

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Detuns	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj32mc304t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1:	PINOU	T I/O DES	CRIPT	IONS (CONTINUED)
Pin Name	Pin Type	Buffer Type	PPS	Description
FLTA1	I	ST	Yes	PWM1 Fault A input.
PWM1L1	0		No	PWM1 Low output 1
PWM1H1	0	—	No	PWM1 High output 1
PWM1L2	0	—	No	PWM1 Low output 2
PWM1H2	0		No	PWM1 High output 2
PWM1L3	0		No	PWM1 Low output 3
PWM1H3	0		No	PWM1 High output 3
FLTA2	I	ST	Yes	PWM2 Fault A input.
PWM2L1	0		No	PWM2 Low output 1
PWM2H1	0		No	PWM2 High output 1
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.
PGEC1	I	ST	No	Clock input pin for programming/debugging communication channel 1.
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.
PGEC2	I	ST	No	Clock input pin for programming/debugging communication channel 2.
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.
PGEC3	I	ST	No	Clock input pin for programming/debugging communication channel 3.
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.
AVDD	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times.
AVss	Р	Р	No	Ground reference for analog modules.
Vdd	Р	—	No	Positive supply for peripheral logic and I/O pins.
VCAP	Р	_	No	CPU logic filter capacitor connection.
Vss	Р	—	No	Ground reference for logic and I/O pins.
VREF+	I	Analog	No	Analog voltage reference (high) input.
VREF-	I	Analog	No	Analog voltage reference (low) input.
	c = c M c	C as man a tile	La liana de	or output Applog = Applog input P = Power

TABLE 1-1:	PINOUT I/O DESCRIPTIONS	(CONTINUED)

Legend: CMOS = CMOS compatible input or output

ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select

Analog = Analog input P = Power O = Output TTL = TTL input buffer

I = Input

Special Function Register Maps 4.4

TABLE 4-1: **CPU CORE REGISTERS MAP**

DS7029	
)1G-pag	
je 42	

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Reg	jister 10								0000
WREG11	0016								Working Reg	jister 11								0000
WREG12	0018								Working Reg	ister 12								0000
WREG13	001A								Working Reg	jister 13								0000
WREG14	001C								Working Reg	jister 14								0000
WREG15	001E								Working Reg	jister 15								0800
SPLIM	0020							Stac	k Pointer Lir	nit Register								XXXX
ACCAL	0022								ACCA	L								XXXX
ACCAH	0024								ACCA	Н								XXXX
ACCAU	0026				ACCA<	39>							ACO	CAU				XXXX
ACCBL	0028								ACCB	L								XXXX
ACCBH	002A								ACCB	Н								XXXX
ACCBU	002C				ACCB<	39>							ACO	CBU				XXXX
PCL	002E							Program	Counter Lov	w Word Reg	ister							XXXX
PCH	0030	_		—			—		_			Progra	am Counter	High Byte R	Register			0000
TBLPAG	0032	_	—	—			_					Table	Page Addre	ss Pointer F	Register			0000
PSVPAG	0034	_		—			—		—		Prog	ram Memor	y Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	nter Registe	er							XXXX
DCOUNT	0038								DCOUNT<									XXXX
DOSTARTL	003A							DOST	ARTL<15:1	>							0	XXXX
DOSTARTH	003C	_	—	_	—	—	—	—	—	_	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1>	•		•					0	XXXX
DOENDH	0040	_	—	—	—	—	—	—	—	_	—			DOEN	DH<5:0>			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	—	—	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020

Bit 15	Bit 14															
	DICIT	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	-	—	-	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
—	CN30IE	CN29IE	-	CN27IE	-	—	CN24IE	CN23IE	CN22IE	CN21IE	-	—	—	—	CN16IE	0000
CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	-	—	—	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
—	CN30PUE	CN29PUE	—	CN27PUE	—	_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	—	—	—	—	CN16PUE	0000
	CN15PUE	— CN30IE CN15PUE CN14PUE — CN30PUE	— CN30IE CN29IE CN15PUE CN14PUE CN13PUE — CN30PUE CN29PUE	— CN30IE CN29IE — CN15PUE CN14PUE CN13PUE CN12PUE — CN30PUE CN29PUE —	— CN30IE CN29IE — CN27IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE — CN30PUE CN29PUE — CN27PUE	- CN30IE CN29IE - CN27IE - CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN30PUE CN29PUE - CN27PUE -	CN30IE CN29IE CN27IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - - - - - CN24IE - CN30PUE CN13PUE CN12PUE CN11PUE -	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN7PUE - CN30PUE CN29PUE CN12PUE CN12PUE - - CN24PUE CN23PUE - CN30PUE CN29PUE - CN27PUE - - CN24PUE CN23PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN7PUE CN6PUE - CN30PUE CN29PUE CN27PUE - - CN24IE CN23IE CN22IE - CN30PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE - CN30PUE CN29PUE - CN27PUE - - CN24PUE CN23PUE CN22PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE CN5PUE - CN30PUE CN29PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE CN5PUE - CN30PUE CN29PUE - CN27PUE - - CN24PUE CN23PUE CN21PUE	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE - CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - CN7PUE CN6PUE CN5PUE CN4PUE - CN30PUE CN29PUE CN27PUE - - CN24PUE CN29PUE CN4PUE	- CN30IE CN29IE - CN27IE - CN24IE CN23IE CN22IE CN21IE - - CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE -	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE -	- CN30IE CN29IE CN27IE - CN24IE CN23IE CN22IE CN21IE -	- CN30IE CN29IE - CN27IE - - CN24IE CN23IE CN22IE CN21IE - - - CN16IE CN15PUE CN14PUE CN13PUE CN12PUE CN11PUE - - - - CN16IE - CN30PUE CN13PUE CN12PUE CN11PUE - - - CN7PUE CN6PUE CN5PUE CN3PUE CN2PUE CN1PUE CN0PUE - CN30PUE CN29PUE CN27PUE CN27PUE - - - CN16PUE - CN30PUE CN29PUE CN12PUE CN27PUE - - - CN16PUE - CN30PUE CN29PUE - CN27PUE - - - - CN16PUE - CN30PUE CN29PUE - CN27PUE - - - - - - CN16PUE - CN30PUE CN29PUE - - - - - - - - CN16PUE

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND dsPIC33FJ32MC304 **TABLE 4-3**:

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4	-37:	SECUF		GISTER	MAP F	OR dsF	IC33FJ	128MC	204/804	AND d	sPIC33F	J64MC2	04/804	ONLY				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
BSRAM	0750	_	—	—	_	—	_	_	_	_	_	—	—		IW_BSR	IR_BSR	RL_BSR	0000
SSRAM	0752	_	—	_	—	_	_	_	_	_	_	_	_		IW_SSR	IR_SSR	RL_SSR	0000
Legend: TABLE 4			on Reset, -	·	emented, re	ad as '0'.								-				
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	—	—	-	—	-	—	ERASE	_	—		NVM	OP<3:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'.

TABLE 4-39: PMD REGISTER MAP

0766

NVMKEY

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	T5MD	T4MD	T3MD	T2MD	T1MD	QEI1MD	PWM1MD	—	I2C1MD	U2MD	U1MD	SPI2MD	SPI1MD	_	C1MD	AD1MD	0000
PMD2	0772	IC8MD	IC7MD	_	_	_	_	IC2MD	IC1MD	_	_	_	_	OC4MD	OC3MD	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	_	_	CMPMD	RTCCMD	PMPMD	CRCMD	DAC1MD	QEI2MD	PWM2MD	_		_	_	0000

_

NVMKEY<7:0>

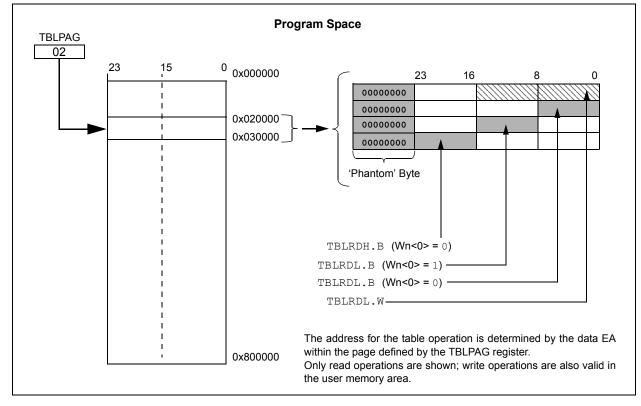
Legend: x = unknown value on Reset, — = unimplemented, read as '0'.

0000

4.8.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. The TBLRDL and TBLWTL access the space that contains the least significant data word. The TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
- In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).

- In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.
- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. The phantom byte (D<15:8>), is always '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper phantom byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). The TBLPAG covers the entire program memory space of the device, including user application and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-10: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

REGISTER 7	-5: IFS0:	INTERRUPT	FLAG STAT	US REGIST	=R 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7	00211	10211			00111		bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as	'0'				
bit 14		MA Channel 1 E		omplete Interr	upt Flag Status	s bit	
		t request has oc t request has no					
bit 13	-	C1 Conversion (unt Eloa Statu	o hit		
DIL 13		t request has oc	•	upi riay Sialu	S DIL		
		t request has no					
bit 12	U1TXIF: UA	RT1 Transmitte	r Interrupt Flag	g Status bit			
		t request has oc					
	0 = Interrupt	t request has no	ot occurred				
bit 11		RT1 Receiver I		status bit			
		t request has oc					
hit 10	•	t request has no		.:.			
bit 10		1 Event Interrup	-	DIT			
		t request has oc t request has no					
bit 9	•	PI1 Error Interru		bit			
	1 = Interrupt	t request has oc t request has no	curred				
bit 8	-	3 Interrupt Flag					
	1 = Interrupt	t request has oc t request has no	curred				
bit 7	-	2 Interrupt Flag					
		t request has oc					
	0 = Interrupt	t request has no	ot occurred				
bit 6	OC2IF: Outp	out Compare Cl	nannel 2 Interru	upt Flag Status	s bit		
		t request has oo t request has no					
bit 5	IC2IF: Input	Capture Chanr	el 2 Interrupt F	lag Status bit			
		t request has oc t request has no					
bit 4	-	VIA Channel 0 E		omplete Interr	upt Flag Status	s bit	
		t request has oc		,			
	0 = Interrupt						
		request has he					
bit 3	T1IF: Timer	1 Interrupt Flag					

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

10.5 Power-Saving Resources

Many useful resources related to power-saving modes are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

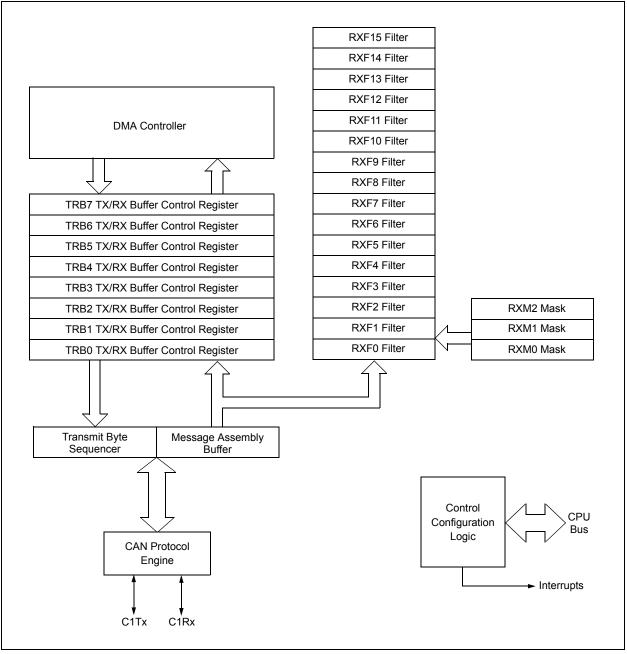
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_	—		_	IMV<	<1:0>	CEID
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0
QEOUT		QECK<2:0>		—	—	_	
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown
bit 15-11	Unimplomo	ntod: Dood op '	۰ ،				
	-	nted: Read as '					
bit 10-9		ndex Match Valu					
		EBx input pins of	-	ex puise when	Ine POSICINT I	egister is to be	reset.
			L .				
		ature Count Mod		put signal for i	match on indox	nuleo	
	IMV1 =	Required State	of Phase B ir				
	IMV1 = IMV0 =	Required State Required State	of Phase B ir of Phase A ir				
	IMV1 = IMV0 = In x4 Quadra IMV1 =	Required State	of Phase B ir of Phase A ir l <u>e</u> : input signal fo	nput signal for r or Index state n	match on index natch (0 = Phas	pulse se A, 1 = Phase	
bit 8	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 =	Required State Required State ature Count Mod Selects Phase	of Phase B ir of Phase A ir le: input signal fo of the selecte	nput signal for r or Index state n	match on index natch (0 = Phas	pulse se A, 1 = Phase	
bit 8	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count	Required State Required State ature Count Mod Selects Phase Required state	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit	nput signal for r or Index state n ed Phase input	match on index natch (0 = Phas	pulse se A, 1 = Phase	
bit 8	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt	Required State Required State ature Count Mod Selects Phase Required state t Error Interrupt	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa	nput signal for n or Index state n ed Phase input bled	match on index natch (0 = Phas	pulse se A, 1 = Phase	
bit 8 bit 7	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt	Required State Required State ature Count Mod Selects Phase Required state t Error Interrupt s due to count e	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal	nput signal for r or Index state n ed Phase input bled bled	match on index natch (0 = Phas signal for matcl	pulse se A, 1 = Phase	
	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil	Required State Required State ature Count Mod Selects Phase Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F bled	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena	match on index natch (0 = Phas signal for matcl	pulse se A, 1 = Phase	
	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0>	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
bit 7	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disat : QEAx/QEBx/IN Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 C	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs disat : QEAx/QEBx/IN Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 (C) 100 = 1:32 (C)	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disat : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 C 100 = 1:32 C 011 = 1:16 C	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disat : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 (C) 100 = 1:32 (C)	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 C 100 = 1:32 C 011 = 1:16 C	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide ock Divide ock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase	

21.0 ENHANCED CAN (ECAN™) MODULE

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 21. "Enhanced Controller Area Network (ECAN™)" (DS70185) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

21.1 Overview

The Enhanced Controller Area Network (ECAN) module is a serial interface, useful for communicating with other CAN modules or microcontroller devices. This interface/protocol was designed to allow communications within noisy environments. The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices contain up to two ECAN modules.


The ECAN module is a communication controller implementing the CAN 2.0 A/B protocol, as defined in the BOSCH CAN specification. The module supports CAN 1.2, CAN 2.0A, CAN 2.0B Passive and CAN 2.0B Active versions of the protocol. The module implementation is a full CAN system. The CAN specification is not covered within this data sheet. The reader can refer to the BOSCH CAN specification for further details.

The module features are as follows:

- Implementation of the CAN protocol, CAN 1.2, CAN 2.0A and CAN 2.0B
- Standard and extended data frames
- 0-8 bytes data length
- Programmable bit rate up to 1 Mbit/sec
- Automatic response to remote transmission requests
- Up to eight transmit buffers with application specified prioritization and abort capability (each buffer can contain up to 8 bytes of data)
- Up to 32 receive buffers (each buffer can contain up to 8 bytes of data)
- Up to 16 full (standard/extended identifier) acceptance filters
- Three full acceptance filter masks
- DeviceNet[™] addressing support
- Programmable wake-up functionality with integrated low-pass filter
- Programmable Loopback mode supports self-test operation
- Signaling via interrupt capabilities for all CAN receiver and transmitter error states
- Programmable clock source
- Programmable link to input capture module (IC2 for CAN1) for time-stamping and network synchronization
- · Low-power Sleep and Idle mode

The CAN bus module consists of a protocol engine and message buffering/control. The CAN protocol engine handles all functions for receiving and transmitting messages on the CAN bus. Messages are transmitted by first loading the appropriate data registers. Status and errors can be checked by reading the appropriate registers. Any message detected on the CAN bus is checked for errors and then matched against filters to see if it should be received and stored in one of the receive registers.

REGISTER 2	23-2: DAC1	STAT: DAC S	TATUS REG	GISTER			
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
LOEN		LMVOEN		_	LITYPE	LFULL	LEMPTY
bit 15				÷			bit 8
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0
ROEN		RMVOEN			RITYPE	RFULL	REMPTY
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15	LOEN: Left C	hannel DAC O	utput Enable	bit			
		and negative D puts are disable		re enabled			
bit 14		ted: Read as '					
bit 13	-	ft Channel Mid		utput Voltage E	nable bit		
		DAC output is output is disab					
bit 12-11	•	ted: Read as '					
bit 10	-	Channel Type		it			
	1 = Interrupt	if FIFO is EMP if FIFO is NOT	TY				
bit 9	LFULL: Statu	ıs, Left Channe	I Data Input F	FIFO is FULL b	it		
	1 = FIFO is F 0 = FIFO is r						
bit 8	1 = FIFO is E		nel Data Input	t FIFO is EMP	ΓY bit		
bit 7	0 = FIFO is r	Channel DAC	Output Enabl	o hit			
	1 = Positive	and negative D puts are disable	AC outputs a				
bit 6	-	ted: Read as '					
bit 5	-	ght Channel M		Output Voltage	Enable bit		
	1 = Midpoint	DAC output is output is disab	enabled				
bit 4-3	Unimplemen	ted: Read as '	0'				
bit 2	RITYPE: Right Channel Type of Interrupt bit						
	1 = Interrupt if FIFO is EMPTY 0 = Interrupt if FIFO is NOT FULL						
bit 1	-	us, Right Chanr		FIFO is FULL	bit		
	1 = FIFO is	-					
	0 = FIFO is						
bit 0		atus, Right Cha	nnel Data Inp	out FIFO is EM	PTY bit		
	1 = FIFO is E 0 = FIFO is r						

~ ~ ~ - - -

26.5 Programmable CRC Registers

U-0	U-0	R/W-0	R-0	R-0	R-0	R-0	R-0
_	_	CSIDL			VWORD<4:0	>	
bit 15							bit 8
R-0	R-1	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CRCFUL	CRCMPT	—	CRCGO		PLEI	N<3:0>	
bit 7							bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ired	x = Bit is unkn	iown
bit 15-14	•	ted: Read as '					
bit 13		Stop in Idle Me					
			eration when d tion in Idle mo	evice enters Id	e mode		
bit 12-8		Pointer Valu					
		number of vali LEN<3:0> ≤7.	d words in the	FIFO. Has a m	aximum value	e of 8 when PLE	N<3:0> > 7,
bit 7	CRCFUL: FIF	O Full bit					
	1 = FIFO is f	ull					
	0 = FIFO is n	ot full					
bit 6	CRCMPT: FIF	O Empty Bit					
bit 6	1 = FIFO is e	empty					
	1 = FIFO is e 0 = FIFO is n	empty not empty	o'				
bit 5	1 = FIFO is e 0 = FIFO is n Unimplemen	empty lot empty ted: Read as f	0'				
	1 = FIFO is e 0 = FIFO is n Unimplemen CRCGO: Star	empty lot empty ted: Read as ^c t CRC bit	0'				
bit 5	1 = FIFO is e 0 = FIFO is n Unimplemen CRCGO: Star 1 = Start CR0	empty lot empty ted: Read as ^o t CRC bit C serial shifter		e FIFO is emot	/		
bit 5	1 = FIFO is e 0 = FIFO is n Unimplemen CRCGO: Star 1 = Start CRC 0 = Turn off t	empty lot empty ted: Read as ^o t CRC bit C serial shifter	shifter after the	e FIFO is empt <u>y</u>	1		

REGISTER 26-1: CRCCON: CRC CONTROL REGISTER

REGISTER 26-2: CRCXOR: CRC XOR POLYNOMIAL REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			Х<	15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0
			X<7:1>				
bit 7							bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at P	-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is			nown

bit 15-1 X<15:1>: XOR of Polynomial Term Xⁿ Enable bits

bit 0 Unimplemented: Read as '0'

27.2 PMP Control Registers

PMPEN - PSIDL ADRMUX1 ⁽¹⁾ ADRMUX0 ⁽¹⁾ PTBEN PTWREN PTWREN PTWREN bit 15 - PSIDL ADRMUX1 ⁽¹⁾ ADRMUX0 ⁽¹⁾ PTWREN	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15 bit 8 bit 9		0-0					_	
R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 CSF1 CSF0 ALP ⁽²⁾ - CS1P ⁽²⁾ BEP WRSP RDSP bit 7 bit 0 bit 0 bit 0 bit 0 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			FSIDL	ADRINUX IV	ADRIVIOAU()	FIDEEN	FIVKEN	
CSF1 CSF0 ALP ⁽²⁾ - CS1P ⁽²⁾ BEP WRSP RDSP bit 7 bit 0 bit 0 bit 0 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	DIL 15							DILO
CSF1 CSF0 ALP ⁽²⁾ - CS1P ⁽²⁾ BEP WRSP RDSP bit 7 bit 0 bit 0 bit 0 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 7 bit 0 Lagend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PMPEN: Parallel Master Port Enable bit 1 = PMP disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation when device enters Idle mode 0 = Continue module operation when device enters Idle mode 0 = Continue module operation when device on PMD<7:0> pins, upper 3 bits are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA-10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMBE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMKD/PMENB port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMENB port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMED functions as chip select 0 = PMCD/FMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCD/FMWR port disabled bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-ling (<u>CMCS1/PMCS1</u>)	_	-		_		-		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PMPEN: Parallel Master Port Enable bit 1 = PIMP enabled 0 = PIMP disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' 1 = Discontinue module operation when device enters lole mode 0 = Continue module operation in lole mode bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation in lole mode 0 = Continue module operation in lole mode bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 0 = All 16 bits of address are multiplexed on PMD<7:0> pins 0 = All 16 bits of address are multiplexed on PMD<7:0.0							-	bit 0
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PMPEN: Parallel Master Port Enable bit 1 = PIMP enabled 0 = PIMP disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' 1 = Discontinue module operation when device enters lole mode 0 = Continue module operation in lole mode bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation in lole mode 0 = Continue module operation in lole mode bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 0 = All 16 bits of address are multiplexed on PMD<7:0> pins 0 = All 16 bits of address are multiplexed on PMD<7:0.0								
 -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 PMPPN: Parallel Master Port Enable bit 1 = PMP enabled 0 = PMP disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits ⁽¹⁾ 1 = Reserved 0 = All fo bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10.8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMBE port enabled 0 = PMBE port enabled 0 = PMBE port enabled 0 = PMBE port disabled 0 = PMBE port disabled 0 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled 0 = PMRD/PMWR port disabled 0 = PMCS1 functions as chip select 0x = Chive-hiph (PMALL and PMALH) 0 =	Legend:							
bit 15 PMPEN: Parallel Master Port Enable bit 1 = PMP enabled 0 = PMP disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX0: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMBE port enabled 0 = PMBE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14 bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-log N(PMCS1)	R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'	
 1 = PMP enabled 0 = PMP disabled, no off-chip access performed bit 14 Unimplemented: Read as '0' bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits⁽¹⁾ 1 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMWR/PMENB port enabled 0 = PMWE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select we FMCS1 functions as address bit 14 bit 5 ALP: Address Latch Polarity bit⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 3 CSIP: Chip Select 1 Polarity bit⁽²⁾ 1 = Active-high (PMS1/PMALT) 	-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 13 PSIDL: Stop in Idle Mode bit 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode bit 12:11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits ⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMBE port enabled 0 = PMBE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14 bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-high (PMALL and PMALH) bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1)	bit 15	1 = PMP ena	abled		ormed			
 1 = Discontinue module operation when device enters Idle mode Continue module operation in Idle mode Continue module operation in Idle mode bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits⁽¹⁾ 1 = Reserved AI 6 bits of address are multiplexed on PMD<7:0> pins AI 16 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8> 	bit 14	Unimplemen	ted: Read as '	0'				
 0 = Continue module operation in Idle mode bit 12-11 ADRMUX1:ADRMUX0: Address/Data Multiplexing Selection bits⁽¹⁾ 11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMBE port enabled 0 = PMBE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled 0 = PMRD/PMWR port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port enabled 0 = PMRD/PMWR port disabled bit 7-6 CSF1: CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14 bit 5 ALP: Address Latch Polarity bit⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-high (PMCS1/PMCS1) 	bit 13	PSIDL: Stop	in Idle Mode bi	t				
11 = Reserved 10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMBE port enabled 0 = PMBE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled 1 = PMRD/PMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14 bit 5 bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH)						e mode		
10 = All 16 bits of address are multiplexed on PMD<7:0> pins 01 = Lower 8 bits of address are multiplexed on PMD<7:0> pins, upper 3 bits are multiplexed on PMA<10:8> 00 = Address and data appear on separate pins bit 10 PTBEEN: Byte Enable Port Enable bit (16-bit Master mode) 1 = PMBE port enabled 0 = PMBE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled 0 = PMWR/PMENB port enabled 0 = PMRD/PMWR port disabled 1 = PMRD/PMWR port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled 0 = PMRD/PMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 1 = Reserved 10 = PMCS1 functions as chip select 0 x = PMCS1 functions as address bit 14 bit 5 bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-log (PMALL and PMALH) 0 = X1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-log (PMALL and PMALH)	bit 12-11	ADRMUX1:A	DRMUX0: Add	dress/Data Mul	tiplexing Select	ion bits ⁽¹⁾		
1 = PMBE port enabled 0 = PMBE port disabled bit 9 PTWREN: Write Enable Strobe Port Enable bit 1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabled bit 8 PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port disabled bit 7-6 CSF1:CSF0: Chip Select Function bits 1 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14 bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 1 = Active-high (PMCS1/PMCS1)		10 = All 16 bi 01 = Lower 8 PMA<10	its of address a 3 bits of addre 0:8>	ss are multiple	exed on PMD<		er 3 bits are n	nultiplexed on
bit 9PTWREN: Write Enable Strobe Port Enable bit1 = PMWR/PMENB port enabled 0 = PMWR/PMENB port disabledbit 8PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port enabled 0 = PMRD/PMWR port disabledbit 7-6CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14bit 5ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) 1 = Active-high (PMCS1 / PMALF)bit 4Unimplemented: Read as '0'bit 3CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1)	bit 10	1 = PMBE po	ort enabled	Enable bit (16-	-bit Master mod	le)		
bit 8PTRDEN: Read/Write Strobe Port Enable bit 1 = PMRD/PMWR port enabled 0 = PMRD/PMWR port disabledbit 7-6CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14bit 5ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 3bit 4Unimplemented: Read as '0' 1 = Active-high (PMCS1/PMCS1)	bit 9	PTWREN: W 1 = PMWR/F	/rite Enable Stro PMENB port en	abled	e bit			
11 = Reserved 10 = PMCS1 functions as chip select 0x = PMCS1 functions as address bit 14 bit 5 ALP: Address Latch Polarity bit ⁽²⁾ 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1)	bit 8	1 = PMRD/P	MWR port ena	bled	bit			
 1 = Active-high (PMALL and PMALH) 0 = Active-low (PMALL and PMALH) bit 4 Unimplemented: Read as '0' bit 3 CS1P: Chip Select 1 Polarity bit⁽²⁾ 1 = Active-high (PMCS1/PMCS1) 	bit 7-6	CSF1:CSF0: Chip Select Function bits 11 = Reserved 10 = PMCS1 functions as chip select						
bit 3 CS1P: Chip Select 1 Polarity bit ⁽²⁾ 1 = Active-high (PMCS1/PMCS1)	bit 5	1 = Active-high (PMALL and PMALH)						
1 = Active-high (PMCS1/PMCS1)	bit 4	Unimplemen	ted: Read as '	0'				
	bit 3	CS1P: Chip Select 1 Polarity bit ⁽²⁾						

REGISTER 27-1: PMCON: PARALLEL PORT CONTROL REGISTER

Note 1: 28-pin devices do not have PMA<10:2>.

2: These bits have no effect when their corresponding pins are used as address lines.

28.4 Watchdog Timer (WDT)

For dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

28.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

The WDT, prescaler and postscaler are reset:

- On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

All Device Resets Transition to New Clock Source Exit Sleep or Idle Mode PWRSAV Instruction CLRWDT Instruction Watchdog Timer Sleep/Idle WDTPRE WDTPOST<3:0> SWDTEN WDT Wake-up FWDTEN Prescaler Postscaler WDT LPRC Clock (divide by N1) (divide by N2) Reset WDT Window Select WINDIS CLRWDT Instruction

FIGURE 28-2: WDT BLOCK DIAGRAM

28.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it continues to run during Sleep or Idle modes. When the WDT time-out occurs, the device wakes the device and code execution continues from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bit (RCON<3,2>) needs to be cleared in software after the device wakes up.

28.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note:	If the WINDIS bit (FWDT<6>) is cleared,
	the CLRWDT instruction should be executed
	by the application software only during the
	last 1/4 of the WDT period. This CLRWDT
	window can be determined by using a timer.
	If a CLRWDT instruction is executed before
	this window, a WDT Reset occurs.

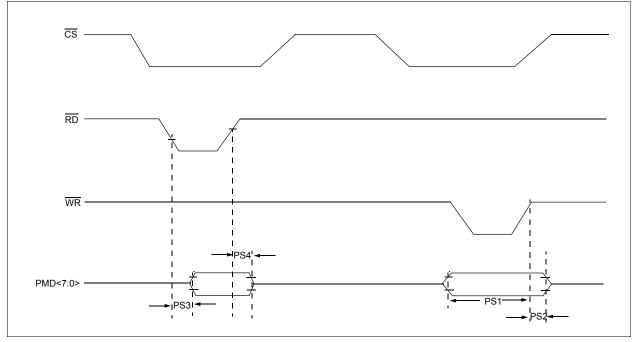
The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
48 MPY		MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ad	cc,Wx,Wxd,Wy,Wyd	-(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,2
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
	ļ	RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN		Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry Ma	1	1	C,N,Z
64	PINC	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
04	RLNC	RLNC	f f WDEC	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z
65	PPC	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws f = Rotate Right through Carry f	1	1	N,Z C,N,Z
00	RRC	RRC	f MDEC	WREG = Rotate Right through Carry f		1	C,N,Z C,N,Z
		RRC RRC	f,WREG Ws,Wd	WREG = Rotate Right through Carry T Wd = Rotate Right through Carry Ws	1	1	C,N,Z C,N,Z

TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

TABLE 31-51: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS


AC CHARACTERISTICS		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
VR310	TSET	Settling Time ⁽¹⁾	—	—	10	μs	

Note 1: Setting time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 31-52: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb	_
VRD311	CVRAA	Absolute Accuracy	—		0.5	LSb	—
VRD312	CVRur	Unit Resistor Value (R)	_	2k	_	Ω	_

FIGURE 31-30: PARALLEL SLAVE PORT TIMING DIAGRAM

	AC TERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature					
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
	AD	C Accuracy (10-bit Mode)	– Measu	rements	with Ex	ternal V	REF+/VREF- ⁽¹⁾
HAD20b	Nr	Resolution ⁽³⁾	1	0 data bi	ts	bits	—
HAD21b	INL	Integral Nonlinearity	-3	—	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD23b	Gerr	Gain Error	-5	_	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
HAD24b	EOFF	Offset Error	-1	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V
	AD	C Accuracy (10-bit Mode)	– Measu	irements	s with Int	ernal V	REF+/VREF- ⁽¹⁾
HAD20b	Nr	Resolution ⁽³⁾		0 data bi		bits	
HAD21b	INL	Integral Nonlinearity	-2		2	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD22b	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD23b	Gerr	Gain Error	-5		15	LSb	VINL = AVSS = 0V, AVDD = 3.6V
HAD24b	EOFF	Offset Error	-1.5		7	LSb	VINL = AVSS = 0V, AVDD = 3.6V
		Dynamic P	erformar	nce (10-b	oit Mode)	(2)	
HAD33b	Fnyq	Input Signal Bandwidth			400	kHz	_

TABLE 32-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

Section Name	Update Description
Section 31.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 31-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 31-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 31-7).
	Updated Characteristics for I/O Pin Input Specifications (see Table 31-9).
	Updated Program Memory values for parameters 136, 137 and 138 (renamed to 136a, 137a and 138a), added parameters 136b, 137b and 138b, and added Note 2 (see Table 31-12).
	Added parameter OS42 (Gм) to the External Clock Timing Requirements (see Table 31-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 31-21).
	Removed VOMIN, renamed VOMAX to VO, and updated the Min and Max values in the Audio DAC Module Specifications (see Table 31-44).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- · Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support