

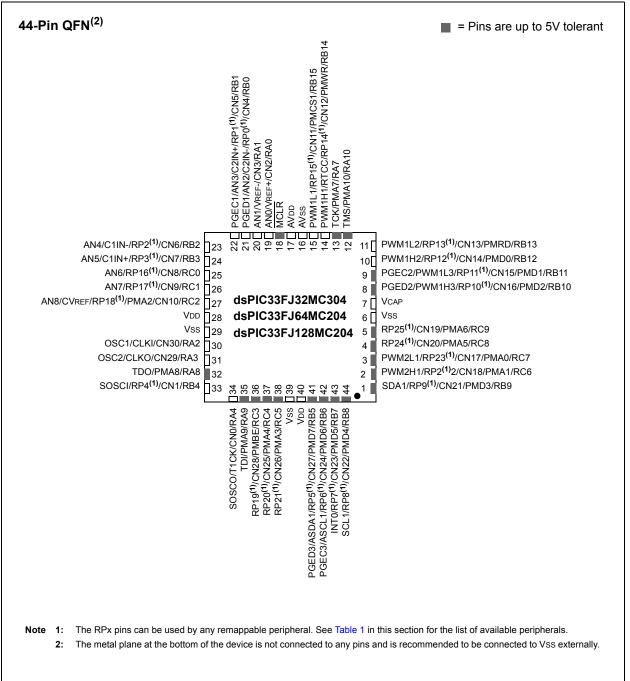
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

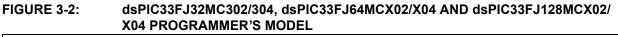
Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc302t-i-so

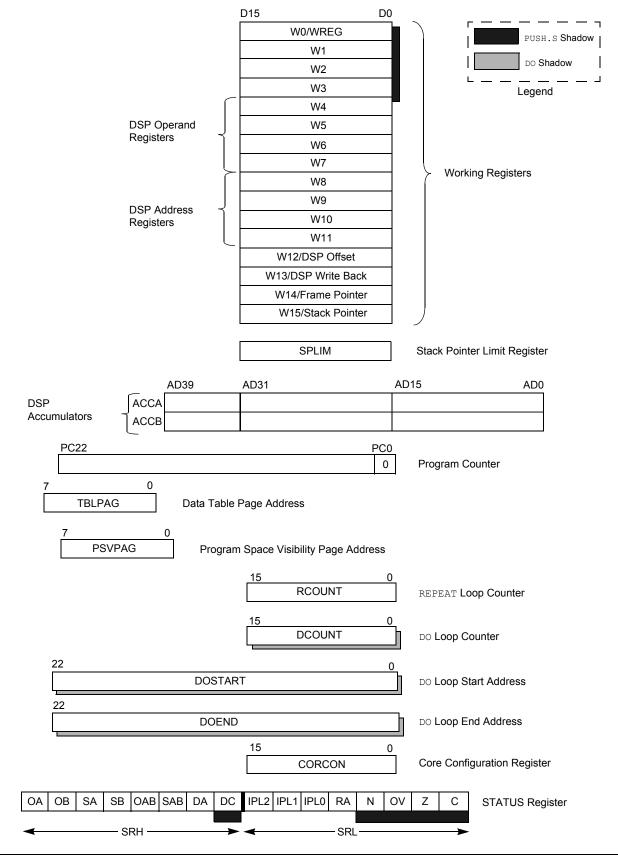
Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

3.3 DSP Engine Overview


The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner by dedicating certain working registers to each address space.


3.4 Special MCU Features

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

TABLE 4-12: I2C1 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	-		_	_		_		- Receive Register					0000			
I2C1TRN	0202	_	_		—	—		—	— — Transmit Register					OOFF				
I2C1BRG	0204	_	_		—	—		—	Baud Rate Generator Register					0000				
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	-	_	_	_	_	_					Address	Register					0000
I2C1MSK	020C	-	_	_	_	_	_	Address Mask Register					0000					
Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.																		

TABLE 4-13: UART1 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISEL<1:0> ADDEN RIDLE PERR FERR OERR URXDA				0110				
U1TXREG	0224	_	_	_	_	_	_	_	UTX8			U	ART Transm	nit Register				XXXX
U1RXREG	0226	_	_	_	_	_	_	_	URX8	UART Received Register					0000			
U1BRG	0228		Baud Rate Generator Prescaler								0000							

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: UART2 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN		USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	—		—		—			UTX8			U	ART Transm	nit Register				XXXX
U2RXREG	0236	—		—		—			URX8	UART Receive Register					0000			
U2BRG	0238		Baud Rate Generator Prescaler									0000						

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-40: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than any other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes listed above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset
	Addressing	g mode i	s avai	lable only	for W9
	(in X space	e) and W	/11 (in	Y space).	

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Apart from the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas, the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

EXAMPLE 5-2: LOADING THE WRITE BUFFERS

; Set up NVMCON for row programming oper	ations
MOV #0x4001, W0	;
MOV W0, NVMCON	; Initialize NVMCON
; Set up a pointer to the first program	memory location to be written
; program memory selected, and writes en	abled
MOV #0x0000, W0	;
MOV W0, TBLPAG	; Initialize PM Page Boundary SFR
MOV #0x6000, W0	; An example program memory address
; Perform the TBLWT instructions to writ	e the latches
; Oth_program_word	
MOV #LOW_WORD_0, W2	;
MOV #HIGH_BYTE_0, W3	;
	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 1st_program_word	
MOV #LOW_WORD_1, W2	;
MOV #HIGH_BYTE_1, W3	;
	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
; 2nd_program_word	
MOV #LOW_WORD_2, W2	;
MOV #HIGH_BYTE_2, W3	;
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch
•	
•	
•	
; 63rd_program_word	
MOV #LOW_WORD_31, W2	;
MOV #HIGH_BYTE_31, W3	i . Maite DM les send into program letter
TBLWTL W2, [W0]	; Write PM low word into program latch
TBLWTH W3, [W0++]	; Write PM high byte into program latch

EXAMPLE 5-3: INITIATING A PROGRAMMING SEQUENCE

DISI	#5	; Block all interrupts with priority < 7 ; for next 5 instructions
MOIT	#0FF 140	; for next 5 instructions
MOV	#0x55, W0	
MOV	W0, NVMKEY	; Write the 55 key
MOV	#0xAA, W1	;
MOV	W1, NVMKEY	; Write the AA key
BSET	NVMCON, #WR	; Start the erase sequence
NOP		; Insert two NOPs after the
NOP		; erase command is asserted

REGISTER	7-7: IFS2:	NTERRUPT	FLAG STAT	US REGISTI	ER 2					
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	DMA4IF	PMPIF		—		_	_			
bit 15							bit			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 14	 DMA4IF: DMA Channel 4 Data Transfer Complete Interrupt Flag Status bit 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
	•	•								
bit 13			t Interrupt Flag	Status bit						
		request has ou request has no								
bit 12-5	•	ted: Read as								
bit 4	DMA3IF: DM	A Channel 3 E	Data Transfer C	Complete Interr	rupt Flag Status I	oit				
		request has or								
	•	request has no		(4)						
bit 3			pt Flag Status	bit ⁽¹⁾						
		request has ou request has no								
bit 2	•	•	Data Ready Inte	errupt Flag Sta	itus bit(1)					
5112		request has or		on up thing out						
		request has no								
bit 1	SPI2IF: SPI2 Event Interrupt Flag Status bit									
	 1 = Interrupt request has occurred 0 = Interrupt request has not occurred 									
h # 0	•	•		L:4						
bit 0		2 Error Interru request has or	pt Flag Status	JIQ						
		request has oc								

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		U2TXIP<2:0>		—		U2RXIP<2:0>	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>		_		T5IP<2:0>	
bit 7							bit C
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cle	eared	x = Bit is unkr	nown
hit 1E	Unimplomo	nted: Dood oo '	o'				
bit 15	-	nted: Read as '					
bit 14-12		>: UART2 Trans upt is priority 7 (
	•	-prio piioiii) i (.,			
	•						
	•	unt in priority 1					
		upt is priority 1 upt source is dis	abled				
bit 11		nted: Read as '					
bit 10-8	-	>: UART2 Rece		Priority bits			
		upt is priority 7 (•	•			
	•		5	-,,			
	•						
	• 001 - Interru	upt is priority 1					
		upt is priority if	abled				
bit 7		nted: Read as '					
bit 6-4	-	: External Inter		bits			
		upt is priority 7 (
	•	-prio piioiii) i (.,			
	•						
	•	unt in uniquity d					
		upt is priority 1 upt source is dis	abled				
bit 3		nted: Read as '					
bit 2-0	-	Timer5 Interrupt					
		upt is priority 7 (-	ty interrunt)			
	•		giloot priori	, interrupt)			

• • 001 = Interrupt is priority 1

000 = Interrupt source is disabled

© 2007-2012 Microchip Technology Inc.

7.6 Interrupt Setup Procedures

7.6.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.6.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.6.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

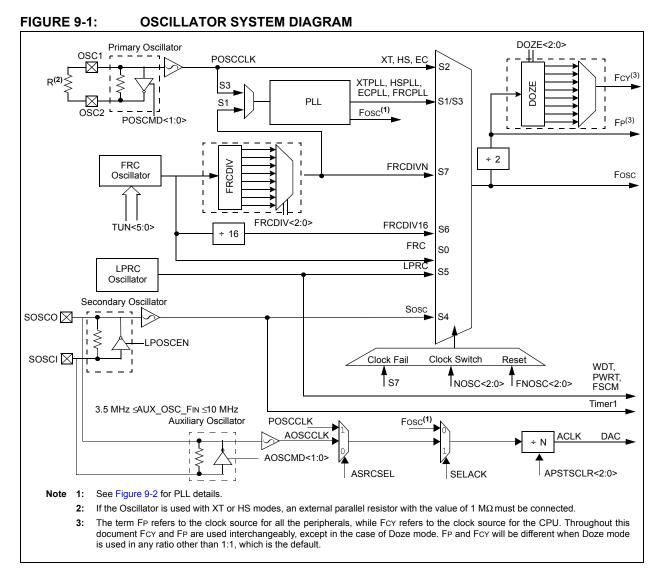
7.6.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the ${\tt POP}$ instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.


The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 39. "Oscillator (Part III)" (DS70216) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Non-volatile Configuration bits for main oscillator selection
- · An auxiliary crystal oscillator for audio DAC
- A simplified diagram of the oscillator system is shown in Figure 9-1.

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit
 - 1 = ADC1 module is disabled 0 = ADC1 module is enabled

REGISTER 11-23: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

-n = Value at P	OR	'1' = Bit is set	set '0' = Bit is cleared x = Bit is unknown				nown	
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
Legend:								
bit 7			-				bit 0	
—	—	—			RP4R<4:0>			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
DIL IO							bit o	
bit 15							bit 8	
	_	_	RP5R<4:0>					
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	

bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 11-24: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

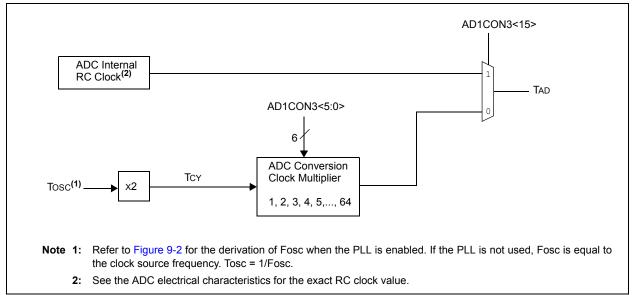
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
—	—	—			RP6R<4:0>				
bit 7			b						

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 11-2 for peripheral function numbers)


bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 11-2 for peripheral function numbers)

REGISTER 1	19-2: I2CxS	TAT: I2Cx S1	ATUS REG	ISTER			
R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC
ACKSTAT	TRSTAT		_	_	BCL	GCSTAT	ADD10
bit 15							bit 8
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC
IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF
bit 7			1				bit (
Legend:		C = Clear on	ly bit	U = Unimpler	nented bit, rea	d as '0'	
R = Readable	e bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardw	are set/cleare
-n = Value at I	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	ACKSTAT: A	vcknowledge Si	tatus bit				
	1 = NACK re	ting as l ² C™ r ceived from sla eived from slav	ave	ble to master t	ransmit operati	on)	
		t or clear at en	-	nowledge.			
bit 14					ster. applicable	e to master trans	smit operatior
	1 = Master tr 0 = Master tr	ansmit is in pro ansmit is not ir	ogress (8 bits - n progress	+ ACK)		end of slave Ack	
bit 13-11		nted: Read as					nomeage.
bit 10	•	Bus Collision					
	1 = A bus co 0 = No collisi	llision has bee	n detected dur		peration		
bit 9		eneral Call Stat		•			
bit 9	1 = General 0 = General	call address wa call address wa	as received as not receive		ess. Hardware o	clear at Stop de	tection.
bit 8	ADD10: 10-b	oit Address Sta dress was mat	tus bit				
	0 = 10-bit ad	dress was not	matched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.
bit 7	IWCOL: Writ	te Collision Det	ect bit				
	0 = No collisi	ion	C		ause the I ² C m	-	
L H 0					usy (cleared by	/ soπware).	
bit 6				CV register is s	still holding the	previous byte	
			transfer I2CxF	RSR to I2CxRC	V (cleared by	software).	
bit 5		ddress bit (whe			(
	1 = Indicates 0 = Indicates	that the last b that the last b	yte received w yte received w	/as data /as device add	ress by reception of	slave byte.	
bit 4	P: Stop bit				-	-	
	1 = Indicates 0 = Stop bit v	that a Stop bit was not detecte	ed last				
	Hardware se	t or clear when	Start, Repeat	ted Start or Sto	p detected.		

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

FIGURE 22-3: ADC CONVERSION CLOCK PERIOD BLOCK DIAGRAM

30.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
 - MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
- MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

30.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- · High-level source code debugging
- · Mouse over variable inspection
- Drag and drop variables from source to watch windows
- · Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- · Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

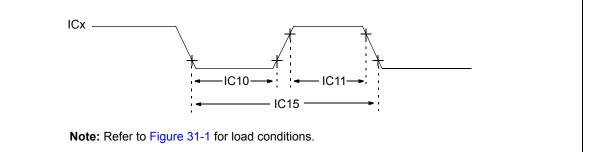
DC CHARACT	ERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq + 85^{\circ}C \mbox{ for Industrial} \\ -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Parameter No. ⁽³⁾	Typical ⁽²⁾	Max	Units	Jnits Conditions					
Operating Cur	rent (IDD) ⁽¹⁾								
DC20d	18	21	mA	-40°C					
DC20a	18	22	mA	+25°C	- 3.3V	10 MIPS			
DC20b	18	22	mA	+85°C	3.30	10 101195			
DC20c	18	25	mA	+125°C					
DC21d	30	35	mA	-40°C					
DC21a	30	34	mA	+25°C	- 3.3V	16 MIPS			
DC21b	30	34	mA	+85°C	3.3V	10 1011-5			
DC21c	30	36	mA	+125°C					
DC22d	34	42	mA	-40°C					
DC22a	34	41	mA	+25°C	- 3.3V	20 MIPS			
DC22b	34	42	mA	+85°C	3.30	20 101195			
DC22c	35	44	mA	+125°C					
DC23d	49	58	mA	-40°C					
DC23a	49	57	mA	+25°C	2.21/				
DC23b	49	57	mA	+85°C	- 3.3V	30 MIPS			
DC23c	49	60	mA	+125°C					
DC24d	63	75	mA	-40°C					
DC24a	63	74	mA	+25°C	2 2)/				
DC24b	63	74	mA	+85°C	- 3.3V	40 MIPS			
DC24c	63	76	mA	+125°C	1				

TABLE 31-5: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

Note 1: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode, no PLL until 10 MIPS, OSC1 is driven with external square wave from rail-to-rail (EC clock overshoot/undershoot < 250 mV required)

- · CLKO is configured as an I/O input pin in the Configuration word
- · All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (defined PMDx bits are set to zero)
- CPU executing while (1) statement
- JTAG is disabled
- 2: Data in "Typ" column is at 3.3V, +25°C unless otherwise stated.
- **3:** These parameters are characterized but not tested in manufacturing.


TABLE 31-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Min Typ ⁽²⁾ Max Units			Conditions		
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μs	-40°C to +85°C		
SY11	Tpwrt	Power-up Timer Period	_	2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable		
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_		
SY20	Twdt1	Watchdog Timer Time-out Period	—	_	—	_	See Section 28.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 31-19)		
SY30	Tost	Oscillator Start-up Time	_	1024 Tosc			Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

FIGURE 31-7: INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS

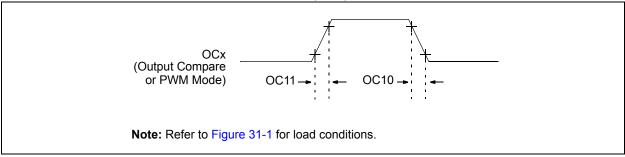
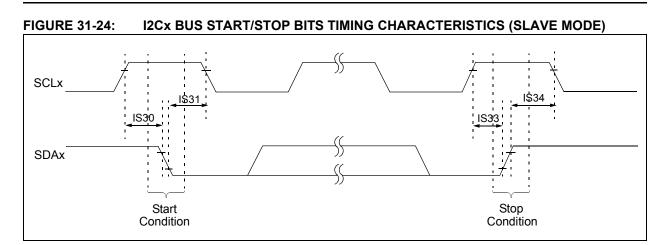
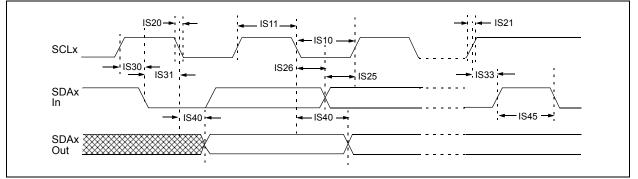


TABLE 31-26: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless otherwis	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No. Symbol Character			ristic ⁽¹⁾	Min	Мах	Units	Conditions			
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 Tcy + 20		ns				
			With Prescaler	10	_	ns				
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20	_	ns				
			With Prescaler	10	_	ns				
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)			

Note 1: These parameters are characterized but not tested in manufacturing.


FIGURE 31-8: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS


TABLE 31-27: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
OC10	TccF	OCx Output Fall Time	—	—	_	ns	See parameter D032		
OC11	TccR	OCx Output Rise Time	—	—	_	ns	See parameter D031		

Note 1: These parameters are characterized but not tested in manufacturing.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions				
ADC Accuracy (10-bit Mode) – Measurements with external VREF+/VREF-											
AD20b	Nr	Resolution ⁽¹⁾	1() data bi	ts	bits					
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V				
AD25b	—	Monotonicity	_			—	Guaranteed				
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal V	VREF+/VREF-				
AD20b	Nr	Resolution ⁽¹⁾	1(0 data bi	ts	bits					
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD25b	—	Monotonicity	—		_	—	Guaranteed				
		Dynamic	Performa	nce (10-	bit Mode	e)					
AD30b	THD	Total Harmonic Distortion			-64	dB	_				
AD31b	SINAD	Signal to Noise and Distortion	57	58.5		dB					
AD32b	SFDR	Spurious Free Dynamic Range	72	_		dB	_				
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—				
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits					

TABLE 31-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.