

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc302-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1. The pages that follow show their pinout diagrams.

TABLE 1:dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04CONTROLLER FAMILIES

						l	Remap	pable F	eriphe	ral			1).			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Motor Control PWM (Channels) ⁽³⁾	Quadrature Encoder Interface	UART	IdS	ECANTM	External Interrupts ⁽⁴⁾	RTCC	I²C™	CRC Generator	10-bit/12-bit ADC (Channels)	6-pin 16-bit DAC	Analog Comparator (2 Channels/Voltage Regulat	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
dsPIC33FJ128MC804	44	128	16	26	5	4	4	6, 2	2	2	2	1	3	1	1	1	9	1	1/1	11	35	QFN TQFP
dsPIC33FJ128MC802	28	128	16	16	5	4	4	6, 2	2	2	2	1	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ128MC204	44	128	8	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ128MC202	28	128	8	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64MC804	44	64	16	26	5	4	4	6, 2	2	2	2	1	3	1	1	1	9	1	1/1	11	35	QFN TQFP
dsPIC33FJ64MC802	28	64	16	16	5	4	4	6, 2	2	2	2	1	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64MC204	44	64	8	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ64MC202	28	64	8	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ32MC304	44	32	4	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ32MC302	28	32	4	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S

Note 1: RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32MC302/304, which include 1 Kbyte of DMA RAM.

2: Only four out of five timers are remappable.

3: Only PWM fault pins are remappable.

4: Only two out of three interrupts are remappable.

4.0 MEMORY ORGANIZATION

Note:	This data sheet summarizes the features
	of the dsPIC33FJ32MC302/304,
	dsPIC33FJ64MCX02/X04 and
	dsPIC33FJ128MCX02/X04 family of
	devices. It is not intended to be a
	comprehensive reference source. To
	complement the information in this data
	sheet, refer to Section 4. "Program
	Memory" (DS70203) of the "dsPIC33F/
	PIC24H Family Reference Manual", which
	is available from the Microchip web site
	(www.microchip.com).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access to program memory from the data space during code execution.

4.1 Program Address Space

The program address memory space of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.8 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices is shown in Figure 4-1.

FIGURE 4-1: PROGRAM MEMORY MAP FOR dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 AND dsPIC33FJ128MCX02/X04 DEVICES

	dsPIC33FJ32MC302/304	dsPIC33FJ64MCX02/X04	dsPIC33FJ128MCX02/X04	
▲	GOTO Instruction	GOTO Instruction	GOTO Instruction 0x000000 Reset Address 0x000002	
	Interrupt Vector Table	Interrupt Vector Table	Interrupt Vector Table	
	Reserved	Reserved	0x0000FE	
		Alternate Vector Table	Alternate Vector Table 0x000104	
			0x0001FE	
Space	User Program Flash Memory (11264 instructions)	User Program Flash Memory	0x0057FE	
User Memory \$		(22016 Instructions)	User Program Flash Memory (44032 instructions)	
	Unimplemented			
	(Read '0's)	Unimplemented	0.045755	
	((Read '0's)	0x0157FE 0x015800	
		(Redu 03)		
			Unimplemented	
			(Read '0's)	
•			0x7FFFE	
Î	Reserved	Reserved	0x800000 Reserved	
ry Space	Device Configuration	Device Configuration	Device Configuration OxF7FFE OxF80000 Registers OxF80017	
ation Memo	Reserved	Reserved	Reserved 0xF80018	
nfigui			0xFEFFFE	
ပိ	DEVID (2)	DEVID (2)	DEVID (2) 0xFF0000 0xFF0002	
<u> </u>	Reserved	Reserved	Reserved	
Note	: Memory areas are not show	vn to scale.		

TABLE 4-20: DMA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	-	_	_	_	_	AMOD)E<1:0>	_	_	MODE	<1:0>	0000
DMA0REQ	0382	FORCE	ORCE IRQSEL<6:0> 0004										0000					
DMA0STA	0384		STA<15:0> 00										0000					
DMA0STB	0386		STB<15:0> 00										0000					
DMA0PAD	0388		PAD<15:0> 00									0000						
DMA0CNT	038A	_	CNT<9:0>								0000							
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD)E<1:0>	_	_	MODE	<1:0>	0000
DMA1REQ	038E	FORCE	CE IRQSEL<6:0> 0000															
DMA1STA	0390		STA<15:0> 0000										0000					
DMA1STB	0392		STB<15:0> 0(0000					
DMA1PAD	0394								F	PAD<15:0>								0000
DMA1CNT	0396	—	CNT<9:0>								0000							
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW		_	—	_	—	AMOD)E<1:0>	—	_	MODE	=<1:0>	0000
DMA2REQ	039A	FORCE	E IRQSEL<6:0> 0000															
DMA2STA	039C		STA<15:0> 0000															
DMA2STB	039E		STB<15:0> 00										0000					
DMA2PAD	03A0		PAD<15:0> 0(0000						
DMA2CNT	03A2	—	_	—	—	—	—					CN	T<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	_	AMOD)E<1:0>	—		MODE	=<1:0>	0000
DMA3REQ	03A6	FORCE	—	—	_	—		—	_	—				IRQSEL<6:0	>			0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								S	STB<15:0>								0000
DMA3PAD	03AC								F	PAD<15:0>								0000
DMA3CNT	03AE	—		—	—	—			-	-		CN	T<9:0>	-				0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW		—	—	—		AMOD)E<1:0>	—		MODE	<1:0>	0000
DMA4REQ	03B2	FORCE	—	—	_	—		—	_	—				IRQSEL<6:0	>			0000
DMA4STA	03B4								S	STA<15:0>								0000
DMA4STB	03B6								S	STB<15:0>								0000
DMA4PAD	03B8								F	PAD<15:0>								0000
DMA4CNT	03BA	—		—	—	—			-	-		CN	T<9:0>	-				0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	_	AMOD)E<1:0>	-	—	MODE	=<1:0>	0000
DMA5REQ	03BE	FORCE	_	-	—	_	—	—	—	-				IRQSEL<6:0	>			0000
DMA5STA	03C0								S	STA<15:0>								0000
DMA5STB	03C2								S	STB<15:0>								0000

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Legend: — = unimplemented, read as '0'.

4.6 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (because the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing as these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.6.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear).

FIGURE 4-7: MODULO ADDRESSING OPERATION EXAMPLE

The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).

4.6.2 W ADDRESS REGISTER SELECTION

The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select the registers that operate with Modulo Addressing:

- If XWM = 15, X RAGU and X WAGU Modulo Addressing is disabled
- If YWM = 15, Y AGU Modulo Addressing is disabled

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

6.3 System Reset

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC device Configuration register selects the device clock source.

A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>).

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The description of the sequence in which this occurs is shown in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd	_	_	Toscd
FRCPLL	Toscd	_	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	TOSCD + TOST
HS	Toscd	Tost	—	TOSCD + TOST
EC	—	—		—
XTPLL	Toscd	Тоѕт	TLOCK	Toscd + Tost + TLOCK
HSPLL	Toscd	Tost	TLOCK	Toscd + Tost + TLOCK
ECPLL	—	—	TLOCK	TLOCK
Sosc	Toscd	Tost		TOSCD + TOST
LPRC	Toscd	_	_	Toscd

TABLE 6-1: OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
—	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF						
bit 15			•	•			bit 8						
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0						
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INT0IF						
bit 7							bit 0						
<u> </u>													
Legend:	- h:+		L:4		monted bit men	d == (0)							
R = Readable		vv = vvritable	DIL	0 = 0	mented bit, read	uas u v – Pitio upkr	0.000						
	FUR	I - DILIS SEL			aleu		IOWIT						
bit 15	Unimplemen	ted: Read as '	o '										
bit 14	DMA1IF: DM	A Channel 1 D	° ata Transfer (Complete Interi	rupt Flag Status	bit							
	1 = Interrupt r	= Interrupt request has occurred											
	0 = Interrupt r	request has not	occurred										
bit 13	AD1IF: ADC1	Conversion C	omplete Inter	rupt Flag Statu	is bit								
	1 = Interrupt r	= Interrupt request has occurred											
hit 12		2T1 Transmitter	Interrunt Flag	n Status bit									
	1 = Interrupt r	request has oc	curred	g olulus bil									
	0 = Interrupt r	request has not	occurred										
bit 11	U1RXIF: UAF	RT1 Receiver Ir	nterrupt Flag S	Status bit									
	1 = Interrupt r	request has oc	curred										
hit 10		request has not	Coccurred	-:+									
DIL TU	1 = Interrunt r	Event interrup	L Flay Status i	JIL									
	0 = Interrupt r	request has not	toccurred										
bit 9	SPI1EIF: SPI	1 Error Interrup	ot Flag Status	bit									
	1 = Interrupt r	request has oc	curred										
	0 = Interrupt r	request has not	toccurred										
bit 8	T3IF: Timer3	Interrupt Flag S	Status bit										
	0 = Interrupt r	request has not	toccurred										
bit 7	T2IF: Timer2	Interrupt Flag S	Status bit										
	1 = Interrupt r	1 = Interrupt request has occurred											
	0 = Interrupt r	request has not	occurred										
bit 6	OC2IF: Outpu	ut Compare Ch	annel 2 Interr	upt Flag Status	s bit								
	\perp = Interrupt r 0 = Interrupt r	request has occured as has not	currea t occurred										
bit 5	IC2IF: Input C	Capture Channe	el 2 Interrupt I	-lag Status bit									
	1 = Interrupt r	request has occ	curred										
	0 = Interrupt r	request has not	toccurred										
bit 4	DMA0IF: DM	A Channel 0 D	ata Transfer C	Complete Interi	rupt Flag Status	bit							
	1 = Interrupt r	request has occ	curred										
bit 3	T1IF: Timer1	Interrupt Flag S	Status bit										
	1 = Interrupt r	request has oc	curred										
	0 = Interrupt r	request has not	occurred										

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

8.0 DIRECT MEMORY ACCESS (DMA)

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 38. "Direct Memory Access (DMA) (Part III)" (DS70215) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read From Peripheral	DMAxPAD Register Values to Write to Peripheral	
INT0 – External Interrupt 0	0000000	—	—	
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	—	
OC1 – Output Compare 1 Data	0000010	—	0x0182 (OC1R)	
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)	
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—	
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)	
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)	
TMR2 – Timer2	0000111	—	—	
TMR3 – Timer3	0001000	—	—	
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)	
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—	
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)	
ADC1 – ADC1 Convert Done	0001101	0x0300 (ADC1BUF0)	—	
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	—	
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)	
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)	
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	—	
PMP - Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)	
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)	
DAC1 - Right Data Output	1001110	—	0x3F6 (DAC1RDAT)	
DAC2 - Left Data Output	1001111	_	0x03F8 (DAC1LDAT)	

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 39. "Oscillator (Part III)"** (DS70216) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This register is reset only on a Power-on Reset (POR).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEVTDIR ⁽¹⁾			ç	SEVTCMP<14:8	_{}>} (2)		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTCI	MP<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable bi	t	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
•							

bit 15SEVTDIR: Special Event Trigger Time Base Direction bit⁽¹⁾1 = A Special Event Trigger occurs when the PWM time base is counting downward0 = A Special Event Trigger occurs when the PWM time base is counting upwardbit 14-0SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: This bit is compared with the PTDIR bit (PxTMR<15>) to generate the Special Event Trigger.

2: The PxSECMP<14:0> bits are compared with the PxTMR<14:0> bits to generate the Special Event Trigger.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) of "dsPIC33F/PIC24H the Family Reference Manual", which is available the Microchip from web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI include:

- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- · Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits, QEIM<2:0> bits (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive) Value that is transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	 ACKEN: Acknowledge Sequence Enable bit (when operating as I²C master, applicable during master receive) 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I ² C master) 1 = Enables Receive mode for I ² C. Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master) 1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	 RSEN: Repeated Start Condition Enable bit (when operating as I²C master) 1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence 0 = Repeated Start condition not in progress
bit 0	SEN: Start Condition Enable bit (when operating as I ² C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 21-11:	CiFEN1: ECAN™	ACCEPTANCE FILTER ENABLE REGISTER
-----------------	---------------	-----------------------------------

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

1 = Enable Filter n

0 = Disable Filter n

REGISTER 21-12: CIBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

	_								
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BF	P<3:0>		F2BP<3:0>					
bit 15							bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
F1BP<3:0>					F0BF	P<3:0>			
bit 7							bit 0		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-12	F3BP<3:0>: 1111 = Filte 1110 = Filte	RX Buffer mask r hits received ir r hits received ir	k for Filter 3 n RX FIFO but n RX Buffer 14	ffer I					
	0001 = Filte	r hits received in	RX Buffer 0						
bit 11-8	F2BP<3:0>:	RX Buffer masl	k for Filter 2 (s	same values as	bit 15-12)				
bit 7-4	F1BP<3:0>:	RX Buffer masl	k for Filter 1 (s	same values as	, bit 15-12)				
bit 3-0	F0BP<3:0>:	RX Buffer masl	k for Filter 0 (s	same values as	bit 15-12)				

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
_	—		_	—	—	—	_			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE	CVRR	CVRSS		CVR	<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'				
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
bit 15-8	Unimplemented: Read as '0'									
bit 7	CVREN: Corr	nparator Voltag	e Reference E	Enable bit						
	1 = CVREF ci	rcuit powered	on							
	0 = CVREF CI	rcuit powered	down							
bit 6	CVROE: Com	parator VREF	Dutput Enable	e bit						
	1 = CVREF VO 0 = CVREF VO	oltage level is c	output on CVR lisconnected f	EF PIN from CVREE nir	1					
bit 5	CVRR: Comp	arator VREE R	ande Selection	n bit						
bit o	1 = CVRSRC1	range should b	e 0 to 0.625 (CVRSRC with C	VRSRC/24 step s	size				
	0 = CVRSRC	range should b	e 0.25 to 0.71	9 CVRSRC with	n CVRSRC/32 ste	ep size				
bit 4	CVRSS: Corr	parator VREF S	Source Select	ion bit						
	1 = Compara	itor reference s	ource CVRSR	C = VREF+ – VF	REF-					
	0 = Compara	itor reference s	ource CVRSR	c = AVDD – AV	SS					
bit 3-0	CVR<3:0>: C	omparator VRE	F Value Selec	ction 0 ⊴CVR<3	3:0> ≤15 bits					
	When CVRR	<u>= 1:</u>								
	CVREF = (CVR)	<3:0>/ 24) • ((VRSRC)							

REGISTER 24-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

 $\frac{VREF}{CVREF} = (CVRES.0) + (24) \bullet (CVRSRC)$ $\frac{When CVRR}{CVREF} = 1/4 \bullet (CVRSRC) + (CVR < 3:0 > /32) \bullet (CVRSRC)$

28.5 JTAG Interface

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70207) of the *dsPIC33F/PIC24H Family Reference Manual* for further information on usage, configuration and operation of the JTAG interface.

28.6 In-Circuit Serial Programming

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

28.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, Vss, PGC, PGD and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

28.8 Code Protection and CodeGuard Security

The dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the dsPIC33FJ32MC302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices. The dsPIC33FJ32MC302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) of the "dsPIC33F/ PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security.

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc,Wx,Wxd,Wy,Wyd,AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	COM	f	f = f	1	1	N,Z
		COM	f,WREG	WREG = f	1	1	N,Z
		COM	Ws,Wd	$Wd = \overline{Ws}$	1	1	N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,#lit5	Compare Wb with lit5, with Borrow	1	1	C,DC,N,OV,Z
		CPB	Wb,Ws	Compare Wb with Ws, with Borrow $(Wb - Ws - C)$	1	1	C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	Compare Wb with Wn, skip if =	1	1 (2 or 3)	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	1 (2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = f – 1	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z
		DEC2	f,WREG	WREG = $f - 2$	1	1	C,DC,N,OV,Z
		DEC2	Ws,Wd	Wd = Ws - 2	1	1	C,DC,N,OV,Z
28	DIST	DIST	#1;+14	Disable Interrupts for k instruction cycles	1	1	None

TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)

FIGURE 31-10: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS

FIGURE 31-11: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

TABLE 31-29: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS

			$\begin{array}{llllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Conditions		
MP10	TFPWM	PWM Output Fall Time	—			ns	See parameter DO32	
MP11	TRPWM	PWM Output Rise Time	—		—	ns	See parameter DO31	
MP20	TFD	Fault Input ↓to PWM I/O Change	_	_	50	ns	_	
MP30	Tfh	Minimum Pulse Width	50	_		ns	—	

Note 1: These parameters are characterized but not tested in manufacturing.

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions			
ADC Accuracy (12-bit Mode) – Measurements with external VREF+/VREF-										
AD20a	Nr	Resolution ⁽¹⁾	1	2 data bi	ts	bits				
AD21a	INL	Integral Nonlinearity	-2	—	+2	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD22a	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD23a	Gerr	Gain Error	—	3.4	10	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD24a	EOFF	Offset Error	—	0.9	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V			
AD25a	—	Monotonicity	_	—	—	—	Guaranteed			
		ADC Accuracy (12-bit Mo	de) – Mea	asureme	ents with	interna	I VREF+/VREF-			
AD20a	Nr	Resolution ⁽¹⁾	1	2 data bi	ts	bits				
AD21a	INL	Integral Nonlinearity	-2		+2	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD22a	DNL	Differential Nonlinearity	>-1		<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD23a	Gerr	Gain Error	2	10.5	20	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD24a	EOFF	Offset Error	2	3.8	10	LSb	VINL = AVSS = 0V, AVDD = 3.6V			
AD25a	—	Monotonicity				—	Guaranteed			
		Dynamie	c Perforn	nance (1	2-bit Mo	de)				
AD30a	THD	Total Harmonic Distortion			-75	dB	_			
AD31a	SINAD	Signal to Noise and Distortion	68.5	69.5	—	dB	—			
AD32a	SFDR	Spurious Free Dynamic Range	80	_	_	dB	_			
AD33a	Fnyq	Input Signal Bandwidth	_		250	kHz	—			
AD34a	ENOB	Effective Number of Bits	11.09	11.3	_	bits				

TABLE 31-44: ADC MODULE SPECIFICATIONS (12-BIT MODE)

Note 1: Injection currents > |0| can affect the ADC results by approximately 4 to 6 counts (i.e., VIH source > (VDD + 0.3V) or VIL source < (Vss – 0.3V).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

INDEE										
			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions				Conditions			
		Program Flash Memory								
HD130	Eр	Cell Endurance	10,000	—	_	E/W	-40° C to +150° C ⁽²⁾			
HD134	TRETD	Characteristic Retention	20	_	_	Year	1000 E/W cycles or less and no other specifications are violated			

TABLE 32-7: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.

TABLE 32-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

CHARA	AC CTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_		35	ns	_	
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	_	—	ns	_	
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25		—	ns	_	
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	_	55	ns	See Note 2	

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

CHARAC	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns	—		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25	—	—	ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2		
HSP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	55	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.