

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-5 (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc302t-i-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Diagrams (Continued)

FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJ128MC202/204 AND dsPIC33FJ64MC202/ 204 DEVICES WITH 8 KB RAM

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

bit 3	ADDRERR: Address Error Trap Status bit
	1 = Address error trap has occurred0 = Address error trap has not occurred
bit 2	STKERR: Stack Error Trap Status bit
	1 = Stack error trap has occurred
	0 = Stack error trap has not occurred
bit 1	OSCFAIL: Oscillator Failure Trap Status bit
	 1 = Oscillator failure trap has occurred 0 = Oscillator failure trap has not occurred
bit 0	Unimplemented: Read as '0'

U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
	DMA4IF	PMPIF			—	_	—				
bit 15							bit 8				
			D 444 0	D 444 0	D 444 0	D 444 0	D M M A				
U-0	0-0	0-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
	—	—	DMA3IF	C1IF	C1RXIF ⁽¹⁾	SPI2IF	SPIZEIF				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unk	nown				
bit 15	Unimplement	ted: Read as '	0'								
bit 14	DMA4IF: DMA	A Channel 4 D	ata Transfer C	Complete Interr	upt Flag Status	bit					
	1 = Interrupt r	equest has oc	curred								
hit 10	0 = Interrupt h	equest has no	Loccurred	Ctatua hit							
DIL 13	1 = Interrupt r		curred	Status Dit							
	0 = Interrupt r	equest has no	t occurred								
bit 12-5	Unimplement	ted: Read as '	0'								
bit 4	DMA3IF: DM	A Channel 3 D	ata Transfer C	Complete Interr	upt Flag Status	bit					
	1 = Interrupt r	equest has oc	curred								
	0 = Interrupt r	equest has no	t occurred								
bit 3	C1IF: ECAN1	Event Interrup	ot Flag Status	bit ⁽¹⁾							
	1 = Interrupt r	1 = Interrupt request has occurred									
	0 = Interrupt r	request has no	toccurred		(1)						
bit 2	C1RXIF: ECA	N1 Receive D	ata Ready Inte	errupt Flag Sta	itus bit ⁽¹⁾						
	1 = Interrupt n 0 = Interrupt n	equest has oc equest has no	curred t occurred								
bit 1	SPI2IF: SPI2	Event Interrup	t Flag Status I	oit							
	1 = Interrupt r	equest has oc	curred								
	0 = Interrupt r	equest has no	t occurred								
bit 0	SPI2EIF: SPI2	2 Error Interrup	ot Flag Status	bit							
	1 = Interrupt r	equest has oc	curred								
	0 = Interrupt r	equest has no	t occurred								

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0					
_		QEI2IP<2:0>		—		FLTA2IP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
—		PWM2IP<2:0>		—	_	—	_					
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'						
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown					
bit 15	Unimplem	ented: Read as '0)'									
bit 14-12	QEI2IP<2:0	QEI2IP<2:0>: QEI2 Interrupt Priority bits										
	111 = Inter	rupt is priority 7 (ł	nighest prior	ity interrupt)								
	•											
	•											
	• 001 - Intor	rupt is priority 1										
	000 = Inter	rupt is priority i rupt source is disa	abled									
bit 11	Unimplem	ented: Read as '()'									
hit 10-8	FI TA2IP<2	• 0> • PWM2 Fault		Priority hits								
	111 = Inter	runt is priority 7 (k	nichest prior	ity interrunt)								
	•	 III = interrupt is priority / (nignest priority interrupt) • 										
	•											
	•											
	001 = Inter	rupt is priority 1										
	000 = Inte r	rupt source is disa	abled									
bit 7	Unimplem	ented: Read as '0)'									
bit 6-4	PWM2IP<2	2:0>: PWM2 Interr	upt Priority I	bits								
	111 = Inter	rupt is priority 7 (I	nighest prior	ity interrupt)								
	•		0 1	, i,								
	•											
	•											
	001 = Inter	rupt is priority 1										
	000 = Inter	rupt source is disa	abled									

bit 3-0	Unimplemented: Read as	'0'
DIC 3-0	Unimplemented: Read as	0

10.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions.
- The WDT is automatically cleared.
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 10.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device wakes from Idle mode on any of these events:

- Any interrupt that is individually enabled
- Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2 to 4 cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

10.2.3 INTERRUPTS COINCIDENT WITH POWER SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

10.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this cannot be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the ECAN module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the ECAN module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

10.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers do not have effect and read values are invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 11-13: RPINR17: PERIPHERAL PIN SELECT INPUT REGISTER 17

U-0	U-0	U-0	U-0 U-0 U-0 U-0						
—	—	—	_						
bit 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	—	—			INDX2R<4:0>				
bit 7		•					bit 0		
Legend:									
R = Readable I	oit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at P	OR	'1' = Bit is set	et '0' = Bit is cleared x = Bit is unknown			nown			

bit 15-5 Unimplemented: Read as '0'

bit 4-0

INDX2R<4:0>: Assign QEI2 INDEX (INDX2) to the corresponding RPn pin 11111 = Input tied to Vss

11001 = Input tied to RP25

•

00001 = Input tied to RP1 00000 = Input tied to RP0

20.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN 2.0, RS-232 and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.

The primary features of the UART module are:

- Full-Duplex, 8- or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd or No Parity options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 10 Mbps to 38 bps at 40 MIPS
- Baud rates ranging from 4 Mbps to 61 bps at 4x mode at 40 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- · 4-deep FIFO Receive Data buffer
- · Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- · Transmit and Receive interrupts
- · A separate interrupt for all UART error conditions
- Loopback mode for diagnostic support
- · Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 20-1. The UART module consists of these key hardware elements:

- · Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 20-1: UART SIMPLIFIED BLOCK DIAGRAM

Note 1: Both UART1 and UART2 can trigger a DMA data transfer.

2: If DMA transfers are required, the UART TX/RX FIFO buffer must be set to a size of 1 byte/word (i.e., UTXISEL<1:0> = 00 and URXISEL<1:0> = 00).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 2 ¹	I-4: CiFCT	RL: ECAN™	FIFO CONT		TER					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	DMABS<2:0>		_	—	_	—				
bit 15							bit 8			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	—	_			FSA<4:0>					
bit 7							bit 0			
Legend:										
R = Readable bit W = Writable			bit	U = Unimplemented bit, read as '0'						
-n = Value at POR '1' = Bit is se				'0' = Bit is cle	eared	x = Bit is unki	nown			
bit 15-13 bit 12-5	DMABS<2:03 111 = Reserv 110 = 32 buff 101 = 24 buff 011 = 12 buff 011 = 8 buffe 001 = 6 buffe 000 = 4 buffe Unimplement	>: DMA Buffer S yed fers in DMA RA fers in DMA RA fers in DMA RA fers in DMA RAM ers in DMA RAM ers in DMA RAM ers in DMA RAM	Size bits M M M M 1 1 1 2)							
bit 4-0	FSA<4:0>: F	IFO Area Starts	s with Buffer b	oits						
	111110 = Rea	id buffer RB30								

© 2007-2012 Microchip Technology Inc.

•

00001 = TX/RX buffer TRB1 00000 = TX/RX buffer TRB0

DS70291G-page 261

25.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304. the of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock Calendar (RTCC)" and (DS70301) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices, and its operation.

The following are some of the key features of this module:

- Time: hours, minutes and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 25-1: RTCC BLOCK DIAGRAM

FIGURE 26-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

26.2 User Interface

26.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 26.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

26.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

26.3 Operation in Power-Saving Modes

26.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

26.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

FIGURE 31-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

АС СН	ARACTERIS	TICS	Sta (un Ope	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Charact	teristic	Min	Тур	Max	Units	Conditions	
TA10	T⊤xH	TxCK High Time	Synchronous no prescaler	s, Tcy + 20	—	—	ns	Must also meet parameter TA15.	
			Synchronous with prescale	s, (Tcy + 20)/N er	-	_	ns	N = prescale value	
			Asynchronou	us 20	—	_	ns	(1, 8, 64, 256)	
TA11	T⊤xL	TxCK Low Time	Synchronous no prescaler	s, (Tcy + 20)	-	-	ns	Must also meet parameter TA15.	
			Synchronous with prescale	s, (Tcy + 20)/N er	-	-	ns	N = prescale value	
			Asynchronou	us 20	_	_	ns	(1, 8, 64, 256)	
TA15	ΤτχΡ	TxCK Input Period	Synchronous no prescaler	s, 2 Tcy + 40	-	-	ns	—	
			Synchronous with prescale	s, Greater of: er 40 ns or (2 TcY + 40)/ N	_	_	_	N = prescale value (1, 8, 64, 256)	
			Asynchronou	us 40	—	—	ns	—	
OS60	Ft1	SOSCI/T1CK Osc frequency Range enabled by setting (T1CON<1>))	cillator Input (oscillator g bit TCS	DC	_	50	kHz	_	
TA20	TCKEXTMRL	Delay from Extern Edge to Timer Inc	nal TxCK Cloc	k 0.75 Tcy + 40		1.75 Tcy + 40	_	_	

TABLE 31-22: TIMER1 EXTERNAL CLOCK TIMING REQUIREMENTS⁽¹⁾

Note 1: Timer1 is a Type A.

FIGURE 31-17: SPIx MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING

TABLE 31-35: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING REQUIREMENTS

АС СНА	RACTERIST	ICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions					
SP10	TscP	Maximum SCK Frequency		—	9	MHz	-40°C to +125°C and see Note 3	
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_		ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	_	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—	_	ns	_	

Note 1: These parameters are characterized, but are not tested in manufacturing.

Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. 2:

- 3: The minimum clock period for SCKx is 111 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

TABLE 31-37:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C <ta <+85°c="" for="" industrial<="" th=""></ta>					
			-40°C ≤TA ≤+125°C for Extender						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾		Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—			ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—			ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—		_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30		_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30		_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow$ to SCKx \uparrow or SCKx Input	120			ns	_		
SP51	TssH2doZ	SSx	10	-	50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_		ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHA		ISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$				
Param.	Symbol	Charac	teristic	Min	Мах	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	-	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	_	μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5	_	μs	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode		300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	TSU:DAT	Data Input	100 kHz mode	250	—	ns	—	
	Setup Time	400 kHz mode	100	—	ns			
			1 MHz mode ⁽¹⁾	100	—	ns		
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs	—	
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7	—	μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6	—	μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0	—	μs	After this period, the first	
		Hold Time	400 kHz mode	0.6	—	μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25	—	μs		
IS33	Tsu:sto	Stop Condition	100 kHz mode	4.7	—	μs	—	
		Setup Time	400 kHz mode	0.6	—	μs		
			1 MHz mode ⁽¹⁾	0.6	—	μs		
IS34	THD:ST	Stop Condition	100 kHz mode	4000	—	ns	—	
	0	Hold Time	400 kHz mode	600	_	ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid	100 kHz mode	0	3500	ns	—	
		From Clock	400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns		
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time bus must be free	
			400 kHz mode	1.3		μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	_	μs	can start	
IS50	Св	Bus Capacitive Lo	ading		400	pF	_	

TABLE 31-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

АС СНА	AC CHARACTERISTICS			$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions								
	Clock Parameters										
AD50	Tad	ADC Clock Period	117.6	_	_	ns	—				
AD51	tRC	ADC Internal RC Oscillator Period	—	250	-	ns	—				
	Conversion Rate										
AD55	tCONV	Conversion Time	_	14 Tad		ns	—				
AD56	FCNV	Throughput Rate	_	—	500	Ksps	—				
AD57	TSAMP	Sample Time	3 Tad	—			—				
		Timin	ig Parame	eters							
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	_	3 Tad	—	Auto convert trigger not selected				
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad		—				
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 TAD			_				
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	_	_	20	μs	_				

TABLE 31-46: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

Section Name	Update Description
Section 31.0 "Electrical Characteristics"	Updated the maximum value for Extended Temperature Devices in the Thermal Operating Conditions (see Table 31-2).
	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 31-4).
	Updated all typical and maximum Operating Current (IDD) values (see Table 31-5).
	Updated all typical and maximum Idle Current (IIDLE) values (see Table 31-6).
	Updated the maximum Power-Down Current (IPD) values for parameters DC60d, DC60a, and DC60b (see Table 31-7).
	Updated all typical Doze Current (Idoze) values (see Table 31-8).
	Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 31-9).
	Added Note 2 to the PLL Clock Timing Specifications (see Table 31-17)
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 31-18).
	Updated the Internal RC Accuracy minimum and maximum values for parameter F21b (see Table 31-19).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 31-20).
	Updated <i>all</i> SPI specifications (see Table 31-32 through Table 31-39 and Figure 31-14 through Figure 31-21)
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 31-43).
	Updated the ADC Module Specifications (12-bit Mode) minimum and maximum values for parameter AD21a (see Table 31-44).
	Updated all ADC Module Specifications (10-bit Mode) values, with the exception of Dynamic Performance (see Table 31-45).
	Updated the minimum value for parameter PM6 and the maximum value for parameter PM7 in the Parallel Master Port Read Timing Requirements (see Table 31-54).
	Added DMA Read/Write Timing Requirements (see Table 31-56).

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)