

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc202-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04 PRODUCT FAMILIES

The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1. The pages that follow show their pinout diagrams.

TABLE 1:dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04CONTROLLER FAMILIES

							Remap	pable F	Periphe	ral									Ĵ.			
Device	Pins	Program Flash Memory (Kbyte)	RAM (Kbyte) ⁽¹⁾	Remappable Pins	16-bit Timer ⁽²⁾	Input Capture	Output Compare Standard PWM	Motor Control PWM (Channels) ⁽³⁾	Quadrature Encoder Interface	UART	SPI	ECAN TM	External Interrupts ⁽⁴⁾	RTCC	I ² C™	CRC Generator	10-bit/12-bit ADC (Channels)	6-pin 16-bit DAC	Analog Comparator (2 Channels/Voltage Regulator)	8-bit Parallel Master Port (Address Lines)	I/O Pins	Packages
dsPIC33FJ128MC804	44	128	16	26	5	4	4	6, 2	2	2	2	1	3	1	1	1	9	1	1/1	11	35	QFN TQFP
dsPIC33FJ128MC802	28	128	16	16	5	4	4	6, 2	2	2	2	1	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ128MC204	44	128	8	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ128MC202	28	128	8	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64MC804	44	64	16	26	5	4	4	6, 2	2	2	2	1	3	1	1	1	9	1	1/1	11	35	QFN TQFP
dsPIC33FJ64MC802	28	64	16	16	5	4	4	6, 2	2	2	2	1	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ64MC204	44	64	8	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ64MC202	28	64	8	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S
dsPIC33FJ32MC304	44	32	4	26	5	4	4	6, 2	2	2	2	0	3	1	1	1	9	0	1/1	11	35	QFN TQFP
dsPIC33FJ32MC302	28	32	4	16	5	4	4	6, 2	2	2	2	0	3	1	1	1	6	0	1/0	2	21	SPDIP SOIC QFN-S

Note 1: RAM size is inclusive of 2 Kbytes of DMA RAM for all devices except dsPIC33FJ32MC302/304, which include 1 Kbyte of DMA RAM.

2: Only four out of five timers are remappable.

3: Only PWM fault pins are remappable.

4: Only two out of three interrupts are remappable.

2.2.1 TANK CAPACITORS

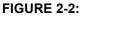
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

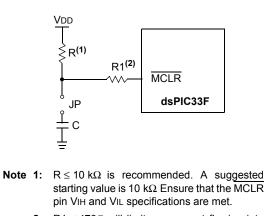
A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, preferably surface mount connected within one-eights inch of the VCAP pin connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 28.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides for two specific device functions:

- Device Reset
- Device programming and debugging


During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier Transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, though the implemented memory locations vary by device.

4.2.6 DMA RAM

Every dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 device contains up to 2 Kbytes of dual ported DMA RAM located at the end of Y data space, and is a part of Y data space. Memory locations in the DMA RAM space are accessible simultaneously by the CPU and the DMA controller module. The DMA RAM is utilized by the DMA controller to store data to be transferred to various peripherals using DMA, as well as data transferred from various peripherals using DMA. The DMA RAM can be accessed by the DMA controller without having to steal cycles from the CPU.

When the CPU and the DMA controller attempt to concurrently write to the same DMA RAM location, the hardware ensures that the CPU is given precedence in accessing the DMA RAM location. Therefore, the DMA RAM provides a reliable means of transferring DMA data without ever having to stall the CPU.

Note: The DMA RAM can be used for general purpose data storage if the DMA function is not required in an application.

4.3 Memory Resources

Many useful resources related to Memory Organization are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

4.3.1 KEY RESOURCES

- Section 4. "Program Memory" (DS70203)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 5-2	2: NVMI	KEY: NONVOLA	ATILE ME	MORY KEY RI	EGISTER		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	—	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVM	(EY<7:0>			
bit 7							bit 0
Legend:							
-							
R = Readable b	It	W = Writable b	It	U = Unimplem	nented bit, rea	d as '0'	
-n = Value at PC)R	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

REGISTER 7	-5: IFS0:	INTERRUPT	FLAG STAT	US REGIST	=R 0		
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	DMA1IF	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	DMA0IF	T1IF	OC1IF	IC1IF	INTOIF
bit 7	00211	10211			00111		bit C
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	Unimpleme	nted: Read as	'0'				
bit 14		MA Channel 1 E		omplete Interr	upt Flag Status	s bit	
		t request has oc t request has no					
bit 13	-	C1 Conversion (unt Eloa Statu	o hit		
DIL 13		t request has oc	•	upi riay Sialu	S DIL		
		t request has no					
bit 12	U1TXIF: UA	RT1 Transmitte	r Interrupt Flag	g Status bit			
		t request has oc					
	0 = Interrupt	t request has no	ot occurred				
bit 11		RT1 Receiver I		status bit			
		t request has oc					
hit 10	•	t request has no		.:.			
bit 10		1 Event Interrup	-	DIT			
		t request has oc t request has no					
bit 9	•	PI1 Error Interru		bit			
	1 = Interrupt	t request has oc t request has no	curred				
bit 8	-	3 Interrupt Flag					
	1 = Interrupt	t request has oc t request has no	curred				
bit 7	-	2 Interrupt Flag					
		t request has oc					
	0 = Interrupt	t request has no	ot occurred				
bit 6	OC2IF: Outp	out Compare Cl	nannel 2 Interru	upt Flag Status	s bit		
		t request has oc t request has no					
bit 5	IC2IF: Input	Capture Chanr	el 2 Interrupt F	lag Status bit			
		t request has oc t request has no					
bit 4	-	VIA Channel 0 E		omplete Interr	upt Flag Status	s bit	
		t request has oc					
	0 = Interrupt						
		request has he					
bit 3	T1IF: Timer	1 Interrupt Flag					

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

10.5 Power-Saving Resources

Many useful resources related to power-saving modes are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

10.5.1 KEY RESOURCES

- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	_			QEB1R<4:0>		
bit 15	•						bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	—	—			QEA1R<4:0>		
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplen	nented bit, read	l as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as ')'				
bit 12-8	QEB1R<4:0>	: Assign B (QE	B1) to the co	rresponding pir	I		
	11111 = Inp u						
	11001 = Inpu	ut tied to RP25					
	•						
	•						
	•						
	• 00001 = Inpu						
hit 7 E	00000 = Inp u	ut tied to RP0	\ `				
	00000 = Inpu Unimplemen	ut tied to RP0 Ited: Read as '0					
bit 7-5 bit 4-0	00000 = Inpu Unimplemen QEA1R<4:0>	ut tied to RP0 Ited: Read as '(-: Assign A (QE		rresponding pir	1		
	00000 = Inpu Unimplemen QEA1R<4:0> 11111 = Inpu	ut tied to RP0 Ited: Read as '(Assign A (QE) It tied to Vss		rresponding pir	I		
bit 7-5 bit 4-0	00000 = Inpu Unimplemen QEA1R<4:0> 11111 = Inpu	ut tied to RP0 Ited: Read as '(-: Assign A (QE		rresponding pir	I		

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER 11-29:	RPOR8: PERIPHERAL PIN SELECT OUTPUT REGISTER 8⁽¹⁾
-----------------	---

bit 7							bit (
	_	—			RP16R<4:0>	>	
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit t
 bit 15					KF17K54.02	-	bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0 RP17R<4:0	R/W-0	R/W-0

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP17R<4:0>:** Peripheral Output Function is Assigned to RP17 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP16R<4:0>:** Peripheral Output Function is Assigned to RP16 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-30: RPOR9: PERIPHERAL PIN SELECT OUTPUT REGISTER 9⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP19R<4:0>		
bit 15							bit 8
			D 444 0	D 444.0	DANA	DMU O	D 444.0
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP18R<4:0>	1	
bit 7							bit 0
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is u			nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8		Peripheral Ou ction numbers	•	is Assigned to	RP19 Output F	Pin bits (see Tal	ole 11-2 for
bit 7-5	Unimplemen	ted: Read as '	0'				
bit 4-0		Peripheral Ou	•	is Assigned to	RP18 Output F	Pin bits (see Tal	ole 11-2 for

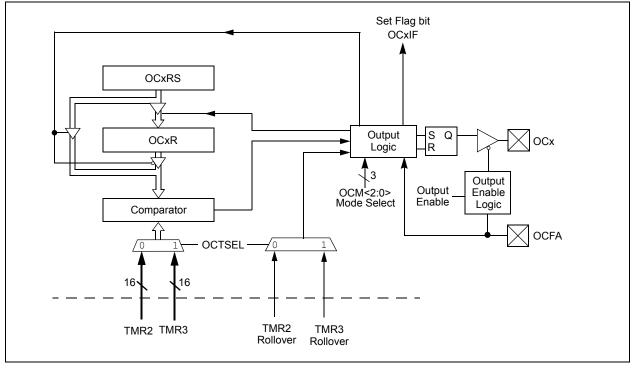
Note 1: This register is implemented in 44-pin devices only.

12.2 Timer1 Control Register

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON	_	TSIDL	_				—
bit 15						1	bit
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0
—	TGATE	TCKPS	S<1:0>	—	TSYNC	TCS	
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	TON: Timer1	On bit					
	1 = Starts 16-	bit Timer1					
	0 = Stops 16-						
bit 14	Unimplemen	ted: Read as '	0'				
bit 13		n Idle Mode bit					
		ue module ope module operat			lle mode		
bit 12-7		ted: Read as '		ue			
bit 6	-	r1 Gated Time		a Enabla bit			
	When TCS =		Accumulation				
	This bit is igno						
	When TCS =	0:					
		e accumulation					
		e accumulation		.			
bit 5-4		Timer1 Input (Clock Prescale	e Select bits			
	11 = 1:256 10 = 1:64						
	01 = 1:8						
	00 = 1:1						
bit 3	Unimplemen	ted: Read as '	0'				
bit 2	TSYNC: Time	er1 External Clo	ock Input Syn	chronization S	elect bit		
	$\frac{\text{When TCS}}{1} = \frac{1}{2}$						
		ize external clo nchronize exte		ut			
	When TCS =			at			
	This bit is igno						
bit 1	-	Clock Source S	Select bit				
	1 = External c 0 = Internal cl	clock from pin T	T1CK (on the	rising edge)			

REGISTER 12-1: T1CON: TIMER1 CONTROL REGISTER

15.0 OUTPUT COMPARE


- This data sheet summarizes the features Note 1: of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 of family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- · Continuous Pulse mode
- PWM mode without fault protection
- · PWM mode with fault protection

FIGURE 15-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SEVTDIR ⁽¹⁾			5	SEVTCMP<14:8	_{>} (2)		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			SEVTC	MP<7:0> ⁽²⁾			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15SEVTDIR: Special Event Trigger Time Base Direction bit⁽¹⁾1 = A Special Event Trigger occurs when the PWM time base is counting downward0 = A Special Event Trigger occurs when the PWM time base is counting upwardbit 14-0SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: This bit is compared with the PTDIR bit (PxTMR<15>) to generate the Special Event Trigger.

2: The PxSECMP<14:0> bits are compared with the PxTMR<14:0> bits to generate the Special Event Trigger.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15				1			bit 8
R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
FLTAM	—	_	—	—	FAEN3	FAEN2	FAEN1
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	EA OV/vUz214						
				t A PWM Over			
2.0 0	1 = The PWN	l output pin is c	lriven active c	it A PWM Over on an external F on an external	ault input eve		
bit 7	1 = The PWN	l output pin is c l output pin is c	lriven active c	on an external F	ault input eve		
	1 = The PWN 0 = The PWM FLTAM: Fault 1 = The Fault	l output pin is c l output pin is c : A Mode bit A input pin fur	driven active of driven inactive actions in the o	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode		ON<13:8>
bit 7	1 = The PWN 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault	l output pin is c l output pin is c : A Mode bit A input pin fur	Iriven active of Iriven inactive Inctions in the of Iches all contro	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode	rent	ON<13:8>
	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen	l output pin is c l output pin is c A Mode bit A input pin fur A input pin late	driven active of driven inactive actions in the of ches all contro	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode	rent	ON<13:8>
bit 7 bit 6-3	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lato ted: Read as f Input A Enable	driven active of driven inactive notions in the of ches all contro 0' e bit	on an external F on an external Cycle-by-Cycle	ault input eve I Fault input ev mode ogrammed sta	rent	ON<13:8>
bit 7 bit 6-3	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin late ted: Read as ' Input A Enable /PWMxL3 pin p	driven active of driven inactive notions in the ches all contro 0' e bit pair is controllo	on an external F on an external Cycle-by-Cycle ol pins to the pr	ault input eve I Fault input ev mode ogrammed sta ut A	rent	ON<13:8>
bit 7 bit 6-3 bit 2	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as f Input A Enable /PWMxL3 pin p Input A Enable	driven active of driven inactive octions in the o ches all contro o' e bit pair is controllo pair is not con e bit	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault	Fault input eve I Fault input ev mode ogrammed sta ut A Input A	rent	ON<13:8>
bit 7 bit 6-3 bit 2	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as Input A Enable /PWMxL3 pin p Input A Enable /PWMxL2 pin p	driven active of driven inactive actions in the of ches all contro o' e bit pair is controllo pair is not con e bit pair is controllo	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp	Fault input eve I Fault input ev mode ogrammed sta ut A Input A ut A	rent	ON<13:8>
bit 7 bit 6-3 bit 2 bit 1	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 0 = PWMxH2 0 = PWMxH2 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as Input A Enable /PWMxL3 pin p Input A Enable /PWMxL2 pin p	driven active of driven inactive octions in the ches all contro o' e bit pair is controllo pair is controllo pair is controllo pair is not con	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault ed by Fault Inp	Fault input eve I Fault input ev mode ogrammed sta ut A Input A ut A	rent	ON<13:8>
bit 7 bit 6-3	 1 = The PWW 0 = The PWW FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 0 = PWMxH2 0 = PWMxH2 FAEN1: Fault 1 = PWMxH1 	I output pin is o output pin is o A Mode bit A input pin fur A input pin lato ted: Read as f Input A Enable /PWMxL3 pin p /PWMxL2 pin p /PWMxL2 pin p /PWMxL2 pin p /PWMxL2 pin p	driven active of driven inactive actions in the ches all contro o' e bit pair is controll pair is not con e bit pair is controll pair is not con e bit pair is not con e bit	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault ed by Fault Inp	Fault input eve I Fault input eve mode ogrammed sta ut A Input A Input A Input A	rent	ON<13:8>

REGISTER 16-9: PxFLTACON: FAULT A CONTROL REGISTER⁽¹⁾

Note 1: PWM2 supports only one PWM I/O pin pair.

21.5 ECAN Control Registers

U-0	U-0	R/W-0	R/W-0	r-0	R/W-1	R/W-0	R/W-0				
	—	CSIDL	ABAT			REQOP<2:0>					
bit 15							bit 8				
R-1	R-0	R-0	U-0	R/W-0	U-0	U-0	R/W-0				
	OPMODE<2:0>	•	_	CANCAP	_	_	WIN				
bit 7							bit C				
Legend:		r = Bit is Res	erved								
R = Readab	ole bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value a	it POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13		in Idle Mode b									
		ue module ope module operat		levice enters Id de	lle mode						
bit 12		=									
		ABAT: Abort All Pending Transmissions bit 1 = Signal all transmit buffers to abort transmission									
	•			smissions are a	aborted						
bit 11	Reserved: D	o not use									
bit 10-8	REQOP<2:0>: Request Operation Mode bits										
	111 = Set Listen All Messages mode										
	110 = Reserved										
	101 = Reserved										
	100 = Set Configuration mode 011 = Set Listen Only Mode										
	010 = Set Loopback mode										
	001 = Set Disable mode										
		rmal Operation									
bit 7-5		0>: Operation									
		111 = Module is in Listen All Messages mode 110 = Reserved									
	101 = Reserv										
		e is in Configur	ation mode								
		e is in Listen O	•								
		e is in Loopbac									
		001 = Module is in Disable mode 000 = Module is in Normal Operation mode									
bit 4			•	he							
bit 3	Unimplemented: Read as '0'										
		CANCAP: CAN Message Receive Timer Capture Event Enable bit 1 = Enable input capture based on CAN message receive									
	0 = Disable II				-						
bit 2-1	Unimplemen	ted: Read as '	0'								
bit 0	•	ap Window Sel									
	1 = Use filter	window									
	0 = Use buffe										

REGISTER 21-1: CICTRL1: ECAN™ CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	_	—	—	—	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at P	OR	'1' = Bit is set	t '0' = Bit is cleared x = Bit is unknown			nown	

bit 15-9 Unimplemented: Read as '0'

bit 8-0 CSS<8:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

Note 1: On devices without nine analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts VREFL.

2: CSSx = ANx, where x = 0 through 8.

REGISTER 22-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
_	—	—		—	—	—	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8-0 PCFG<8:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: On devices without nine analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

- **2:** PCFGx = ANx, where x = 0 through 8.
- **3:** PCFGx bits have no effect if ADC module is disabled by setting the ADxMD bit in the PMDx register. In this case, all port pins are multiplexed with ANx will be in Digital mode.

REGISTER 25-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	MTHTEN0		MTHON	IE<3:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x

U-0	U-0	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X	R/W-X
—	—	DAYTEN<1:0>					
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 25-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—		—		—	WDAY2	WDAY1	WDAY0
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN<1:0>			HRONE<3:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11 Unimplemented: Read as '0'

bit 10-8 WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6

bit 7-6 Unimplemented: Read as '0'

bit 5-4 HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2

bit 3-0 HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

ABLE 28-2:	1	ISPIC33F CONFIGURATION BITS DESCRIPTION					
Bit Field	Register	RTSP Effect	Description				
BWRP	FBS	Immediate	Boot Segment Program Flash Write Protection 1 = Boot segment can be written 0 = Boot segment is write-protected				
BSS<2:0>	FBS	Immediately	Boot Segment Program Flash Code Protection Size x11 = No Boot program Flash segment				
			Boot space is 1K Instruction Words (except interrupt vectors) 110 = Standard security; boot program Flash segment ends at 0x0007FE 010 = High security; boot program Flash segment ends at 0x0007FE				
			Boot space is 4K Instruction Words (except interrupt vectors)				
			101 = Standard security; boot program Flash segment, ends at 0x001FFE				
			001 = High security; boot program Flash segment ends at 0x001FFE				
			Boot space is 8K Instruction Words (except interrupt vectors) 100 = Standard security; boot program Flash segment ends at 0x003FFE				
(4)			000 = High security; boot program Flash segment ends at 0x003FFE				
RBS<1:0> ⁽¹⁾	FBS	Immediate	Boot Segment RAM Code Protection Size 11 = No Boot RAM defined 10 = Boot RAM is 128 bytes 01 = Boot RAM is 256 bytes				
(4)	(4)		00 = Boot RAM is 1024 bytes				
SWRP ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment Program Flash Write-Protect bit 1 = Secure Segment can bet written 0 = Secure Segment is write-protected				
SSS<2:0>	FSS	Immediate	Secure Segment Program Flash Code Protection Size (Secure segment is not implemented on 32K devices) X11 = No Secure program flash segment				
			Secure space is 4K IW less BS 110 = Standard security; secure program Flash segment starts at End				
			of BS, ends at 0x001FFE 010 = High security; secure program Flash segment starts at End of BS, ends at 0x001FFE				
			Secure space is 8K IW less BS 101 = Standard security; secure program Flash segment starts at End of BS, ends at 0x003FFE				
			001 = High security; secure program Flash segment starts at End of BS, ends at 0x003FFE				
			Secure space is 16K IW less BS 100 = Standard security; secure program Flash segment starts at End of BS, ends at 007FFEh				
			000 = High security; secure program Flash segment starts at End of BS, ends at 0x007FFE				
RSS<1:0> ⁽¹⁾	FSS ⁽¹⁾	Immediate	Secure Segment RAM Code Protection 11 = No Secure RAM defined				
			 10 = Secure RAM is 256 Bytes less BS RAM 01 = Secure RAM is 2048 Bytes less BS RAM 00 = Secure RAM is 4096 Bytes less BS RAM 				

IABLE 28-2: OSPIC33F CONFIGURATION BITS DESCRIPTIO	TABLE 28-2:	dsPIC33F CONFIGURATION BITS DESCRIPTION
--	-------------	---

Note 1: This Configuration register is not available on dsPIC33FJ32MC302/304 devices.

TABLE 31-21:RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMERTIMING REQUIREMENTS

		$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^\circ C \leq TA \leq +85^\circ C \mbox{ for Industrial} \\ & -40^\circ C \leq TA \leq +125^\circ C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Мах	Units	Conditions
SY10	TMCL	MCLR Pulse Width (low)	2	—	_	μs	-40°C to +85°C
SY11	Tpwrt	Power-up Timer Period	_	2 4 8 16 32 64 128		ms	-40°C to +85°C User programmable
SY12	TPOR	Power-on Reset Delay	3	10	30	μs	-40°C to +85°C
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset	0.68	0.72	1.2	μs	_
SY20	Twdt1	Watchdog Timer Time-out Period	—	—	—	_	See Section 28.4 "Watchdog Timer (WDT)" and LPRC specification F21 (Table 31-19)
SY30	Tost	Oscillator Start-up Time	_	1024 Tosc			Tosc = OSC1 period
SY35	TFSCM	Fail-Safe Clock Monitor Delay	—	500	900	μs	-40°C to +85°C

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

AC CH	ARACTER	RISTICS	$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No.	Symbol	Characteristic	Min Typ Max Units		Conditions			
			Device	Supply	/			
AD01	AVdd	Module VDD Supply	Greater of VDD – 0.3 or 3.0		Lesser of VDD + 0.3 or 3.6	V	_	
AD02	AVss	Module Vss Supply	Vss – 0.3		Vss + 0.3	V	—	
			Reference	ce Inpu	ts			
AD05	VREFH	Reference Voltage High	AVss + 2.5	_	AVDD	V		
AD05a			3.0	—	3.6	V	VREFH = AVDD VREFL = AVSS = 0	
AD06	VREFL	Reference Voltage Low	AVss	_	AVDD - 2.5	V		
AD06a			0	_	0	V	Vrefh = AVdd Vrefl = AVss = 0	
AD07	VREF	Absolute Reference Voltage	2.5	_	3.6	V	VREF = VREFH - VREFL	
AD08	IREF	Current Drain		_	10	μA	ADC off	
AD09	Iad	Operating Current	—	7.0	9.0	mA	ADC operating in 10-bit mode, see Note 1	
			—	2.7	3.2	mA	ADC operating in 12-bit mode, see Note 1	
			Analog	g Input				
AD12	Vinh	Input Voltage Range Vinн	VINL	_	- VREFH V		This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input	
AD13	VINL	Input Voltage Range VINL	VREFL		AVss + 1V V		This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input	
AD17	Rin	Recommended Impedance of Analog Voltage Source		_	200 200	Ω Ω	10-bit ADC 12-bit ADC	

TABLE 31-43: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

TABLE 32-7. DC CHARACTERISTICS: PROGRAM MEMORI							
DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature					
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions		Conditions		
		Program Flash Memory					
HD130	Eр	Cell Endurance	10,000	—	—	E/W	-40° C to +150° C ⁽²⁾
HD134	TRETD	Characteristic Retention	20	_	—	Year	1000 E/W cycles or less and no other specifications are violated

TABLE 32-7: DC CHARACTERISTICS: PROGRAM MEMORY

Note 1: These parameters are assured by design, but are not characterized or tested in manufacturing.

2: Programming of the Flash memory is allowed up to 150°C.

Section Name	Update Description
Section 31.0 "Electrical Characteristics"	Updated Typical values for Thermal Packaging Characteristics (see Table 31-3).
	Updated Min and Max values for parameter DC12 (RAM Data Retention Voltage) and added Note 4 (see Table 31-4).
	Updated Power-Down Current Max values for parameters DC60b and DC60c (see Table 31-7).
	Updated Characteristics for I/O Pin Input Specifications (see Table 31-9).
	Updated Program Memory values for parameters 136, 137 and 138 (renamed to 136a, 137a and 138a), added parameters 136b, 137b and 138b, and added Note 2 (see Table 31-12).
	Added parameter OS42 (Gм) to the External Clock Timing Requirements (see Table 31-16).
	Updated Watchdog Timer Time-out Period parameter SY20 (see Table 31-21).
	Removed VOMIN, renamed VOMAX to VO, and updated the Min and Max values in the Audio DAC Module Specifications (see Table 31-44).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)