

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc202-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.2.1 TANK CAPACITORS

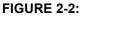
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

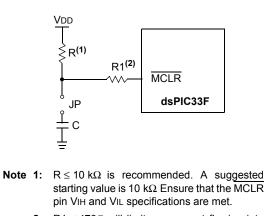
A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, preferably surface mount connected within one-eights inch of the VCAP pin connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 28.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides for two specific device functions:

- Device Reset
- Device programming and debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 device contains up to 2 Kbytes of dual ported DMA RAM located at the end of Y data space, and is a part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. The DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: The DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

4.3 Memory Resources

Many useful resources related to Memory Organization are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70203)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Special Function Register Maps 4.4

TABLE 4-1: **CPU CORE REGISTERS MAP**

DS7029	
)1G-pag	
je 42	

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Reg	jister 10								0000
WREG11	0016								Working Reg	jister 11								0000
WREG12	0018								Working Reg	ister 12								0000
WREG13	001A								Working Reg	jister 13								0000
WREG14	001C								Working Reg	jister 14								0000
WREG15	001E								Working Reg	jister 15								0800
SPLIM	0020							Stac	k Pointer Lir	nit Register								XXXX
ACCAL	0022								ACCA	L								XXXX
ACCAH	0024								ACCA	Н								XXXX
ACCAU	0026				ACCA<	39>							ACO	CAU				XXXX
ACCBL	0028								ACCB	L								XXXX
ACCBH	002A								ACCB	Н								XXXX
ACCBU	002C				ACCB<	39>							ACO	CBU				XXXX
PCL	002E							Program	Counter Lov	w Word Reg	ister							XXXX
PCH	0030	_		—			—		_			Progra	am Counter	High Byte R	Register			0000
TBLPAG	0032	_	—	—			_					Table	Page Addre	ss Pointer F	Register			0000
PSVPAG	0034	_		—			—		—		Prog	ram Memor	y Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	nter Registe	er							XXXX
DCOUNT	0038								DCOUNT<									XXXX
DOSTARTL	003A							DOST	ARTL<15:1	>							0	XXXX
DOSTARTH	003C	_	—	_	—	—	—	—	—	_	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1>	•		•					0	XXXX
DOENDH	0040	_	—	—	—	—	—	—	—	_	—			DOEN	DH<5:0>			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	—	—	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

							,											
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MODCON	0046	XMODEN	YMODEN	-	—		BWN	/<3:0>			YWM	<3:0>			XWM	<3:0>		0000
XMODSRT	0048							>	(S<15:1>								0	XXXX
XMODEND	004A							>	(E<15:1>								1	XXXX
YMODSRT	004C							Y	′S<15:1>								0	XXXX
YMODEND	004E							γ	′E<15:1>								1	XXXX
XBREV	0050	BREN								XB<14:0>								XXXX
DISICNT	0052	—	_						Disabl	e Interrupts	Counter R	egister						XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: I2C1 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
I2C1RCV	0200	_	-		_	_		_					Receive	Register				0000
I2C1TRN	0202	_	_		—	—		—	_				Transmit	Register				OOFF
I2C1BRG	0204	_	_		—	—		—				Baud Rat	e Generato	Register				0000
I2C1CON	0206	I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	_	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000
I2C1ADD	020A	-	_	_	_	_	_					Address	Register					0000
I2C1MSK	020C	-	_	_	_	_	_					Address Ma	isk Register					0000
Legend:	x = unkr	nown value o	n Reset, —	= unimpler	nented, rea	d as '0'. Re	set values a	are shown ir	n hexadecir	nal.								

TABLE 4-13: UART1 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	_<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISI	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_	_	_	_	_	_	_	UTX8			U	ART Transm	nit Register				XXXX
U1RXREG	0226	_	_	_	_	_	_	_	URX8			U	ART Receive	ed Register				0000
U1BRG	0228							Bau	d Rate Ger	erator Presc	aler							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: UART2 REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U2MODE	0230	UARTEN		USIDL	IREN	RTSMD		UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U2STA	0232	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U2TXREG	0234	—		—		—			UTX8			U	ART Transm	nit Register				XXXX
U2RXREG	0236	—		—		—			URX8			U	ART Receiv	e Register				0000
U2BRG	0238							Bau	d Rate Ger	erator Presc	aler							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER	7-16: IPC1	: INTERRUPT	PRIORITY	CONTROL R	EGISTER 1		
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		T2IP<2:0>		—		OC2IP<2:0>	
bit 15							bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
		IC2IP<2:0>		_		DMA0IP<2:0>	
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own
bit 15	Unimpleme	ented: Read as '	כי				
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits				
		rupt is priority 7 (I		ty interrupt)			
	•						
	•						
	• 001 = Inter	rupt is priority 1					
		rupt source is dis	abled				
bit 11	Unimpleme	ented: Read as '	o'				
bit 10-8	OC2IP<2:0	>: Output Compa	re Channel	2 Interrupt Prior	ity bits		
	111 = Interi	rupt is priority 7 (I	highest priori	ty interrupt)			
	•						
	•						
		rupt is priority 1 rupt source is dis	abled				
bit 7		ented: Read as '					
bit 6-4	-	: Input Capture C		errupt Prioritv b	its		
		rupt is priority 7 (I					
	•		•				
	•						
	• 001 – Inter	rupt is priority 1					
		rupt source is dis	abled				
bit 3		ented: Read as '					
bit 2-0	-	:0>: DMA Chann		nsfer Complete	e Interrupt Prio	ritv bits	
		rupt is priority 7 (I				.,	
	•			- • • /			
	•						
	• 001 = Inter	rupt is priority 1					
		rupt source is dis	abled				

NOTES:

11.6 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

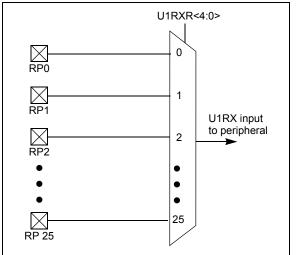
11.6.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 26 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation RPn in their full pin designation, where RP designates a remappable peripheral and n is the remappable pin number.

11.6.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


11.6.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it is mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 11-1 through Register 11-20). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 11-2 Illustrates remappable pin selection for U1RX input.

Note:	For input mapping only, the Peripheral Pin
	Select (PPS) functionality does not have
	priority over the TRISx settings.
	Therefore, when configuring the RPx pin
	for input, the corresponding bit in the
	TRISx register must also be configured for
	input (i.e., set to '1').

FIGURE 11-2: REMAPPABLE MUX INPUT FOR U1RX

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	_	—	_	—	—	_	_
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	—			INTR2R<4:0>	•	
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkı	nown

bit 15-5 Unimplemented: Read as '0'

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25 •

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15			2.000.0	2.0020			bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	-)	PPRE<	<1:0> ⁽²⁾
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Dis 1 = Internal S		bit (SPI Maste abled, pin func	er modes only) tions as I/O			
bit 11	1 = SDOx pir	able SDOx Pin i is not used by i is controlled b	, module; pin f	unctions as I/C)		
bit 10	1 = Commun	ord/Byte Comm ication is word- ication is byte-	wide (16 bits)				
bit 9	Master mode 1 = Input data 0 = Input data Slave mode:	a sampled at en a sampled at m	nd of data out iddle of data o				
bit 8	1 = Serial out		ges on transitio		clock state to Idl ck state to activ		
bit 7	SSEN: Slave 1 = <u>SSx</u> pin ι	Select Enable ised for Slave i	bit (Slave mo node			·	
bit 6	CKP: Clock F 1 = Idle state	Polarity Select I for clock is a h	oit igh level; activ	/e state is a lov e state is a higl	v level		
bit 5		ter Mode Enat		U			

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

- Note 1: This bit is not used in Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

19.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32MC302/304. dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	—	—	AMSK9	AMSK8
bit 15		-				-	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7						·	bit 0
Legend:							
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_	_			SAMC<4:0>	1)	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	<7:0> ⁽²⁾			
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	nented bit, re	ad as '0'	
-n = Value a	t POR	'1' = Bit is set			'0' = Bit is cleared		nown
bit 15		Conversion Clo	ck Source bit				
		rnal RC clock					
		rived from syste					
bit 14-13	-	nted: Read as '0					
bit 12-8		: Auto Sample T	ime bits ⁽¹⁾				
	11111 = 31 ⁻	TAD					
	•						
	•						
	•						
	00001 = 1 TA 00000 = 0 TA						
bit 7-0	ADCS<7:0>:	ADC Conversion	on Clock Sele	ct bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•						
	01000000 =	Reserved					
	00111111 =	TCY · (ADCS<7	7:0> + 1) = 64	• TCY = TAD			
	•						
	•						
	•						
		TCY · (ADCS<7					
		TCY · (ADCS<7					
	00000000 =						

2: This bit is not used if AD1CON3<15> (ADRC) = 1.

25.2 RTCC Resources

Many useful resources related to RTCC are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en532315

25.2.1 KEY RESOURCES

- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

ALRMEN CHIME AMASK<3:0> ALRMPTR<1:C	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
RW-0 R Readable bit I I = Dit is is set '0' = Bit is cleared x = Bit is unknown CHIME Chime Enable bit I = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 0x0FF 0 C = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 0x0FF 0 Dit is reserved – do not use 1011 = Once a veet (on ot use 1011 = Once a veet	LRMEN	CHIME		AMA	SK<3:0>		ALRMP	TR<1:0>
ARPT<7:0> bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'	15							bit
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 1Lx = Reserved - do not use 101x = Reserved - do not use 1011 = Once a year (except when configured for February 29th, once every 4 years) 100 = Once a ayear (except when configured for February 29th, once every 4 years) 101 = Every nour 0100 = Every 10 minutes 011 = Every second 0100 = Every 10 minutes 011 = Every second 0100 = Every 10 adarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0>: value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMNTH 1 = ALRMMD 00 = ALRMMNTH 01 = ALRMMAT 01 = ALRMAR 01 = ALRMPR 01 = ALRMPR 01 = ALRMAR 01 = AL	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x CHIME = 0) 0 = Alarm is disabled 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13.10 MMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved - do not use 101x = Reserved - do not use 101x = Reserved - do not use 101x = Reserved - do not use 101x = Reserved - do not use 101a = Once a year (except when configured for February 29th, once every 4 years) 100a = Once a month 0111 = Conce a year (except when configured for February 29th, once every 4 years) 100a = Once a day 0101 = Every four 0100 = Every 10 minutes 0111 = Every second 0011 = Every second 0001 = Every second 0010 = Every subte decrements on every read or write of ALRMVALH and ALRMVALL re the ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the correspo				ARP	T<7:0>			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved - do not use 1011 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0111 = Once a week 0101 = Once a week 0101 = Every nour 0101 = Every nour 0101 = Every nour 0101 = Every nour 0101 = Every nour 0101 = Every nour 011 = Every second 0000 = Every half second 0000 = Every half second 0000 = Every half second bit 9-8 ALRMPTR<1:0: Alarm Value Register Window Pointer bits	7							bit
n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x CHIME = 0) 0 = Alarm is disabled 0' = Bit is cleared x = Bit is unknown bit 14 CHIME: Chime Enable bit 1 = Chime is disabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 00xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11x = Reserved - do not use 101 = Once a week (except when configured for February 29th, once every 4 years) 1001 = Once a week 0101 = Once a week 0101 = Once a week 0101 = Every nour 0100 = Every 10 minutes 0011 = Every nour 0100 = Every 10 seconds 0001 = Every half second 0000 = Every 10 seconds 0001 = Every half second 0011 = Every second 0000 = Chimplemented 101 = ALRMPTR<1:0> value decrements on every read or write of ALRMVALH and ALRMVALL referses '00 ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVD 0 = ALRMINN ALRMMIN <	jend:							
bit 15 ALRMEN: Alarm Enable bit 1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved – do not use 101x = Reserved – do not use 101x = Reserved – do not use 1011 = Once a week 0110 = Once a week 0110 = Once a week 0110 = Every 10 minutes 0010 = Every 10 minutes 0010 = Every 10 minutes 0010 = Every 10 seconds 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMNN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMNN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMANTH 01 = ALRMANT					•			
<pre>1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved – do not use 101x = Reserved – do not use 1001 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a week 0110 = Once a week 0110 = Every mour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 minutes 0011 = Every second 0000 = Every 10 seconds 0001 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMIVALH and ALRMIVALL re the ALRMPTR<1:0>: Alarm Value Register when reading ALRMIVALH until it reaches '00 ALRMWAL<15:8>: 11 = Unimplemented 10 = ALRMINTH 01 = ALRMINTH 01 = ALRMINTH 01 = ALRMINT 01 = ALRMINTE 01 = AL</pre>	· Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
<pre>1 = Alarm is enabled (cleared automatically after an alarm event whenever ARPT<7:0> = 0x CHIME = 0) 0 = Alarm is disabled bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved – do not use 101x = Reserved – do not use 1001 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a week 0110 = Once a week 0110 = Every mour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 minutes 0011 = Every second 0000 = Every 10 seconds 0001 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMIVALH and ALRMIVALL re the ALRMPTR<1:0>: Alarm Value Register when reading ALRMIVALH until it reaches '00 ALRMWAL<15:8>: 11 = Unimplemented 10 = ALRMINTH 01 = ALRMINTH 01 = ALRMINTH 01 = ALRMINT 01 = ALRMINTE 01 = AL</pre>	15		Varm Enable bit					
bit 14 CHIME: Chime Enable bit 1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved - do not use 101x = Reserved - do not use 1010 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a worth 0110 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0110 = Once a week 0110 = Once a day 0101 = Every 10 minutes 0011 = Every four 0100 = Every 10 seconds 0001 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMMINH 01 = ALRMMIN ALRMVAL :0 : 11 = Unimplemented 10 = ALRMMIN	5	1 = Alarm is	s enabled (clear		ally after an ala	irm event when	ever ARPT<7:()> = 0x00 an
1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF 0 = Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved – do not use 101x = Reserved – do not use 101x = Reserved – do not use 1010 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0111 = Once a week 0110 = Once a day 0101 = Every flominutes 0011 = Every 10 minutes 0011 = Every 10 seconds 0000 = Every 10 second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMMIN ALRMVIN ALRMMIN ALRMMIN ALRMMAL ALRMMAL 0 = ALRMMIN ALRMAR 0 = ALRMSEC		0 = Alarm is	s disabled					
 c Chime is disabled; ARPT<7:0> bits stop once they reach 0x00 bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved - do not use 101x = Reserved - do not use 1011 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0110 = Once a week 0110 = Once a day 0101 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0001 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL rethe ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 00 = ALRMMIN ALRMVIN ALRMVAL ALRMVAL 00 = ALRMMIN ALRMVAL 00 = ALRMMIN 01 = ALRMMIN 01 = ALRMHR 00 = ALRMSEC 	14	_						
bit 13-10 AMASK<3:0>: Alarm Mask Configuration bits 11xx = Reserved - do not use 101x = Reserved - do not use 1011 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0111 = Once a week 0110 = Once a day 0101 = Every hour 0100 = Every 10 minutes 0011 = Every 10 seconds 0001 = Every 10 second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL ref the ALRMPTR<1:0>: value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMMIN ALRMVINTH 01 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL 00 = ALRMHR 00 = ALRMHR 00 = ALRMSEC							0 to 0xFF	
11xx = Reserved - do not use 101x = Reserved - do not use 101 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0111 = Once a week 0100 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0>: value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMWIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMAR 00 = ALRMBAY 01 = ALRMHR 00 = ALRMSEC	12 10					each 0x00		
101x = Reserved – do not use 1001 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0111 = Once a week 0100 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0100 = Every 10 seconds 0000 = Every second 0000 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<<15:8>: 11 = Unimplemented 10 = ALRMINTH 01 = ALRMWD 00 = ALRMMIN ALRMVAL<	13-10			•	I DIIS			
1001 = Once a year (except when configured for February 29th, once every 4 years) 1000 = Once a month 0111 = Once a week 0101 = Once a day 0101 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0001 = Every second 0000 = Every half second 0010 = Every second 0000 = Every half second 0000 = Every half second 0010 = Every second 0000 = Every half second 001 = ALRMVPTR 01 = ALRMWD 01 = ALRMWD 01 = ALRMMIN ALRMVAL 10 = ALRMMIN ALRMVAL 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
0111 = Once a week 0110 = Once a day 0101 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0001 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMNN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMNN 0 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC					ured for Februa	ry 29th, once e	very 4 years)	
0110 = Once a day 0101 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0000 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMN ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
0101 = Every hour 0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0001 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMWD 00 = ALRMWIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL 00 = ALRMMIN 01 = ALRMMAL 01 = ALRMMAL 01 = ALRMHR 00 = ALRMSEC								
0100 = Every 10 minutes 0011 = Every minute 0010 = Every 10 seconds 0001 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL 00 = ALRMMIN 01 = ALRMMAL 01 = ALRMMAL 01 = ALRMMAL 01 = ALRMMAL 01 = ALRMHR 00 = ALRMSEC			•					
0010 = Every 10 seconds 0001 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL rethe ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '000 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMDAY 01 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
0001 = Every second 0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL rethe ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMMNTH 01 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN ALRMVAL<7:0>: 00 = ALRMBER 00 = ALRMBAY 01 = ALRMBAY 00 = ALRMSEC								
0000 = Every half second bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL rethe ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMMIN 0 = ALRMMIN 0 = ALRMMAL 10 = ALRMMAL 00 = ALRMMIN 0 = ALRMMAL 0 = ALRMBEC								
bit 9-8 ALRMPTR<1:0>: Alarm Value Register Window Pointer bits Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMMNTH 01 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL re the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 <u>ALRMVAL<15:8>:</u> 11 = Unimplemented 10 = ALRMMNTH 01 = ALRMWD 00 = ALRMMIN <u>ALRMVAL<7:0>:</u> 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC	28		-	ua Register V	Vindow Pointer	bite		
the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00 <u>ALRMVAL<15:8>:</u> 11 = Unimplemented 10 = ALRMMNTH 01 = ALRMWD 00 = ALRMMIN <u>ALRMVAL<7:0>:</u> 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC	7-0			-			H and ALRM	/ALL registers
ALRMVAL<15:8>: 11 = Unimplemented 10 = ALRMMNTH 01 = ALRMWD 00 = ALRMMIN ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
11 = Unimplemented 10 = ALRMMNTH 01 = ALRMWD 00 = ALRMMIN <u>ALRMVAL<7:0>:</u> 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC					,			
01 = ALRMWD 00 = ALRMMIN <u>ALRMVAL<7:0>:</u> 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
00 = ALRMMIN <u>ALRMVAL<7:0>:</u> 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
ALRMVAL<7:0>: 11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
11 = Unimplemented 10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
10 = ALRMDAY 01 = ALRMHR 00 = ALRMSEC								
00 = ALRMSEC								
bit 7-0 ARPT<7:0>: Alarm Repeat Counter Value bits								
	/-0							
11111111 = Alarm will repeat 255 more times		11111111 =	= Alarm will repe	eat 255 more	times			
		•						
•		•						
00000000 = Alarm will not repeat							r	1 1 1 1
The counter decrements on any alarm event. The counter is prevented from rolling over from $0xFF$ unless CHIME = 1.				any alarm ev	ent. The counte	er is prevented	rom rolling ove	er trom 0x00

REGISTER 25-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

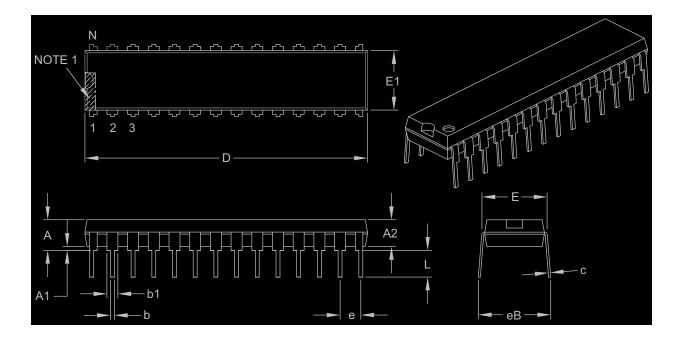
NOTES:

TABLE 32-17: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

ACStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)CHARACTERISTICSOperating temperature-40°C ≤TA ≤+150°C for High Temperature					tated)		
Param No.SymbolCharacteristicMinTypMaxUnitsConditions							
Clock Parameters							
HAD50 TAD ADC Clock Period ⁽¹⁾ 147 — ns —							
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	_	400	Ksps	_

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 32-18: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS


ACStandard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)CHARACTERISTICSOperating temperature-40°C ≤TA ≤+150°C for High Temperature					ited)		
Param No.	Symbol Characteristic Min Typ Max Units Conditions						
Clock Parameters							
HAD50	TAD	ADC Clock Period ⁽¹⁾	104	_	_	ns	—
Conversion Rate							
HAD56	FCNV	Throughput Rate ⁽¹⁾	_	—	800	Ksps	_
NI. (These permeters are characterized but not tested in manufacturing						

Note 1: These parameters are characterized but not tested in manufacturing.

33.1 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e		.100 BSC	
Top to Seating Plane	A		_	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015		_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

IABLE A-2: MAJOR SECTION UPDATES	TABLE A-2:	MAJOR SECTION UPDATES
----------------------------------	------------	-----------------------

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Updated all pin diagrams to denote the pin voltage tolerance (see " Pin Diagrams ").
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).
	Removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-24).
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-36).
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.
Section 9.0 "Oscillator	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).
Configuration"	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 "System Clock Sources".
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).
Section 10.0 "Power-Saving	Added the following registers:
Features"	PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)
	PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)
	PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)

© 2007-2012 Microchip Technology Inc.

Revision D (November 2009)

The revision includes the following global update:

• Added Note 2 to the shaded table that appears at the beginning of each chapter. This new note provides information regarding the availability of registers and their associated bits

This revision also includes minor typographical and formatting changes throughout the data sheet text.

All other major changes are referenced by their respective section in the following table.

TABLE A-3: MAJOR SECTION UPDATES

Section Name	Update Description
"High-Performance, 16-bit Digital Signal Controllers"	Added information on high temperature operation (see " Operating Range: ").
Section 11.0 "I/O Ports"	Changed the reference to digital-only pins to 5V tolerant pins in the second paragraph of Section 11.2 " Open-Drain Configuration ".
Section 20.0 "Universal Asynchronous Receiver Transmitter (UART)"	Updated the two baud rate range features to: 10 Mbps to 38 bps at 40 MIPS.
Section 22.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Updated the ADC block diagrams (see Figure 22-1 and Figure 22-2).
Section 23.0 "Audio Digital-to-Analog	Removed last sentence of the first paragraph in the section.
Converter (DAC)"	Added a shaded note to Section 23.2 "DAC Module Operation".
	Updated Figure 23-2: "Audio DAC Output for Ramp Input (Unsigned)".
Section 28.0 "Special Features"	Updated the second paragraph and removed the fourth paragraph in Section 28.1 "Configuration Bits" .
	Updated the Device Configuration Register Map (see Table 28-1).
Section 31.0 "Electrical Characteristics"	Updated the Absolute Maximum Ratings for high temperature and added Note 4.
	Removed parameters DI26, DI28 and DI29 from the I/O Pin Input Specifications (see Table 31-9).
	Updated the SPIx Module Slave Mode (CKE = 1) Timing Characteristics (see Figure 31-17).
	Removed Table 31-45: Audio DAC Module Specifications. Original contents were updated and combined with Table 31-44 of the same name.
Section 32.0 "High Temperature Electrical Characteristics"	Added new chapter with high temperature specifications.
"Product Identification System"	Added the "H" definition for high temperature.