

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8×8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc204-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

REGISTER 3	-2: CORC	ON: CORE C	ONTROL R	EGISTER			
U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
—	—	—	US	EDT ⁽¹⁾		DL<2:0>	
bit 15							bit 8
R///-0	R/W/-0	R/M_1	R/\/_0	R/C-0	R/M-0	R/M-0	R/M-0
50T0	SATB	SATDW	ACCSAT	IPI 3(2)	PSV	RND	IT IF
bit 7	ONTE	0/(10/)	//000///	11 20	101	TUD	bit 0
Legend:		C = Clear only	y bit				
R = Readable	bit	W = Writable	bit	-n = Value at	POR	'1' = Bit is set	
'0' = Bit is clea	ared	'x' = Bit is unk	nown	U = Unimpler	mented bit, read	l as '0'	
hit 15-13	Unimplemen	tod: Read as '	∩'				
bit 12		tiply Unsigned/	o Signed Contr	ol hit			
Sit 12	1 = DSP engi	ne multiplies a	re unsigned				
	0 = DSP engi	ne multiplies a	re signed				
bit 11	EDT: Early DO	Loop Termina	tion Control b	it(1)			
	1 = Terminate 0 = No effect	e executing DO	loop at end of	current loop it	eration		
bit 10-8	DL<2:0>: DO	Loop Nesting I	_evel Status b	its			
	111 = 7 do lo	ops active					
	•						
	•						
	001 = 1 DO lo	op active					
hit 7		Saturation En	ahle hit				
bit /		tor A saturatio	n enabled				
	0 = Accumula	ator A saturatio	n disabled				
bit 6	SATB: ACCB	Saturation En	able bit				
	1 = Accumula	ator B saturatio	n enabled				
	0 = Accumula	ator B saturatio	n disabled		E		
bit 5	SAIDW: Data	a Space Write f	rom DSP Eng	line Saturation	Enable bit		
	\perp = Data space	ce write saturat	ion enabled				
bit 4	ACCSAT: Acc	cumulator Satu	ration Mode S	Select bit			
	1 = 9.31 satu	ration (super sa	aturation)				
	0 = 1.31 satu	ration (normal s	saturation)				
bit 3	IPL3: CPU In	terrupt Priority	Level Status I	oit 3 ⁽²⁾			
	1 = CPU inter 0 = CPU inter	rupt priority lev rupt priority lev	vel is greater t vel is 7 or less	han 7			
bit 2	PSV: Progran	n Space Visibili	ty in Data Spa	ace Enable bit			
	1 = Program	space visible ir	data space				
	0 = Program	space not visib	le in data spa	се			

_ .

Note 1: This bit is always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

REGISTER 7	-14: IEC4: I	NIERRUPI	ENABLE CO	UNTROL RE	GISTER 4			
R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	
DAC1LIE ⁽²⁾	DAC1RIE ⁽²⁾	_		QEI2IE	FLTA2IE	PWM2IE		
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	
	C1TXIE ⁽¹⁾	DMA7IE	DMA6IE	CRCIE	U2EIE	U1EIE	_	
bit 7							bit C	
Legend:	hit	\\/ = \\/ritabla	h it	II – Unimploy	mantad hit raas	1 22 (0)		
R = Readable		vv = vvritable	DIL	$0^{\circ} = 0^{\circ}$	mented bit, read	1 as U v – Ritic unkr		
	OR	I - DILIS SEL			aleu	X - DILISUIKI	IOWIT	
bit 15	DAC1LIE: DA	C Left Channe	el Interrupt En	able bit ⁽²⁾				
	1 = Interrupt r	equest enable	d					
		equest not ena	adied					
DIL 14	1 = Interrupt r	AC RIGHT CHAN Poquest enable	nei interrupt E d					
	0 = Interrupt r	request not enable	abled					
bit 13-12	Unimplemen	ted: Read as '	0'					
bit 11	QEI2IE: QEI2	Event Interrup	ot Flag Status	bit				
	1 = Interrupt request enabled							
bit 10	0 = Interrupt request not enabled							
DIE TU	FLIAZIE: PWM2 Fault A Interrupt Enable bit							
	0 = Interrupt request not enabled							
bit 9	PWM2IE: PWM2 Error Interrupt Enable bit							
	1 = Interrupt r	equest enable	d					
	0 = Interrupt r	equest not ena	abled					
bit 8-7		ted: Read as '			La la :#(1)			
DIT 6	1 = Interrupt r		ata Request I	nterrupt Enabi	e dit'''			
	0 = Interrupt r	request not occ	curred					
bit 5	DMA7IE: DM	A Channel 7 D	ata Transfer C	Complete Inter	rupt Enable bit			
	1 = Interrupt r	equest enable	d					
	0 = Interrupt r	equest not ena	abled					
bit 4	DMA6IE: DM	A Channel 6 D	ata Transfer (Complete Interi	rupt Enable bit			
	1 = Interrupt r 0 = Interrupt r	equest enable	u abled					
bit 3	CRCIE: CRC	Generator Inte	errupt Enable I	bit				
	1 = Interrupt r	equest enable	d					
	0 = Interrupt r	equest not ena	abled					
bit 2	U2EIE: UART	2 Error Interru	pt Enable bit					
	1 = Interrupt r	equest enable	d abled					
bit 1		1 Error Interru	ot Fnable bit					
	1 = Interrupt r	equest enable	d					
	0 = Interrupt r	equest not ena	abled					
bit 0	Unimplemen	ted: Read as '	0'					
Note 1: Inte	rrupts are disal	bled on device	s without an E	CAN™ modul	e.			

_ _ _ _ _ ...

2: Interrupts are disabled on devices without an Audio DAC module.

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U2TXIP<2:0>				U2RXIP<2:0>	
bit 15	·			·			bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>		_		T5IP<2:0>	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
hit 15	Unimpleme	nted: Read as 'i	n'				
bit 14-12 bit 11 bit 10-8 bit 7	U2TXIP<2:0 111 = Intern 001 = Intern 000 = Intern Unimpleme U2RXIP<2:0 111 = Intern 001 = Intern 001 = Intern 001 = Intern U00 = Intern	>: UART2 Trans upt is priority 1 upt is priority 1 upt source is dis nted: Read as ')>: UART2 Rece upt is priority 7 (upt is priority 1 upt source is dis nted: Read as '	abled D' eiver Interrup highest priori abled	upt Priority bits ty interrupt) t Priority bits ty interrupt)			
bit 6_4		Fyternal Inter	Unt 2 Priority	, hite			
bit 0 4	111 = Interro •	upt is priority 7 (highest priori	ty interrupt)			
	• 001 = Interru 000 = Interru	upt is priority 1 upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)			

• • 001 = Interrupt is priority 1

000 = Interrupt source is disabled

© 2007-2012 Microchip Technology Inc.

9.4 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (XT, HS and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

9.4.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 28.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

9.4.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

1. The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- 3. The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- 6. The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).

Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.

- 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
- 3: Refer to Section 39. "Oscillator (Part III)" (DS70216) in the "dsPIC33F/ PIC24H Family Reference Manual" for details.

9.5 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

^{© 2007-2012} Microchip Technology Inc.

11.2 Open-Drain Configuration

In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See **"Pin Diagrams**" for the available pins and their functionality.

11.3 Configuring Analog Port Pins

The AD1PCFGL and TRIS registers control the operation of the analog-to-digital port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level).

Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

11.4 I/O Port Write/Read Timing

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be an NOP, as shown in Example 11-1.

11.5 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/ X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-ofstate.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

EXAMPLE 11-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	WO, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction

REGISTER	11-18: RPINR	22: PERIPH	ERAL PIN S	SELECT INPU	IT REGISTEI	R 22	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			SCK2R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—				SDI2R<4:0>	>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cleared x = Bit is un			nown
bit 15-13	Unimplemen	ted: Read as	'0'				
bit 12-8	SCK2R<4:0>	: Assign SPI2	Clock Input (S	SCK2) to the co	rresponding R	Pn pin	
	11111 = Inpu	it tied to Vss					
	11001 = Inpu	it tied to RP25					
	•						
	•						
	•						
	00001 = Inpu	it tied to RP1					
	00000 = Inpu	it tied to RP0					

SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the corresponding RPn pin

bit 7-5

bit 4-0

Unimplemented: Read as '0'

11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

13.4 Timer Control Registers

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
TON	_	TSIDL	—			_		
bit 15							bit 8	
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0	
—	TGATE	TCKPS	S<1:0>	T32	—	TCS	—	
bit 7 bit 0								
Logondu]	
Legena: P - Poodoblo I	hit	M = M/ritable	bit	II – Unimplor	montod bit road	ac '0'		
-n = Value at P		'1' = Rit is set	DIL	0 – Onimplei '0' = Rit is cle	henteu bit, reau bared	x = Rit is unkn	own	
							lowin	
bit 15	TON: Timerx	On bit						
	When T32 = 1	(in 32-bit Tim	er mode):					
	1 = Starts 32-	bit TMRx:TMR	y timer pair					
	0 = Stops 32 = 0	(in 16-bit Tim	y timer pair					
	1 = Starts 16-bit timer							
	0 = Stops 16-bit timer							
bit 14	Unimplemented: Read as '0'							
bit 13	TSIDL: Stop in Idle Mode bit							
	 1 = Discontinue timer operation when device enters Idle mode 0 = Continue timer operation in Idle mode 							
bit 12-7	Unimplement	ted: Read as '	0'					
bit 6	TGATE: Time	rx Gated Time	Accumulation	Enable bit				
	When TCS = This bit is igno	<u>1:</u> pred.						
	When TCS =	<u>0:</u>						
	1 = Gated tim 0 = Gated tim	e accumulatior e accumulatior	n enabled n disabled					
bit 5-4	TCKPS<1:0>	: Timerx Input	Clock Prescal	e Select bits				
	11 = 1:256 pr	escale value						
	10 = 1:64 pres	scale value						
	01 = 1.8 pres	cale value cale value						
bit 3	T32 : 32-bit Timerx Mode Select bit							
	1 = TMRx and TMRy form a 32-bit timer 0 = TMRx and TMRy form separate 16-bit timer							
bit 2	Unimplement	ted: Read as '	D'					
bit 1	TCS: Timerx (Clock Source S	Select bit					
	1 = External c	lock from TxC	K pin					
	0 = Internal cl	ock (Fosc/2)						
bit 0	Unimplement	ted: Read as '	Ο΄					

REGISTER 13-1: TxCON: TIMER CONTROL REGISTER (x = 2 or 4)

15.2 Output Compare Resources

Many useful resources related to Output Compare are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

15.2.1 KEY RESOURCES

- Section 13. "Output Compare" (DS70209)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	R/W-x	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
_	WAKFIL	_	_	_		SEG2PH<2:0>	
bit 15							bit
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
SEG2PHTS	SAM		SEG1PH<2.)>		PRSEG<2:0>	
bit 7	0, 111						bit
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	Unimpleme	nted: Read as '	0'				
bit 14	WAKFIL: Se	elect CAN Bus L	ine Filter for	Wake-up bit			
	1 = Use CAN	N bus line filter f	or wake-up				
	0 = CAN bus	s line filter is not	used for wa	ke-up			
bit 13-11	Unimpleme	nted: Read as '	0'				
bit 10-8	SEG2PH<2:	0>: Phase Segr	ment 2 bits				
	111 = Lengt	his8xIQ					
	•						
	000 = 1 enat	h is 1 x To					
bit 7	SEG2PHTS:	: Phase Segme	nt 2 Time Sel	lect bit			
	1 = Freelv pr	rogrammable					
	0 = Maximur	n of SEG1PH b	its or Informa	ation Processing	Time (IPT), w	hichever is grea	ter
bit 6	SAM: Sampl	le of the CAN B	us Line bit				
	1 = Bus line	is sampled thre	e times at the	e sample point			
	0 = Bus line	is sampled once	e at the samp	ole point			
bit 5-3	SEG1PH<2:	0>: Phase Segr	ment 1 bits				
	111 = Lengt	h is 8 x Tq					
	•						
	•						
			Timo Soamo	nt hita			
DIL 2-0	111 = Lengt		nine Segine				
	•						
	•						
	•						

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 21-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0'	can be writter	n to clear the bit		
R = Readable	bit W = Writable bit U = Unimplemented bit, read as '0'						

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

'1' = Bit is set

0 = Buffer is empty

-n = Value at POR

REGISTER 21-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

REGISTER 22-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 0.1)
	0 = Samples multiple channels individually in sequence
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in

progress. Automatically cleared by hardware at start of a new conversion.

25.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

25.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 25-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

RTCPTR	RTCC Value Register Window			
<1:0>	RTCVAL<15:8>	RTCVAL<7:0>		
00	MINUTES	SECONDS		
01	WEEKDAY	HOURS		
10	MONTH	DAY		
11	_	YEAR		

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 25-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 25-2: ALRMVAL REGISTER MAPPING

ALRMPTR	Alarm Value Register Window			
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>		
00	ALRMMIN	ALRMSEC		
01	ALRMWD	ALRMHR		
10	ALRMMNTH	ALRMDAY		
11	—	—		

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and			
not write operations.				

25.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 25-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 25-1.

EXAMPLE 25-1: SETTING THE RTCWREN BIT

MOV MOV	#NVMKEY, W1 #0x55, W2	;move the address of NVMKEY into W1
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

REGISTER 27-1: PMCON: PARALLEL PORT CONTROL REGISTER (CONTINUED)

bit 2	BEP: Byte Enable Polarity bit
	 1 = Byte enable active-high (PMBE) 0 = Byte enable active-low (PMBE)
bit 1	WRSP: Write Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Write strobe active-high (PMWR) 0 = Write strobe active-low (PMWR)
	For Master mode 1 (PMMODE<9:8> = 11): 1 = Enable strobe active-high (PMENB) 0 = Enable strobe active-low (PMENB)
bit 0	RDSP: Read Strobe Polarity bit
	For Slave modes and Master mode 2 (PMMODE<9:8> = 00,01,10): 1 = Read strobe active-high (PMRD) 0 = Read strobe active-low (PMRD) For Master mode 1 (PMMODE<9:8> = 11): 1 = Read/write strobe active-high (PMRD/PMWR) 0 = Read/write strobe active-low (PMRD/PMWR)

- Note 1: 28-pin devices do not have PMA<10:2>.
 - 2: These bits have no effect when their corresponding pins are used as address lines.

28.5 JTAG Interface

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement a JTAG interface, which supports boundary scan device testing, as well as in-circuit programming. Detailed information on this interface is provided in future revisions of the document.

Note: Refer to Section 24. "Programming and Diagnostics" (DS70207) of the *dsPIC33F/PIC24H Family Reference Manual* for further information on usage, configuration and operation of the JTAG interface.

28.6 In-Circuit Serial Programming

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"dsPIC33F/PIC24H Flash Programming Specification"* (DS70152) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

28.7 In-Circuit Debugger

When MPLAB[®] ICD 3 is selected as a debugger, the in-circuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to $\overline{\text{MCLR}}$, VDD, Vss, PGC, PGD and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

28.8 Code Protection and CodeGuard Security

The dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices offer advanced implementation of CodeGuard Security that supports BS, SS and GS while, the dsPIC33FJ32MC302/304 devices offer the intermediate level of CodeGuard Security that supports only BS and GS. CodeGuard Security enables multiple parties to securely share resources (memory, interrupts and peripherals) on a single chip. This feature helps protect individual Intellectual Property in collaborative system designs.

When coupled with software encryption libraries, CodeGuard Security can be used to securely update Flash even when multiple IPs reside on the single chip. The code protection features vary depending on the actual dsPIC33F implemented. The following sections provide an overview of these features.

Secure segment and RAM protection is implemented on the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices. The dsPIC33FJ32MC302/304 devices do not support secure segment and RAM protection.

Note: Refer to Section 23. "CodeGuard™ Security" (DS70199) of the "dsPIC33F/ PIC24H Family Reference Manual" for further information on usage, configuration and operation of CodeGuard Security. Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more deta	ils on the inst	ruction set,
	refer to the	"16-bit MCU	and DSC
	Programmer's	Reference	Manual"
	(DS70157).		

TABLE 29-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.w	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register \in {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal $\in~\{0255\}$ for Byte mode, $\{0:1023\}$ for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal $\in \{065535\}$
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal ∈ {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

31.1 DC Characteristics

TABLE 31-1: OPERATING MIPS VS. VOLTAGE

Characteristic	VDD Range (in Volts)		Max MIPS		
		Temp Range (in °C)	dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04		
—	3.0-3.6V ⁽¹⁾	-40°C to +85°C	40		
—	3.0-3.6V ⁽¹⁾	-40°C to +125°C	40		

Note 1: Device is functional at VBORMIN < VDD < VDDMIN. Analog modules such as the ADC will have degraded performance. Device functionality is tested but not characterized. Refer to parameter BO10 in Table 31-11 for the minimum and maximum BOR values.

TABLE 31-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40		+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	_	+155	°C
Operating Ambient Temperature Range	TA	-40		+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$	PD	PINT + PI/O		W	
I/O Pin Power Dissipation: $I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$					
Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 31-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Мах	Unit	Notes
Package Thermal Resistance, 44-pin QFN	θja	30	—	°C/W	1
Package Thermal Resistance, 44-pin TFQP	θја	40	—	°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	45		°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	50	_	°C/W	1
Package Thermal Resistance, 28-pin QFN-S	θја	30	_	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions	
DI60a	licl	Input Low Injection Current	0	_	₋₅ (5,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VCAP, SOSCI, SOSCO, and RB14	
DI60b	ІІСН	Input High Injection Current	0	_	+5 ^(6,7,8)	mA	All pins except VDD, Vss, AVDD, AVss, MCLR, VcAP, SOSCI, SOSCO, RB14, and digital 5V-tolerant designated pins	
DI60c	∑lict	Total Input Injection Current (sum of all I/O and control pins)	-20 ⁽⁹⁾	_	+20 ⁽⁹⁾	mA	Absolute instantaneous sum of all \pm input injection currents from all I/O pins (IICL + IICH) $\leq \sum$ IICT	

TABLE 31-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS (CONTINUED)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.

6: Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.

- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

AC CHARACTERISTICS			$\begin{tabular}{lllllllllllllllllllllllllllllllllll$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
Clock Parameters									
AD50	Tad	ADC Clock Period	117.6	_	_	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250		ns	—		
	Conversion Rate								
AD55	tCONV	Conversion Time	_	14 Tad		ns	—		
AD56	FCNV	Throughput Rate	_	—	500	Ksps	—		
AD57	TSAMP	Sample Time	3 Tad	—			—		
Timing Parameters									
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	_	3 Tad	—	Auto convert trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad		—		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 TAD			_		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	_	_	20	μs	_		

TABLE 31-46: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

33.1 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	INCHES			
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	28				
Pitch	е	.100 BSC			
Top to Seating Plane	A		_	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	_	_	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eВ		_	.430	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units	MILLIMETERS			
Dimension	n Limits	MIN	NOM	MAX	
Number of Leads	Ν	44			
Lead Pitch	е	0.80 BSC			
Overall Height	А	-	-	1.20	
Molded Package Thickness	A2	0.95	1.00	1.05	
Standoff	A1	0.05	-	0.15	
Foot Length	L	0.45	0.60	0.75	
Footprint	L1	1.00 REF			
Foot Angle	t Angle φ 0°		3.5°	7°	
Overall Width	E	12.00 BSC			
Overall Length	D	12.00 BSC			
Molded Package Width	E1	10.00 BSC			
Molded Package Length	D1	10.00 BSC			
Lead Thickness	С	0.09	_	0.20	
Lead Width	b	0.30	0.37	0.45	
Mold Draft Angle Top	α	11°	12°	13°	
Mold Draft Angle Bottom	β 11° 12° 13°			13°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B