

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc304-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)
bit 4	RA: REPEAT Loop Active bit 1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit 1 = Result was negative 0 = Result was non-negative (zero or positive)
bit 2	 OV: MCU ALU Overflow bit This bit is used for signed arithmetic (two's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	 Z: MCU ALU Zero bit 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
bit 0	C : MCU ALU Carry/Borrow bit 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- Note 1: This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read only when the NSTDIS bit (INTCON1<15>) = 1.
 - 4: This bit can be read or cleared (not set). Clearing this bit clears SA and SB.

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

							,											
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MODCON	0046	XMODEN	YMODEN	-	—		BWN	/<3:0>			YWM	<3:0>			XWM	<3:0>		0000
XMODSRT	0048							>	(S<15:1>								0	XXXX
XMODEND	004A		XE<15:1>								1	XXXX						
YMODSRT	004C		YS<15:1>								0	XXXX						
YMODEND	004E		YE<15:1>								1	XXXX						
XBREV	0050	BREN	BREN XB<14:0>									XXXX						
DISICNT	0052	—	_						Disabl	e Interrupts	Counter R	egister						XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

6.0 RESETS

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

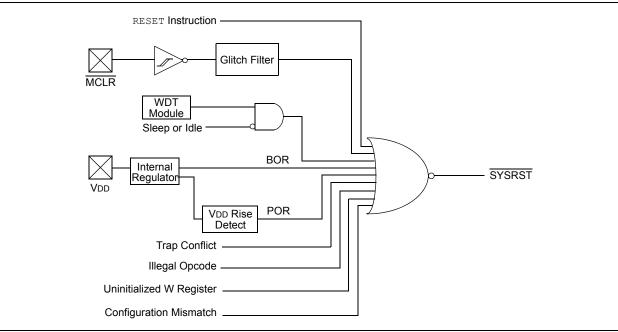
The Reset module combines all reset <u>sources</u> and controls the device Master Reset Signal, <u>SYSRST</u>. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.


Note: Refer to the specific peripheral section or Section 3.0 "CPU" in this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during the code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

6.3 System Reset

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC device Configuration register selects the device clock source. A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>).

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The description of the sequence in which this occurs is shown in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd	_	—	Toscd
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	Toscd + Tost
HS	Toscd	Tost	—	Toscd + Tost
EC	—	—	—	—
XTPLL	Toscd	Тоят	Тьоск	Toscd + Tost + Tlock
HSPLL	Toscd	Тоѕт	Тьоск	Toscd + Tost + Tlock
ECPLL	—	—	Тьоск	Тьоск
Sosc	Toscd	Tost	—	Toscd + Tost
LPRC	Toscd	—	—	Toscd

TABLE 6-1: OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

IABLE 6-2: USCILLATUR PARAMETERS	TABLE 6-2:	OSCILLATOR PARAMETERS
----------------------------------	-------------------	------------------------------

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

6.4 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 31.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset.

6.4.1 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to **Section 28.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER /-	4: INTCO	DNZ: IN LERR	UPICONI	KOL REGIST	ER Z		
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—		_	—	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15		ole Alternate In	•	Table bit			
		nate vector tabl dard (default) v	-				
bit 14		struction Statu					
	1 = DISI inst	ruction is active	e				
	0 = DISI inst	ruction is not a	ctive				
bit 13-3	Unimplemen	ted: Read as '	0'				
bit 2	INT2EP: Exte	ernal Interrupt 2	Edge Detect	Polarity Selec	t bit		
		on negative ede	<i>,</i>				
	•	on positive edg					
bit 1		ernal Interrupt 1	0	Polarity Selec	t bit		
	1 = Interrupt of	on negative ede	ge				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

0 = Interrupt on positive edge

1 = Interrupt on negative edge 0 = Interrupt on positive edge

INTOEP: External Interrupt 0 Edge Detect Polarity Select bit

bit 0

REGISTER 7	-5: IFS0:	INTERRUPT	FLAG STAT	US REGIST	=R 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7	00211	10211			0011		bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as	'0'				
bit 14		MA Channel 1 E		omplete Interr	upt Flag Status	s bit	
		t request has oc t request has no					
bit 13	-	C1 Conversion (unt Eloa Statu	o hit		
DIL 13		t request has oc	•	upi riay Sialu	SDI		
		t request has no					
bit 12	U1TXIF: UA	RT1 Transmitte	r Interrupt Flag	g Status bit			
		t request has oc					
	0 = Interrupt	t request has no	ot occurred				
bit 11		RT1 Receiver I		status bit			
		t request has oc					
hit 10	•	t request has no		.:.			
bit 10		1 Event Interrup	-	DIT			
		t request has oc t request has no					
bit 9	•	PI1 Error Interru		bit			
	1 = Interrupt	t request has oc t request has no	curred				
bit 8	-	3 Interrupt Flag					
	1 = Interrupt	t request has oc t request has no	curred				
bit 7	-	2 Interrupt Flag					
		t request has oc					
	0 = Interrupt	t request has no	ot occurred				
bit 6	OC2IF: Outp	out Compare Cl	nannel 2 Interru	upt Flag Status	s bit		
		t request has oo t request has no					
bit 5	IC2IF: Input	Capture Chanr	el 2 Interrupt F	lag Status bit			
		t request has oc t request has no					
bit 4	-	VIA Channel 0 E		omplete Interr	upt Flag Status	s bit	
		t request has oc					
	0 = Interrupt						
		request has he					
bit 3	T1IF: Timer	1 Interrupt Flag					

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

bit 10 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	R/W-0 QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is di or module is en CC Module Di dule is disable dule is enabled	^{0'} le Disable bit isabled nabled sable bit	U-0 — U = Unimple '0' = Bit is cle	U-0 U-0	U-0 U-0 d as '0' x = Bit is unkn	PMPMD bit 8 U-0 bit 0
R/W-0 CRCMD bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 15-11 L bit 15-11 L bit 10 C Dit 15 L bit 10 C bit 3 F bit 4 1 Dit 7 C Dit 7 C	DAC1MD it DR Jnimplement CMPMD: Con = Comparate = Comparate = Comparate CMPMD: RT = RTCC mo = RTCC mo	QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	PWM2MD bit 0' le Disable bit isabled nabled sable bit	U = Unimple	mented bit, read	d as '0'	U-0 — bit 0
CRCMD bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 10 L 0 1 0 1 0 0 bit 8 F 1 0 bit 7 C bit 7 1	DAC1MD it DR Jnimplement CMPMD: Con = Comparate = Comparate = Comparate CMPMD: RT = RTCC mo = RTCC mo	QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	PWM2MD bit 0' le Disable bit isabled nabled sable bit	U = Unimple	mented bit, read	d as '0'	bit 0
CRCMD bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 10 L 0 1 0 1 0 0 bit 8 F 1 0 bit 7 C bit 7 1	DAC1MD it DR Jnimplement CMPMD: Con = Comparate = Comparate = Comparate CMPMD: RT = RTCC mo = RTCC mo	QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	PWM2MD bit 0' le Disable bit isabled nabled sable bit	U = Unimple	mented bit, read	d as '0'	bit 0
bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 9 F 1 0 bit 8 F 1 0 bit 8 F 1 0 0 0 0 0 0 0 0 0 0 0 0 0	it DR Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	bit 0' le Disable bit isabled nabled sable bit	-			
Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C 1 0 bit 9 F 1 0 bit 8 F 1 0 bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	'1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-			
R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 9 F bit 8 F bit 8 F bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	'1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-			own
R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 9 F bit 8 F bit 8 F bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	'1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-			own
bit 15-11 L bit 10 C bit 9 F bit 8 F bit 8 F bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	ted: Read as ' nparator Modu or module is di or module is e CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-			own
bit 10 C	CMPMD: Con = Comparate = Comparate RTCCMD: RT = RTCC mo = RTCC mo	nparator Modu or module is di or module is e CC Module Di dule is disable	le Disable bit isabled nabled sable bit				
bit 10 C	CMPMD: Con = Comparate = Comparate RTCCMD: RT = RTCC mo = RTCC mo	nparator Modu or module is di or module is e CC Module Di dule is disable	le Disable bit isabled nabled sable bit				
bit 9 F 1 0 bit 8 F 1 0 bit 7 C	= Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	or module is d or module is e CC Module Di dule is disable	isabled nabled sable bit				
bit 9 F 1 0 bit 8 F 1 0 bit 7 C	= Comparat RTCCMD: RT = RTCC mo = RTCC mo	or module is e CC Module Di dule is disable	nabled sable bit				
bit 9 F 1 0 bit 8 F 1 0 bit 7 C	RTCCMD: RT = RTCC mo = RTCC mo	CC Module Di dule is disable	sable bit				
1 0 bit 8 F 1 0 bit 7 C	= RTCC mo = RTCC mo	dule is disable					
0 bit 8 F 1 0 bit 7 C	= RTCC mo		d				
bit 8 F 1 0 bit 7 C			h				
1 0 bit 7 C		P Module Disal					
bit 7 C	= PMP mod	ule is disabled					
1	= PMP mod	ule is enabled					
	CRCMD: CRC	C Module Disal	ble bit				
0		ule is disabled					
-		ule is enabled					
		C1 Module Dis					
_		dule is disable dule is enableo					
		2 Module Disa					
		lule is disabled					
0	= QEI2 mod	lule is enabled					
bit 4 F	PWM2MD: PV	VM2 Module D	Disable bit				
		odule is disable odule is enable					
bit 3-0 L							

11.7 I/O Helpful Tips

- In some cases, certain pins as defined in TABLE 1. 31-9: "DC Characteristics: I/O Pin Input Specifications" under "Injection Current", have internal protection diodes to VDD and VSS. The term "Injection Current" is also referred to as "Clamp Current". On designated pins, with sufficient external current limiting precautions by the user, I/O pin input voltages are allowed to be greater or less than the data sheet absolute maximum ratings with nominal VDD with respect to the VSS and VDD supplies. Note that when the user application forward biases either of the high or low side internal input clamp diodes, that the resulting current being injected into the device that is clamped internally by the VDD and VSS power rails, may affect the ADC accuracy by four to six counts.
- I/O pins that are shared with any analog input pin, 2. (i.e., ANx), are always analog pins by default after any reset. Consequently, any pin(s) configured as an analog input pin, automatically disables the digital input pin buffer. As such, any attempt to read a digital input pin will always return a '0' regardless of the digital logic level on the pin if the analog pin is configured. To use a pin as a digital I/O pin on a shared ANx pin, the user application needs to configure the analog pin configuration registers in the ADC module, (i.e., ADxPCFGL, AD1PCFGH), by setting the appropriate bit that corresponds to that I/O port pin to a '1'. On devices with more than one ADC, both analog pin configurations for both ADC modules must be configured as a digital I/O pin for that pin to function as a digital I/O pin.
- **Note:** Although it is not possible to use a digital input pin when its analog function is enabled, it is possible to use the digital I/O output function, TRISx = 0x0, while the analog function is also enabled. However, this is not recommended, particularly if the analog input is connected to an external analog voltage source, which would create signal contention between the analog signal and the output pin driver.
- 3. Most I/O pins have multiple functions. Referring to the device pin diagrams in the data sheet, the priorities of the functions allocated to any pins are indicated by reading the pin name from left-toright. The left most function name takes precedence over any function to its right in the naming convention. For example: AN16/T2CK/T7CK/RC1. This indicates that AN16 is the highest priority in this example and will supersede all other functions to its right in the list. Those other functions to its right, even if enabled, would not work as long as any other function to its left was enabled. This rule applies to all of the functions listed for a given pin.

- 4. Each CN pin has a configurable internal weak pull-up resistor. The pull-ups act as a current source connected to the pin, and eliminates the need for external resistors in certain applications. The internal pull-up is to ~(VDD-0.8) not VDD. This is still above the minimum VIH of CMOS and TTL devices.
- 5. When driving LEDs directly, the I/O pin can source or sink more current than what is specified in the VOH/IOH and VOL/IOL DC characteristic specification. The respective IOH and IOL current rating only applies to maintaining the corresponding output at or above the VOH and at or below the VOL levels. However, for LEDs unlike digital inputs of an externally connected device, they are not governed by the same minimum VIH/VIL levels. An I/O pin output can safely sink or source any current less than that listed in the absolute maximum rating section of the data sheet. For example:

VOH = 2.4v @ IOH = -8 mA and VDD = 3.3V

The maximum output current sourced by any 8 mA I/O pin = 12 mA.

LED source current < 12 mA is technically permitted. Refer to the VOH/IOH graphs in Section 31.0 "Electrical Characteristics" for additional information.

11.8 I/O Resources

Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

11.8.1 KEY RESOURCES

- Section 10. "I/O Ports" (DS70193)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

11.9 Peripheral Pin Select Registers

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 20 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR21, PRINR23, and PRINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Inpu	t and output	t reg	gister v	/alue	es can	only
	be	changed	if	the	IOI	OCK	bit
	(OS	CCON<6>)	is	set	to	'0'.	See
	Sec	tion 11.6.3.1	I	"Cont	rol	Reg	ister
	Loc	k" for a spec	cific	comm	and	seque	ence.

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INT1R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—		—
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin
	11111 = Input tied to Vss
	11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

17.1 QEI Resources

Many useful resources related to QEI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

17.1.1 KEY RESOURCES

- Section 15. "Quadature Encoder Interface (QEI)" (DS70208)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

NOTES:

21.6 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, re	ead as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	1 = Message will request remote transmission
	0 = Normal message
bit 0	IDE: Extended Identifier bit
	1 = Message will transmit extended identifier
	0 = Message will transmit standard identifier

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

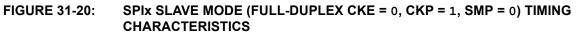
U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	—	EID17	EID16	EID15	EID14
bit 15							bit 8

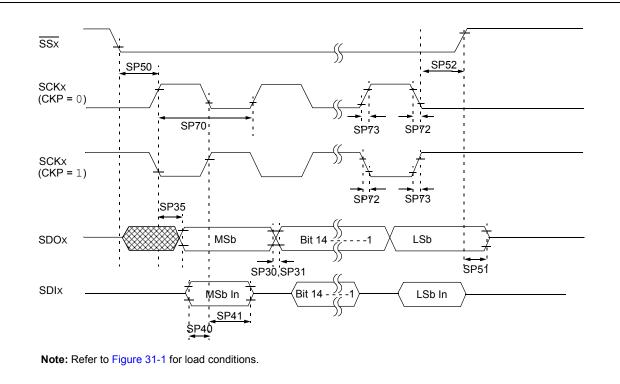
| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID13 | EID12 | EID11 | EID10 | EID9 | EID8 | EID7 | EID6 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

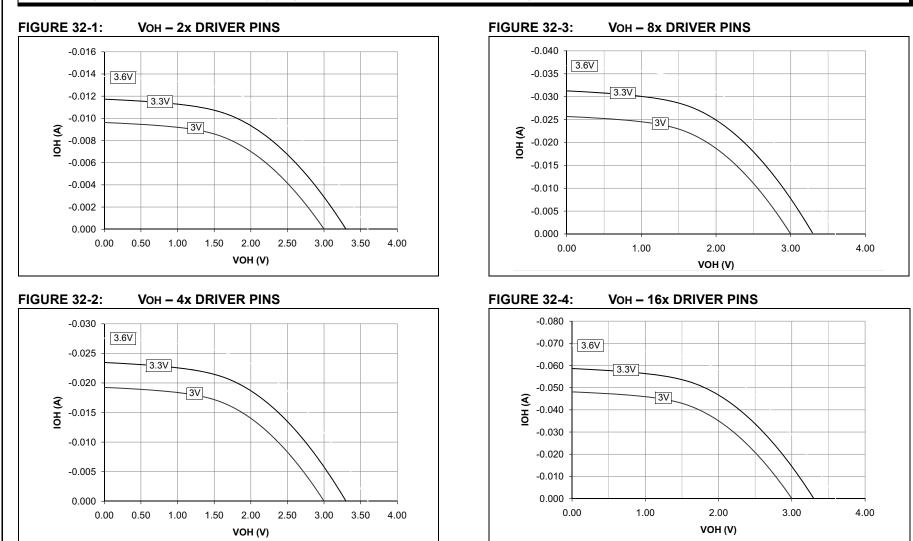
bit 11-0 EID<17:6>: Extended Identifier bits


REGISTER 27-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

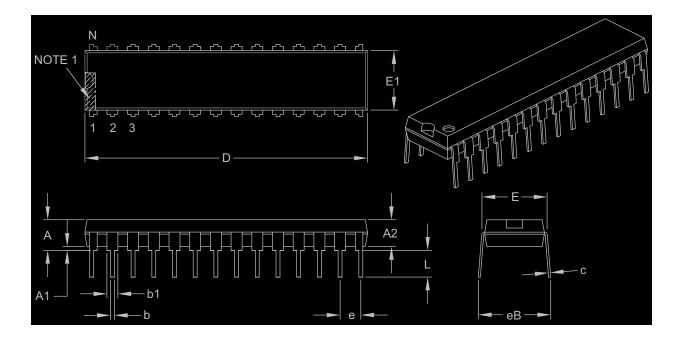

bit 2	BEP: Byte Enable Polarity bit
	 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

- Note 1: 28-pin devices do not have PMA<10:2>.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SB
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SE
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,Z
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,Z
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,Z
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
		BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA	C,Expr	Branch if Carry	1	1 (2)	None
		BRA	GE,Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GT, Expr	Branch if greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if unsigned greater than	1	1 (2)	None
7		BRA	LE, Expr	Branch if less than or equal	1	1 (2)	None
		BRA	LEU, Expr	Branch if unsigned less than or equal	1	1 (2)	None
		BRA	LT, Expr	Branch if less than	1	1 (2)	None
		BRA	LTU, Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC,Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV, Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA, Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	-	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator B saturated	1	1 (2)	None
			SB,Expr	Branch Unconditionally	1	2	None
		BRA	Expr 7 Expr	Branch if Zero	1	1 (2)	None
		BRA	Z,Expr	Computed Branch	1	2	None
	DCEM	BRA	Wn				
	BSET	BSET	f,#bit4	Bit Set f	1	1	None
	DCW	BSET	Ws,#bit4	Bit Set Ws	1	1	None
8	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
	DEC	BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
		BTG	Ws,#bit4	Bit Toggle Ws	1	1	None


TABLE 29-2: INSTRUCTION SET OVERVIEW

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS


Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

33.1 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

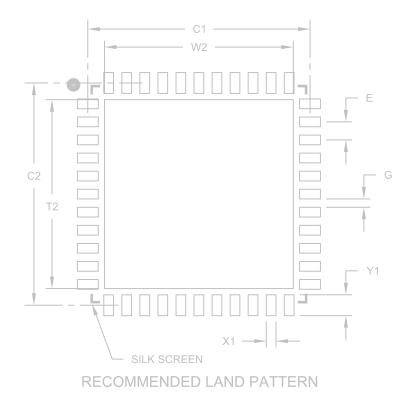
	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e	.100 BSC		
Top to Seating Plane	A		_	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015		_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.


4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimens	ion Limits	MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			6.80
Optional Center Pad Length	T2			6.80
Contact Pad Spacing	C1		8.00	
Contact Pad Spacing	C2		8.00	
Contact Pad Width (X44)	X1			0.35
Contact Pad Length (X44)	Y1			0.80
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2103A

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

CiCFG2 register
CiCTRL1 register258
CiCTRL2 register259
CiEC register265
CiFCTRL register
CiFEN1 register267
CiFIFO register262
CiFMSKSEL1 register271
CiFMSKSEL2 register
CiINTE register
CiINTF register
CiRXFnEID register271
CiRXFnSID register270
CiRXFUL1 register
CiRXFUL2 register
CiRXMnEID register
CiRXMnSID register273
CiRXOVF1 register275
CiRXOVF2 register
CiTRmnCON register
CiVEC register
ECAN1 Register Map (C1CTRL1.WIN = 0 or 1)54
ECAN1 Register Map (C1CTRL1.WIN = 0)54
ECAN1 Register Map (C1CTRL1.WIN = 1)55
Frame Types254
Modes of Operation256
Overview
ECAN Registers
Acceptance Filter Enable Register (CiFEN1)267
Acceptance Filter Extended Identifier Register n (CiRXF-
nEID)271
Acceptance Filter Mask Extended Identifier Register n
(CiRXMnEID)273
Acceptance Filter Mask Standard Identifier Register n
(CiRXMnSID)273
Acceptance Filter Standard Identifier Register n (CiRXF-
nSID)270
Baud Rate Configuration Register 1 (CiCFG1)265
Baud Rate Configuration Register 2 (CiCFG2)266
Control Register 1 (CiCTRL1)258
Control Register 2 (CiCTRL2)259
FIFO Control Register (CiFCTRL)
FIFO Status Register (CiFIFO)262
Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 267
Filter 12-15 Buffer Pointer Register (CiBUFPNT4) 269
Filter 15-8 Mask Selection Register (CiFMSKSEL2). 272
Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 268
Filter 7-0 Mask Selection Register (CiFMSKSEL1)271
Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 268
Interrupt Code Register (CiVEC)
Interrupt Enable Register (CiINTE)
Interrupt Flag Register (CiINTF)
Receive Buffer Full Register 1 (CiRXFUL1)274
Receive Buffer Full Register 2 (CiRXFUL2)274
Receive Buffer Overflow Register 2 (CiRXOVF2) 275
Receive Overflow Register (CiRXOVF1)
ECAN Transmit/Receive Error Count Register (CiEC) 265
ECAN TX/RX Buffer m Control Register (CiTRmnCON) 276
Electrical Characteristics
AC
AC

Operations	
Programming Algorithm	
RTSP Operation Table Instructions	
Flexible Configuration	
H	
High Temperature Electrical Characteristics	. 413
1	
I/O Ports	163
Parallel I/O (PIO)	
Write/Read Timing	
l ² C	
Operating Modes Registers	
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	, 341
Input Capture	
Registers	
Input Change Notification Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	
MAC Instructions	
MCU Instructions	
Move and Accumulator Instructions	
Other Instructions	64
Instruction Set Overview	240
Summary	
Instruction-Based Power-Saving Modes	
Idle	
Sleep	. 155
Internal RC Oscillator	
Use with WDT	
Internet Address Interrupt Control and Status Registers	
IECx	
IFSx	
INTCON1	93
INTCON2	
IPCx	
Interrupt Setup Procedures Initialization	
Interrupt Disable	
Interrupt Service Routine	
Trap Service Routine	
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	. 156
J	
JTAG Boundary Scan Interface JTAG Interface	
	. 541
Μ	
Memory Organization	
Microchip Internet Web Site	. 455
Modes of Operation Disable	256
Initialization	
Listen All Messages	
Listen Only	. 256
Loopback	
Normal Operation	
Modulo Addressing Applicability	
~ppiloability	00