W-x |
|--------|-----|-----|-----|-----|-------|-----------|-------|
| —      | —   | —   | —   | —   |       | WDAY<2:0> |       |
| bit 15 |     |     |     |     |       |           | bit 8 |

| U-0   | U-0 | R/W-x | R/W-x  | R/W-x | R/W-x | R/W-x  | R/W-x |
|-------|-----|-------|--------|-------|-------|--------|-------|
| —     | —   | HRTE  | N<1:0> |       | HRON  | E<3:0> |       |
| bit 7 |     |       |        |       |       |        | bit 0 |

| Legend:           |                  |                             |                    |
|-------------------|------------------|-----------------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit, read | l as '0'           |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared        | x = Bit is unknown |

| bit 15-11 | Unimplemented: Read as '0'                                                                             |
|-----------|--------------------------------------------------------------------------------------------------------|
| bit 10-8  | WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6                   |
| bit 7-6   | Unimplemented: Read as '0'                                                                             |
| bit 5-4   | <b>HRTEN&lt;1:0&gt;:</b> Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2 |
| bit 3-0   | HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9              |

**Note 1:** A write to this register is only allowed when RTCWREN = 1.

#### **REGISTER 25-7: RTCVAL (WHEN RTCPTR<1:0> =** 00): **MINUTES AND SECONDS VALUE REGISTER**

| U-0    | R/W-x | R/W-x       | R/W-x | R/W-x | R/W-x | R/W-x   | R/W-x |
|--------|-------|-------------|-------|-------|-------|---------|-------|
| _      |       | MINTEN<2:0> |       |       | MINON | IE<3:0> |       |
| bit 15 |       |             |       |       |       |         | bit 8 |
|        |       |             |       |       |       |         |       |
| U-0    | R/W-x | R/W-x       | R/W-x | R/W-x | R/W-x | R/W-x   | R/W-x |
|        |       | SECTEN<2:0> |       |       | SECON | IE<3:0> |       |

| Legend:           |                  |                       |                    |
|-------------------|------------------|-----------------------|--------------------|
| R = Readable bit  | W = Writable bit | U = Unimplemented bit | , read as '0'      |
| -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared  | x = Bit is unknown |

| bit 15    | Unimplemented: Read as '0'                                                                   |
|-----------|----------------------------------------------------------------------------------------------|
| bit 14-12 | MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5 |
| bit 11-8  | MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9 |
| bit 7     | Unimplemented: Read as '0'                                                                   |
| bit 6-4   | SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5 |
| bit 3-0   | SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9 |
|           |                                                                                              |

© 2007-2012 Microchip Technology Inc.

bit 7

bit 0

|                                               |                                 |                                   |                 |                                    | STER            |                    |       |  |  |  |
|-----------------------------------------------|---------------------------------|-----------------------------------|-----------------|------------------------------------|-----------------|--------------------|-------|--|--|--|
| R-0                                           | R/W-0, HS                       | U-0                               | U-0             | R-0                                | R-0             | R-0                | R-0   |  |  |  |
| IBF                                           | IBOV                            | —                                 | _               | IB3F                               | IB2F            | IB1F               | IB0F  |  |  |  |
| bit 15                                        |                                 |                                   |                 |                                    |                 |                    | bit 8 |  |  |  |
|                                               |                                 |                                   |                 |                                    |                 |                    |       |  |  |  |
| R-1                                           | R/W-0, HS                       | U-0                               | U-0             | R-1                                | R-1             | R-1                | R-1   |  |  |  |
| OBE                                           | OBUF                            | —                                 |                 | OB3E                               | OB2E            | OB1E               | OB0E  |  |  |  |
| bit 7                                         |                                 |                                   |                 | -                                  | ·               |                    | bit 0 |  |  |  |
|                                               |                                 |                                   |                 |                                    |                 |                    |       |  |  |  |
| Legend:                                       |                                 | HS = Hardware Set bit             |                 |                                    |                 |                    |       |  |  |  |
| R = Readable bit                              |                                 | W = Writable                      | bit             | U = Unimplemented bit, read as '0' |                 |                    |       |  |  |  |
| -n = Value at                                 | POR                             | '1' = Bit is set                  |                 | '0' = Bit is cle                   | eared           | x = Bit is unknown |       |  |  |  |
|                                               |                                 |                                   |                 |                                    |                 |                    |       |  |  |  |
| bit 15                                        | IBF: Input Bu                   | ffer Full Status                  | bit             |                                    |                 |                    |       |  |  |  |
|                                               | 1 = All writab                  | le input buffer i                 | registers are f | full                               |                 |                    |       |  |  |  |
|                                               | 0 = Some or                     | all of the writat                 | ole input buffe | r registers are                    | empty           |                    |       |  |  |  |
| bit 14 IBOV: Input Buffer Overflow Status bit |                                 |                                   |                 |                                    |                 |                    |       |  |  |  |
|                                               | 1 = A write at<br>0 = No overfl | ttempt to a full i<br>ow occurred | input byte reg  | ister occurred                     | (must be cleare | d in software)     |       |  |  |  |
| bit 13-12                                     | Unimplemen                      | ted: Read as '                    | 0'              |                                    |                 |                    |       |  |  |  |

1 = Input buffer contains data that has not been read (reading buffer will clear this bit)

1 = A read occurred from an empty output byte register (must be cleared in software)

### REGISTER 27-5: PMSTAT: PARALLEL PORT STATUS REGISTER

**IB3F:IB0F:** Input Buffer x Status Full bits

**OBE:** Output Buffer Empty Status bit

0 = No underflow occurredUnimplemented: Read as '0'

0 = Input buffer does not contain any unread data

1 = All readable output buffer registers are empty

**OBUF:** Output Buffer Underflow Status bits

OB3E:OB0E Output Buffer x Status Empty bit

0 = Some or all of the readable output buffer registers are full

1 = Output buffer is empty (writing data to the buffer will clear this bit)
 0 = Output buffer contains data that has not been transmitted

bit 11-8

bit 7

bit 6

bit 5-4 bit 3-0





|              |        |                                                     |    | $\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$ |     |       |                                                         |  |  |  |
|--------------|--------|-----------------------------------------------------|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------|---------------------------------------------------------|--|--|--|
| Param<br>No. | Symbol | Characteristic <sup>(1)</sup>                       |    | Тур <sup>(2)</sup>                                                                                                                                                                                                                                                                  | Мах | Units | Conditions                                              |  |  |  |
| TQ30         | TQUL   | Quadrature Input Low Time                           |    | 6 Tcy                                                                                                                                                                                                                                                                               | _   | ns    | _                                                       |  |  |  |
| TQ31         | ΤουΗ   | Quadrature Input High Time                          |    | 6 TCY                                                                                                                                                                                                                                                                               | —   | ns    | —                                                       |  |  |  |
| TQ35         | ΤουΙΝ  | Quadrature Input Period                             |    | 12 TCY                                                                                                                                                                                                                                                                              | —   | ns    | —                                                       |  |  |  |
| TQ36         | TQUP   | Quadrature Phase Period                             |    | 3 TCY                                                                                                                                                                                                                                                                               | _   | ns    | —                                                       |  |  |  |
| TQ40         | TQUFL  | Filter Time to Recognize Lov<br>with Digital Filter | V, | 3 * N * Tcy                                                                                                                                                                                                                                                                         | —   | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 <b>(Note 3)</b> |  |  |  |
| TQ41         | TQUFH  | Filter Time to Recognize Hig with Digital Filter    | h, | 3 * N * Tcy                                                                                                                                                                                                                                                                         |     | ns    | N = 1, 2, 4, 16, 32, 64,<br>128 and 256 (Note 3)        |  |  |  |

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

**3:** N = Index Channel Digital Filter Clock Divide Select bits. Refer to **Section 15. "Quadrature Encoder** Interface (QEI)" in the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site for the latest dsPIC33F/PIC24H Family Reference Manual sections.

| AC CHARA             | CTERISTICS                               |                                             | Standard Operating Conditions: 3.0V to 3.6V         (unless otherwise stated)         Operating temperature       -40°C ≤TA ≤+85°C for Industrial         -40°C ≤TA ≤+125°C for Extended |     |         |     |  |  |
|----------------------|------------------------------------------|---------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------|-----|--|--|
| Maximum<br>Data Rate | Master<br>Transmit Only<br>(Half-Duplex) | Master<br>Transmit/Receive<br>(Full-Duplex) | Slave<br>Transmit/Receive<br>(Full-Duplex)                                                                                                                                               | CKE | СКЕ СКР |     |  |  |
| 15 Mhz               | Table 31-33                              | —                                           | _                                                                                                                                                                                        | 0,1 | 0,1     | 0,1 |  |  |
| 9 Mhz                | _                                        | Table 31-34                                 | —                                                                                                                                                                                        | 1   | 0,1     | 1   |  |  |
| 9 Mhz                |                                          | Table 31-35                                 | —                                                                                                                                                                                        | 0   | 0,1     | 1   |  |  |
| 15 Mhz               |                                          | —                                           | Table 31-36                                                                                                                                                                              | 1   | 0       | 0   |  |  |
| 11 Mhz               | _                                        | _                                           | Table 31-37                                                                                                                                                                              | 1   | 1       | 0   |  |  |
| 15 Mhz               |                                          | _                                           | Table 31-38                                                                                                                                                                              | 0   | 1       | 0   |  |  |
| 11 Mhz               |                                          | _                                           | Table 31-39                                                                                                                                                                              | 0   | 0       | 0   |  |  |

#### TABLE 31-32: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

## FIGURE 31-14: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS



#### FIGURE 31-15: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS





FIGURE 31-27: ADC CONVERSION (12-BIT MODE) TIMING CHARACTERISTICS (ASAM = 0. SSRC<2:0> = 000)

| TABLE 32-14: ADC MODULE SPECIFICATIONS |      |                                                                                                                                                  |     |          |           |          |                                                                |  |  |
|----------------------------------------|------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----|----------|-----------|----------|----------------------------------------------------------------|--|--|
| AC<br>CHARACTERISTICS                  |      | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)         Operating temperature       -40°C ≤TA ≤+150°C for High Temperature |     |          |           |          |                                                                |  |  |
| Param<br>No. Symbol                    |      | Characteristic                                                                                                                                   | Min | Тур      | Мах       | Units    | Conditions                                                     |  |  |
| Reference Inputs                       |      |                                                                                                                                                  |     |          |           |          |                                                                |  |  |
| HAD08                                  | IREF | Current Drain                                                                                                                                    |     | 250<br>— | 600<br>50 | μΑ<br>μΑ | ADC operating, See <b>Note 1</b><br>ADC off, See <b>Note 1</b> |  |  |

### TABLE 32-14: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

#### TABLE 32-15: ADC MODULE SPECIFICATIONS (12-BIT MODE)

| AC<br>CHARACTERISTICS                                                              |                        | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)         Operating temperature       -40°C ≤TA ≤+150°C for High Temperature |              |              |                               |            |                                                  |  |  |
|------------------------------------------------------------------------------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|--------------|--------------|-------------------------------|------------|--------------------------------------------------|--|--|
| Param<br>No.                                                                       | Symbol                 | Characteristic                                                                                                                                   | Min Typ Max  |              | Units                         | Conditions |                                                  |  |  |
|                                                                                    | AD                     | C Accuracy (12-bit Mode                                                                                                                          | ) – Meas     | urement      | ts with Ex                    | kternal V  | /REF+/VREF- <sup>(1)</sup>                       |  |  |
| HAD20a                                                                             | Nr                     | Resolution <sup>(3)</sup>                                                                                                                        | 12 data bits |              |                               | bits       | _                                                |  |  |
| HAD21a                                                                             | INL                    | Integral Nonlinearity                                                                                                                            | -2           | -            | +2                            | LSb        | Vinl = AVss = Vrefl = 0V,<br>AVdd = Vrefh = 3.6V |  |  |
| HAD22a                                                                             | DNL                    | Differential Nonlinearity                                                                                                                        | > -1         | —            | < 1                           | LSb        | Vinl = AVss = Vrefl = 0V,<br>AVdd = Vrefh = 3.6V |  |  |
| HAD23a                                                                             | Gerr                   | Gain Error                                                                                                                                       | -2           | -            | 10                            | LSb        | Vinl = AVss = Vrefl = 0V,<br>AVdd = Vrefh = 3.6V |  |  |
| HAD24a                                                                             | EOFF                   | Offset Error                                                                                                                                     | -3           | -            | 5                             | LSb        | Vinl = AVss = Vrefl = 0V,<br>AVdd = Vrefh = 3.6V |  |  |
| ADC Accuracy (12-bit Mode) – Measurements with Internal VREF+/VREF- <sup>(1)</sup> |                        |                                                                                                                                                  |              |              |                               |            |                                                  |  |  |
| HAD20a                                                                             | Nr                     | Resolution <sup>(3)</sup>                                                                                                                        | 1            | 12 data bits |                               |            |                                                  |  |  |
| HAD21a                                                                             | INL                    | Integral Nonlinearity                                                                                                                            | -2           | —            | +2                            | LSb        | VINL = AVSS = 0V, AVDD = 3.6V                    |  |  |
| HAD22a                                                                             | DNL                    | Differential Nonlinearity                                                                                                                        | > -1         | —            | < 1                           | LSb        | VINL = AVSS = 0V, AVDD = 3.6V                    |  |  |
| HAD23a                                                                             | Gerr                   | Gain Error                                                                                                                                       | 2            |              | 20                            | LSb        | VINL = AVSS = 0V, AVDD = 3.6V                    |  |  |
| HAD24a                                                                             | 4aEOFFOffset Error2—10 |                                                                                                                                                  | 10           | LSb          | VINL = AVSS = 0V, AVDD = 3.6V |            |                                                  |  |  |
| Dynamic Performance (12-bit Mode) <sup>(2)</sup>                                   |                        |                                                                                                                                                  |              |              |                               |            |                                                  |  |  |
| HAD33a                                                                             | Fnyq                   | Input Signal Bandwidth                                                                                                                           | _            | _            | 200                           | kHz        | _                                                |  |  |

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.