

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc302-e-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.6 CPU Control Registers

	NO-1. OK. O									
R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0			
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC			
bit 15							bit 8			
(0)	(0)	(0)								
R/W-0 ⁽³⁾		R/W-0 ⁽³⁾	R-0	R/W-0	R/W-0	R/W-0	R/W-0			
	IPL<2:0> ⁽²⁾		RA	N	OV	Z	С			
bit 7							bit 0			
Legend:										
C = Clear o	nly bit	R = Readable	e bit	U = Unimplei	mented bit, read	l as '0'				
S = Set only bit W = Writable bit -n = Value at POR										
'1' = Bit is s	et	'0' = Bit is clea	ared	x = Bit is unk	nown					
bit 15	OA: Accumul	ator A Overflow	v Status bit							
	1 = Accumulator A overflowed									
	0 = Accumulator A has not overflowed									
bit 14 OB: Accumulator B Overflow Status bit										
		1 = Accumulator B overflowed 0 = Accumulator B has not overflowed								
bit 13		ator A Saturatio		tus hit(1)						
		ator A is saturat			some time					
	0 = Accumula	0 = Accumulator A is not saturated								
bit 12	SB: Accumul	ator B Saturatio	on 'Sticky' Sta	tus bit ⁽¹⁾						
		ator B is saturat ator B is not sat		en saturated at	some time					
bit 11	0AB: 0A 0	B Combined A	ccumulator C	verflow Status	bit					
		ators A or B hav ccumulators A								
bit 10	SAB: SA S	B Combined A	ccumulator (S	ticky) Status bi	t ⁽⁴⁾					
	1 = Accumula		saturated or	have been sat	urated at some	time in the past	:			
bit 9	DA: DO Loop	Active bit								
	1 = DO loop ir									
	-	ot in progress								
bit 8		U Half Carry/Bo								
		out from the 4th sult occurred	low-order bit (for byte-sized of	data) or 8th low-	order bit (for wo	rd-sized data)			
	0 = No carry			bit (for byte-siz	ed data) or 8th	low-order bit (f	or word-sized			
Note 1:	This bit can be rea	ad or cleared (n	ot set).							
2: 1	The IPL<2:0> bits ₋evel. The value iı PL<3> = 1.	are concatenat	ted with the IF	•	,		• •			

REGISTER 3-1: SR: CPU STATUS REGISTER

3: The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1.

4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

5.6.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one row of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired row. The general process is:

- 1. Read eight rows of program memory (512 instructions) and store in data RAM.
- 2. Update the program data in RAM with the desired new data.
- 3. Erase the block (see Example 5-1):
 - a) Set the NVMOP bits (NVMCON<3:0>) to ⁽⁰⁰¹⁰⁾ to configure for block erase. Set the ERASE (NVMCON<6>) and WREN (NVMCON<14>) bits.
 - b) Write the starting address of the page to be erased into the TBLPAG and W registers.
 - c) Write 0x55 to NVMKEY.
 - d) Write 0xAA to NVMKEY.
 - e) Set the WR bit (NVMCON<15>). The erase cycle begins and the CPU stalls for the duration of the erase cycle. When the erase is done, the WR bit is cleared automatically.

- 4. Write the first 64 instructions from data RAM into the program memory buffers (see Example 5-2).
- 5. Write the program block to Flash memory:
 - a) Set the NVMOP bits to '0001' to configure for row programming. Clear the ERASE bit and set the WREN bit.
 - b) Write 0x55 to NVMKEY.
 - c) Write 0xAA to NVMKEY.
 - d) Set the WR bit. The programming cycle begins and the CPU stalls for the duration of the write cycle. When the write to Flash memory is done, the WR bit is cleared automatically.
- Repeat steps 4 and 5, using the next available 64 instructions from the block in data RAM by incrementing the value in TBLPAG, until all 512 instructions are written back to Flash memory.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS, as shown in Example 5-3.

EXAMPLE 5-1: ERASING A PROGRAM MEMORY PAGE

; Set up NVMCON for block erase operation	
MOV #0x4042, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Init pointer to row to be ERASED	
MOV #tblpage(PROG_ADDR), W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #tbloffset(PROG_ADDR), W0	; Initialize in-page EA[15:0] pointer
TBLWTL W0, [W0]	; Set base address of erase block
DISI #5	; Block all interrupts with priority < 7
	; for next 5 instructions
MOV #0x55, W0	
MOV W0, NVMKEY	; Write the 55 key
MOV #0xAA, W1	;
MOV W1, NVMKEY	; Write the AA key
BSET NVMCON, #WR	; Start the erase sequence
NOP	; Insert two NOPs after the erase
NOP	; command is asserted

BROWN-OUT SITUATIONS FIGURE 6-3:

6.5 **External Reset (EXTR)**

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to Section 31.0 "Electrical Characteristics" for minimum pulse width specifications. The External Reset (MCLR) Pin bit (EXTR) in the Reset Control register (RCON<7>) is set to indicate the MCLR Reset.

EXTERNAL SUPERVISORY CIRCUIT 6.5.0.1

Many systems have external supervisory circuits that generate reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

6.5.0.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.6 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the reset vector fetch will commence.

The Software Reset (Instruction) Flag bit (SWR) in the Reset Control register (RCON<6>) is set to indicate the software Reset.

6.7 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog time-out occurs, the device will asynchronously assert SYSRST. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag bit (WDTO) in the Reset Control register (RCON<4>) is set to indicate the Watchdog Reset. Refer to Section 28.4 "Watchdog Timer (WDT)" for more information on Watchdog Reset.

6.8 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag bit (TRAPR) in the Reset Control register (RCON<15>) is set to indicate the Trap Conflict Reset. Refer to Section 7.0 "Interrupt Controller" for more information on trap conflict Resets.

7.0 INTERRUPT CONTROLLER

- This data sheet summarizes the features Note 1: of dsPIC33FJ32MC302/304, the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 32. "Interrupts (Part III)" (DS70214) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 interrupt controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 CPU.

The interrupt controller has the following features:

- Up to eight processor exceptions and software traps
- Eight user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) shown in Figure 7-1, resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight nonmaskable trap vectors plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24-bit wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 takes priority over interrupts at any other vector address.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement up to 53 unique interrupts and five nonmaskable traps. These are summarized in Table 7-1.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a means to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications for evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 device clears its registers in response to a Reset, which forces the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	 I = Interrupt request has occurred

0 = Interrupt request has not occurred

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See **"Pin Diagrams**" for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/ X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-ofstate.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	OxFFOO, WO	;	Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	;	and PORTB<7:0> as outputs
NOP		;	Delay 1 cycle
btss	PORTB, #13	;	Next Instruction

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER	11-4: RPINF	R4: PERIPHEI	RAL PIN SE	ELECT INPU	T REGISTER	4	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_			T5CKR<4:0	>	
bit 15		·					bit
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			T4CKR<4:0	>	
bit 7					bit (
Legend:							
R = Readabl	le bit	W = Writable	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unki	nown
	11001 = Inpo • • • • • •	ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0					
bit 7-5	Unimplemer	nted: Read as ')'				
bit 4-0	11111 = Inpr 11001 = Inpr •	 Assign Timera ut tied to Vss ut tied to RP25 	t External Cl	ock (T4CK) to t	the correspond	ling RPn pin	
		ut tied to RP1					

00000 = Input tied to RP0

15.2 Output Compare Resources

Many useful resources related to Output Compare are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

15.2.1 KEY RESOURCES

- Section 13. "Output Compare" (DS70209)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

15.3 Output Compare Registers

REGISTER 15-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER (x = 1, 2, 3 or 4)

bit 15							bit 8
		OCSIDL					
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0

U-0	U-0	U-0	R-0, HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7							bit 0

Legend:	HC = Cleared in Hardware	HS = Set in Hardware			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit
	1 = Output Compare x halts in CPU Idle mode
	0 = Output Compare x continues to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111).
bit 2	
bit 3	OCTSEL: Output Compare Timer Select bit
	 1 = Timer3 is the clock source for Compare x 0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	111 = PWM mode on OCx, Fault pin enabled
	110 = PWM mode on OCx, Fault pin disabled
	101 = Initialize OCx pin low, generate continuous output pulses on OCx pin
	100 = Initialize OCx pin low, generate single output pulse on OCx pin
	011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low
	001 = Initialize OCx pin low, compare event forces OCx pin high
	000 = Output compare channel is disabled

21.4 ECAN Resources

Many useful resources related to ECAN are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

21.4.1 KEY RESOURCES

- Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185)
- Code Samples
- Application Notes
- Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0				
_		ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN				
bit 15		.,					bit 8				
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0				
IVRIF	WAKIF	ERRIF	_	FIFOIF	RBOVIF	RBIF	TBIF				
bit 7	•		L				bit C				
Legend:		C = Writable	bit, but only '0		n to clear the bit						
R = Readabl	le bit	W = Writable	bit	-	mented bit, read						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
6:4 A F A A		ted. Deed oo f	0'								
bit 15-14 bit 13	-	i ted: Read as ' mitter in Error		hit							
DIE 13		er is in Bus Of		DIL							
		er is not in Bus									
bit 12	TXBP: Trans	mitter in Error	State Bus Pas	sive bit							
	1 = Transmitt	er is in Bus Pa	ssive state								
		er is not in Bus									
bit 11		ver in Error Sta		ve bit							
		1 = Receiver is in Bus Passive state 0 = Receiver is not in Bus Passive state									
bit 10				na hit							
	TXWAR: Transmitter in Error State Warning bit 1 = Transmitter is in Error Warning state										
		0 = Transmitter is not in Error Warning state									
bit 9	RXWAR: Red	eiver in Error	State Warning	bit							
	1 = Receiver is in Error Warning state										
1.11.0		is not in Error	-								
bit 8				State Warning te Warning sta							
				State Warning							
bit 7					,						
	IVRIF: Invalid Message Received Interrupt Flag bit 1 = Interrupt Request has occurred										
	0 = Interrupt I	Request has n	ot occurred								
bit 6	WAKIF: Bus	Wake-up Activ	ity Interrupt Fl	ag bit							
	 Interrupt Request has occurred Interrupt Request has not occurred 										
bit 5		-		ourcos in CilNT	TE<12.8> rogist	or)					
DIL D		ERRIF: Error Interrupt Flag bit (multiple sources in CiINTF<13:8> register) 1 = Interrupt Request has occurred									
		Request has n									
bit 4	-	ted: Read as '									
bit 3	•	Almost Full In		it							
		Request has o									
	0 = Interrupt I	0 = Interrupt Request has not occurred									
bit 2		Buffer Overflo	-	ag bit							
		Request has o									
L:1	-	Request has n									
bit 1		ffer Interrupt Fl Request has o									
		Request has n									
bit 0	-	fer Interrupt Fl									
		Request has o									

24.1 Comparator Resources

Many useful resources related to Comparators are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwprod- ucts/Devices.aspx?dDoc- Name=en532315

24.1.1 KEY RESOURCES

- Section 34. "Comparators" (DS70212)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 25-4:	RTCVAL	(WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER ⁽¹⁾
----------------	--------	---

				-				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	_	—		—	_	_	_	
bit 15							bit 8	
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	YRTE	N<3:0>		YRONE<3:0>				
bit 7							bit 0	
Legend:								
R = Readable b	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'		
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown	

bit 15-8 Unimplemented: Read as '0'

bit 7-4 YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9

bit 3-0 YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 25-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTE	N<1:0>		DAYON	IE<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12 MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1

bit 11-8MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9bit 7-6Unimplemented: Read as '0'

bit 5-4 DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3

bit 3-0 DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

TABLE 28-5: CODE FLASH SECURITY SEGMENT SIZES FOR 128 KB DEVICES

CONFIG BITS	BSS<2:0> = x11 0K	BSS<2:0> = x10 1K	BSS<2:0> = x01 4K	BSS<2:0> = x00 8K
SSS<2:0> = x11 0K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 007FFEh GS = 43776 IW 000000h 005FFEh 0157FEh	VS = 256 IW 000000h BS = 768 IW 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 003FFEh 004000h 007FFEh 000300h 0007FFEh 00000h 0007FFEh 00000h 007FFEh 00000h 007FFEh 00800h 007FFEh	VS = 256 IW 000000h BS = 3840 IW 000200h 000800h 0007FEh 000200h 0003FFEh 003400h 003FFEh 00800h 007FFEh 000200h 003FFEh 00800h 007FFEh	VS = 256 IW 000000h BS = 7936 IW 000200h 000800h 0007FEh 000800h 001FFEh 002200h 003FFEh 0037FEh 004000h 0037FEh 004000h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 007FFEh 008000h 007FFEh 010000h 0157FEh 0157FEh
SSS<2:0> = x10 4K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h SS = 3840 IW 000800h 001FFEh 002000h GS = 39936 IW 0157FEh	VS = 256 IW 000000h BS = 768 IW 000200h SS = 3072 IW 0001FEh 000800h 001FFEh 0003FEh 002000h 003FFEh 002000h 003FFEh 004000h 007FFEh 004000h 007FFEh 008000h 007FFEh 004000h 007FFEh 008000h 004000h 007FFEh 008000h 000ABFEh 000800h 00157FEh	VS = 256 IW 000000h 0001FEh BS = 3840 IW 000200h 0007FEh 000200h 001FFEh 003FFEh 004000h 004000h 003FFEh 004000h 003FFEh 004000h 003FFEh 004000h 000ABFEh 00000h 003FFEh 004000h 000ABFEh 00000h 001FFEh 004000h 001FFEh 00157FEh 0157FEh	VS = 256 IW 000000h BS = 7936 IW 000200h 0007FEh 000800h 001FEFh 000200h 001FEFh 000200h 003FFEh 00200h 003FFEh 00200h 003FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 008000h 0004000h 0007FFEh 004000h 007FFEh 0004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 0007FFEh
SSS<2:0> = x01 8K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 001FFEh 002000h 001FFEh 003FFEh 004000h 004000h 007FFEh 00800h 007FFEh 00800h 007FFEh 00800h 00FFFEh 00800h 00FFFEh 00800h 00FFFEh 010000h 0157FEh	VS = 256 IW 000000h BS = 768 IW 000200h 0007FEh 000800h 001FFEh 000300h SS = 7168 IW 003FFEh 004000h 003FFEh 0007FEh 004000h 007FFEh 004000h 007FFEh 008000h 007FFEh 008000h 007FFEh 008000h 007FFEh 008000h 005FFFEh 008000h 005FFFEh 010000h 0157FEh 0157FEh	VS = 256 IW 000000h BS = 3840 IW 0007FEh 000800h 0007FEh 000800h 001FFEh 000200h 003FFEh 003500h 003FFEh 000800h 003FFEh 007FFEh 004000h 007FFEh 008000h 007FFEh 010000h	VS = 256 IW 000000h BS = 7936 IW 0007FEh 000800h 0007FEh 000800h 001FFEh 0022000h 003FFEh 003FFEh 004000h 007FFEh 008000h 007FFEh 004000h 007FFEh 004000h 007FFEh 004000h 007FFEh 008000h 007FFEh 008000h 007FFEh 010000h 0157FEh 0157FEh
SSS<2:0> = x00 16K	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 007FFEh SS = 16128 IW 004000h 007FFEh 008000h 007FFEh GS = 27648 IW 0157FEh	VS = 256 IW 000000h BS = 768 IW 000200h 0007FEh 000800h 001FFEh 0002000h 003FFEh 002000h 003FFEh 004000h 0044000h 007FFEh 008000h 007FFEh 0010000h 007FFFEh	VS = 256 IW 000000h BS = 3840 IW 000200h 000800h 0007FEh 000800h 001FFEh 0035FEh 00200h 0035FEh 004000h 007FFEh 00800h 0037FEh 0037FEh 008000h 007FFEh	VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FEFh 002000h SS = 7936 IW 000200h 003FFEh 002000h SS = 8192 IW 004000h 007FFEh 008000h GS = 27648 IW 0157FEh

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None

TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)

31.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/ X04 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +160°C
Voltage on VDD with respect to Vss	-0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to Vss when $VDD \ge 3.0V^{(4)}$	-0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when VDD < 3.0V ⁽⁴⁾	-0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	
Maximum current sourced/sunk by any 2x I/O pin ⁽³⁾	8 mA
Maximum current sourced/sunk by any 4x I/O pin ⁽³⁾	
Maximum current sourced/sunk by any 8x I/O pin ⁽³⁾	
Maximum current sunk by all ports	
Maximum current sourced by all ports ⁽²⁾	200 mA

- **Note 1:** Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.
 - 2: Maximum allowable current is a function of device maximum power dissipation (see Table 31-2).
 - 3: Exceptions are CLKOUT, which is able to sink/source 25 mA, and the VREF+, VREF-, SCLx, SDAx, PGECx and PGEDx pins, which are able to sink/source 12 mA.
 - 4: See the "Pin Diagrams" section for 5V tolerant pins.

AC CHARACTERISTICS			Standard Operating		ure -40°	C ≤Ta ≤+	85°C for	(unless otherwise stated) Industrial or Extended
Param No. Symbol Characterist			tic	Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8		8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO System Frequency		100	_	200	MHz	_
OS52	TLOCK	PLL Start-up Time (Lock Time)		0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter	·) ⁽²⁾	-3	0.5	3	%	Measured over 100 ms period

TABLE 31-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 31-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHA	RACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Characteristic	Min	Тур	Max	Units	Conditions			
	Internal FRC Accuracy) FRC Fr	equency	= 7.37 N	IHz ⁽¹⁾				
F20	FRC	-2	_	+2	%	-40°C ≤TA ≤+85°C VDD = 3.0-3.6V			
	FRC	-5	_	+5	%	$-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

TABLE 31-19: INTERNAL RC ACCURACY

АС СН	ARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Characteristic	Min	Тур	Max	Units	Condit	ions	
	LPRC @ 32.768 kHz ⁽¹⁾							
F21	LPRC	-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C$ VDD = 3.0-3.6V		
	LPRC	-30 — +30 % $-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6					VDD = 3.0-3.6V	

Note 1: Change of LPRC frequency as VDD changes.

© 2007-2012 Microchip Technology Inc.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

TABLE 31-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА		rics	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	_	—	ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—		—	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	_	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	_	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	120		—	ns	_	
SP51	TssH2doZ	SSx	10	_	50	ns	_	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 Tcy + 40	_	_	ns	See Note 4	
SP60	TssL2doV	SDOx Data Output Valid after	—		50	ns	—	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

NOTES:

Section Name	Update Description
Section 30.0 "Electrical Characteristics"	Updated Max MIPS for temperature range of -40°C to +125°C in Table 30-1
	Updated typical values in Thermal Packaging Characteristics in Table 30-3
	Added parameters DI11 and DI12 to Table 30-9
	Updated minimum values for parameters D136 (TRW) and D137 (TPE) and removed typical values in Table 30-12
	Added Extended temperature range to Table 30-13
	Updated Note 2 in Table 30-38
	Updated parameter AD63 and added Note 3 to Table 30-42 and Table 30-43

TABLE A-1: MAJOR SECTION UPDATES (CONTINUED)