

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Betans	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· ·
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc204-e-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	Addr	Bit 15	Bit 14	Bit 13 Bit 12 Bit 11 Bit 10 Bit 9 Bit 8 Bit 7 Bit 6 Bit 5 Bit 4 Bit 3 Bit 2 Bit 1											Bit 0	All Resets		
MODCON	0046	XMODEN	YMODEN	-	BWM<3:0> YWM<3:0> XWM<3:0>											0000		
XMODSRT	0048		XS<15:1>										0	XXXX				
XMODEND	004A		XE<15:1>										1	XXXX				
YMODSRT	004C							Y	′S<15:1>								0	XXXX
YMODEND	004E							γ	′E<15:1>								1	XXXX
XBREV	0050	BREN	BREN XB<14:0>											XXXX				
DISICNT	0052	—	Disable Interrupts Counter Register											XXXX				

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20: DMA REGISTER MAP

IABLE 4	+-20.		LOISI		F					-	-					-		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMOD	E<1:0>	_	_	MODE	=<1:0>	0000
DMA0REQ	0382	FORCE	_	—	_	—	—	_	_	—				RQSEL<6:0	>			0000
DMA0STA	0384								S	STA<15:0>								0000
DMA0STB	0386								S	TB<15:0>								0000
DMA0PAD	0388								P	AD<15:0>								0000
DMA0CNT	038A	_		_	_	—	_					CN	Г<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	—	_	_	—	—	AMOD	E<1:0>	—		MODE	=<1:0>	0000
DMA1REQ	038E	FORCE		—	_	—	—	_	_	—				RQSEL<6:0	>			0000
DMA1STA	0390								S	STA<15:0>								0000
DMA1STB	0392								S	TB<15:0>								0000
DMA1PAD	0394								P	AD<15:0>								0000
DMA1CNT	0396			—	_	—	—					CN	Г<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	_	_	_	_	_	_	_	_				RQSEL<6:0	>			0000
DMA2STA	039C								S	STA<15:0>								0000
DMA2STB	039E								S	TB<15:0>								0000
DMA2PAD	03A0								P	AD<15:0>								0000
DMA2CNT	03A2	_		_	_	—	_					CN	Г<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	-	MODE	=<1:0>	0000
DMA3REQ	03A6	FORCE		—	_	—	—	_	_	—				RQSEL<6:0	>			0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC								P	AD<15:0>								0000
DMA3CNT	03AE			—	_	—	—					CN	Г<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	-	MODE	=<1:0>	0000
DMA4REQ	03B2	FORCE	—	—	—	—	—	—	—	—				RQSEL<6:0	>			0000
DMA4STA	03B4								S	STA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								P	AD<15:0>								0000
DMA4CNT	03BA			—	_	—	_					CN	Г<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	_	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE		—	_	—	—	—	—	_				RQSEL<6:0	>			0000
DMA5STA	03C0								S	STA<15:0>								0000
DMA5STB	03C2								S	TB<15:0>								0000
Legend:	= 11r	nimplement	ed read as	s 'O'														

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Legend: — = unimplemented, read as '0'.

TABLE 4-20: DMA REGISTER MAP (CONTINUED)

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA5PAD	03C4							PAD<15:0> 0									0000	
DMA5CNT	03C6	_	_	_	_	_	_			CNT<9:0>							0000	
DMA6CON	03C8	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	AMODE<1:0> MODE<1:0>							0000	
DMA6REQ	03CA	FORCE	_	_	_	_	_	_	_	_			I	RQSEL<6:0	>			0000
DMA6STA	03CC								S	TA<15:0>								0000
DMA6STB	03CE								S	TB<15:0>								0000
DMA6PAD	03D0								P	AD<15:0>								0000
DMA6CNT	03D2	_	_	_	_	_	_					CNT	<9:0>					0000
DMA7CON	03D4	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	-	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA7REQ	03D6	FORCE	—	—			_	—	—	_			I	RQSEL<6:0	>			0000
DMA7STA	03D8								S	TA<15:0>								0000
DMA7STB	03DA								S	TB<15:0>								0000
DMA7PAD	03DC								P	AD<15:0>								0000
DMA7CNT	03DE	—	_	_			—					CNT	<9:0>					0000
DMACS0	03E0	PWCOL7	PWCOL6	PWCOL5	PWCOL4	PWCOL3	PWCOL2	PWCOL1	PWCOL0	XWCOL7	XWCOL6	XWCOL5	XWCOL4	XWCOL3	XWCOL2	XWCOL1	XWCOL0	0000
DMACS1	03E2	—	—	—			LSTCH	1<3:0>		PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0	0000
DSADR	03E4								DS	ADR<15:0>								0000

Legend: — = unimplemented, read as '0'.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 μs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Programmable power-up time delay	0-128 ms nominal
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum

IABLE 6-2: USCILLATUR PARAMETERS	TABLE 6-2:	OSCILLATOR PARAMETERS
----------------------------------	-------------------	------------------------------

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

6.4 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 31.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset.

6.4.1 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to **Section 28.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

7.6 Interrupt Setup Procedures

7.6.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- Select the user-assigned priority level for the interrupt source by writing the control bits in the appropriate IPCx register. The priority level depends on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.6.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, the program re-enters the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.6.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.6.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the ${\tt POP}$ instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

U-0	U-0	U-0	U-0	R-1	R-1	R-1	R-1					
_	_	_	_		LSTCH							
bit 15							bit					
R-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0					
PPST7	PPST6	PPST5	PPST4	PPST3	PPST2	PPST1	PPST0					
bit 7		•	•			•	bit					
Legend:												
R = Readable	e bit	W = Writable	bit	U = Unimplem	nented bit, read	as '0'						
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown					
				0 2000000								
bit 15-12	Unimplemen	ted: Read as '	0'									
bit 11-8	LSTCH<3:0>	: Last DMA Ch	annel Active I	oits								
	1111 = No Di	MA transfer ha	s occurred sir	ice system Res	et							
	1110-1000 =											
		lata transfer wa lata transfer wa										
	0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5											
	0100 = Last data transfer was by DMA Channel 4 0011 = Last data transfer was by DMA Channel 3											
		lata transfer wa lata transfer wa										
bit 7	0000 = Last data transfer was by DMA Channel 0 PPST7: Channel 7 Ping-Pong Mode Status Flag bit											
		B register select A register select										
bit 6		nel 6 Ping-Por		is Flag bit								
		B register selec	-	3								
		A register selec										
bit 5	PPST5: Chan	nel 5 Ping-Por	ng Mode Statu	is Flag bit								
		B register seled										
		A register selec										
bit 4		inel 4 Ping-Por	•	is Flag bit								
		3 register seleo A register seleo										
bit 3		inel 3 Ping-Por		ıs Flag bit								
		B register seled										
		A register selec										
bit 2		inel 2 Ping-Por	-	is Flag bit								
		3 register select A register select										
		nel 1 Ping-Por		is Flag bit								
bit 1		-	-									
bit 1	1 = DMA1STE	3 register seled	cted									
bit 1		B register seled A register seled										
bit 1 bit 0	0 = DMA1STA	-	ted	ıs Flag bit								

NOTES:

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3) (CONTINUED)

- bit 3 CF: Clock Fail Detect bit (read/clear by application)
 - 1 = FSCM has detected clock failure
 - 0 = FSCM has not detected clock failure
- bit 2 Unimplemented: Read as '0'
- bit 1 LPOSCEN: Secondary (LP) Oscillator Enable bit
 - 1 = Enable secondary oscillator
 - 0 = Disable secondary oscillator
- bit 0 OSWEN: Oscillator Switch Enable bit
 - 1 = Request oscillator switch to selection specified by NOSC<2:0> bits
 - 0 = Oscillator switch is complete
- **Note 1:** Writes to this register require an unlock sequence. Refer to **Section 39. "Oscillator (Part III)"** (DS70216) in the *"dsPIC33F/PIC24H Family Reference Manual"* (available from the Microchip web site) for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: This register is reset only on a Power-on Reset (POR).

REGISTER		R7: PERIPHE	_	_							
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
_	—	—			IC2R<4:0>						
bit 15							bit				
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
		—			IC1R<4:0>						
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown				
	• •										
		out tied to RP1 out tied to RP0									
bit 7-5	Unimpleme	nted: Read as '	0'								
bit 4-0	IC1R<4:0>:	Assign Input Ca	apture 1 (IC1)	to the correspo	onding RPn pir	I					
	11111 = Input tied to Vss 11001 = Input tied to RP25										
	•										
	•										
	00001 = Inp 00000 = Inp	out tied to RP1									

REGISTER 11-5: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

REGISTER	11-18: RPINR	22: PERIPH	ERAL PIN S	ELECT INPU	IT REGISTE	R 22	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	_			SCK2R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			10/00-1	10.00-1	SDI2R<4:0>		10.00-1
bit 7					0012111110		bit 0
Legend: R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	id as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unki	nown
bit 15-13 bit 12-8	SCK2R<4:0> 11111 = Inpu 11001 = Inpu •	It tied to Vss It tied to RP25		SCK2) to the co	prresponding R	Pn pin	
	00001 = Inpu 00000 = Inpu						

SDI2R<4:0>: Assign SPI2 Data Input (SDI2) to the corresponding RPn pin

bit 7-5

bit 4-0

Unimplemented: Read as '0'

11111 = Input tied to Vss 11001 = Input tied to RP25

00001 = Input tied to RP1 00000 = Input tied to RP0

	0-J. JFIAC	UNZ. SPIX CC					
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0
FRMEN	SPIFSD	FRMPOL	_	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—		—	—	—	—	FRMDLY	—
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable b	pit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkno	own
bit 15	FRMEN: Fran	med SPIx Suppo	ort bit				
		SPIx support ena SPIx support dis		n used as fram	e sync pulse ir	iput/output)	
bit 14	SPIFSD: Frai	me Sync Pulse I	Direction Cor	ntrol bit			
	1 = Frame sy	nc pulse input (nc pulse output	slave)				
bit 13	FRMPOL: Fr	ame Sync Pulse	Polarity bit				

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame sync pulse coincides with first bit clock0 = Frame sync pulse precedes first bit clock

Unimplemented: This bit must not be set to '1' by the user application

Unimplemented: Read as '0'

bit 12-2

bit 1

bit 0

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
-	_	—	_	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	—	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			wn		

bit 15-2	Unimplemented: Read as '0'
----------	----------------------------

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit
	 1 = PMP module uses TTL input buffers 0 = PMP module uses Schmitt Trigger input buffers

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL) needs to be set.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 25-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	—	—	—	—		WDAY<2:0>	
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN<1:0>			HRON	E<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 25-7: RTCVAL (WHEN RTCPTR<1:0> = 00): **MINUTES AND SECONDS VALUE REGISTER**

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	IE<3:0>	
bit 15							bit 8
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
_	SECTEN<2:0>				SECON	IE<3:0>	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

© 2007-2012 Microchip Technology Inc.

bit 7

bit 0

Bit Field	Register	RTSP Effect	Description
GSS<1:0>	FGS	Immediate	General Segment Code-Protect bit 11 = User program memory is not code-protected 10 = Standard security 0x = High security
GWRP	FGS	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	FOSCSEL	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
FNOSC<2:0>	FOSCSEL	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Initial Oscillator Source Selection bits 111 = Internal Fast RC (FRC) oscillator with postscaler 110 = Internal Fast RC (FRC) oscillator with divide-by-16 101 = LPRC oscillator 100 = Secondary (LP) oscillator 011 = Primary (XT, HS, EC) oscillator with PLL 010 = Primary (XT, HS, EC) oscillator 001 = Internal Fast RC (FRC) oscillator with PLL 000 = FRC oscillator
FCKSM<1:0>	FOSC	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	FOSC	Immediate	Peripheral Pin Select Configuration bit 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	FOSC	Immediate	OSC2 Pin Function bit (except in XT and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	FOSC	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode 01 = XT Crystal Oscillator mode 00 = EC (External Clock) mode
FWDTEN	FWDT	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register has no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	FWDT	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	FWDT	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

Note 1: This Configuration register is not available on dsPIC33FJ32MC302/304 devices.

Most instructions are a single word. Certain double-word instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it executes as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note:	For more details on the instruction set,
	refer to the "16-bit MCU and DSC
	Programmer's Reference Manual"
	(DS70157).

TABLE 29-1: SYMBOLS USED IN OPCODE DESCRIPTIONS

Field	Description
#text	Means literal defined by "text"
(text)	Means "content of text"
[text]	Means "the location addressed by text"
{}	Optional field or operation
<n:m></n:m>	Register bit field
.b	Byte mode selection
.d	Double-Word mode selection
.S	Shadow register select
.W	Word mode selection (default)
Acc	One of two accumulators {A, B}
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}
bit4	4-bit bit selection field (used in word addressed instructions) ∈ {015}
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero
Expr	Absolute address, label or expression (resolved by the linker)
f	File register address ∈ {0x00000x1FFF}
lit1	1-bit unsigned literal $\in \{0,1\}$
lit4	4-bit unsigned literal ∈ {015}
lit5	5-bit unsigned literal ∈ {031}
lit8	8-bit unsigned literal ∈ {0255}
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode
lit14	14-bit unsigned literal ∈ {016384}
lit16	16-bit unsigned literal ∈ {065535}
lit23	23-bit unsigned literal \in {08388608}; LSb must be '0'
None	Field does not require an entry, can be blank
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate
PC	Program Counter
Slit10	10-bit signed literal \in {-512511}
Slit16	16-bit signed literal ∈ {-3276832767}
Slit6	6-bit signed literal ∈ {-1616}
Wb	Base W register ∈ {W0W15}
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }
Wm,Wn	Dividend, Divisor working register pair (direct addressing)

DC CHARACTERISTICS		Standard Oper (unless otherw Operating temp					
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions
	VIL	Input Low Voltage					
DI10		I/O pins	Vss	—	0.2 VDD	V	
DI11		PMP pins	Vss	—	0.15 VDD	V	PMPTTL = 1
DI15		MCLR	Vss	—	0.2 VDD	V	
DI16		I/O Pins with OSC1 or SOSCI	Vss	—	0.2 VDD	V	
DI18		I/O Pins with SDAx, SCLx	Vss	—	0.3 VDD	V	SMbus disabled
DI19		I/O Pins with SDAx, SCLx	Vss	—	0.8 V	V	SMbus enabled
	Vih	Input High Voltage					
DI20		I/O Pins Not 5V Tolerant ⁽⁴⁾	0.7 Vdd	—	Vdd	V	—
		I/O Pins 5V Tolerant ⁽⁴⁾	0.7 VDD	—	5.5	V	
DI21		I/O Pins Not 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	_	Vdd	V	
		I/O Pins 5V Tolerant with PMP ⁽⁴⁾	0.24 VDD + 0.8	_	5.5	V	
DI28		SDAx, SCLx	0.7 Vdd	—	5.5	V	SMbus disabled
DI29		SDAx, SCLx	2.1	—	5.5	V	SMbus enabled
	ICNPU	CNx Pull-up Current					
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS

TABLE 31-9: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current can be measured at different input voltages.

- 3: Negative current is defined as current sourced by the pin.
- 4: See "Pin Diagrams" for the 5V tolerant I/O pins.
- 5: VIL source < (Vss 0.3). Characterized but not tested.
- **6:** Non-5V tolerant pins VIH source > (VDD + 0.3), 5V tolerant pins VIH source > 5.5V. Characterized but not tested.
- 7: Digital 5V tolerant pins cannot tolerate any "positive" input injection current from input sources > 5.5V.
- 8: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.
- **9:** Any number and/or combination of I/O pins not excluded under IICL or IICH conditions are permitted provided the mathematical "absolute instantaneous" sum of the input injection currents from all pins do not exceed the specified limit. Characterized but not tested.

31.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 AC characteristics and timing parameters.

TABLE 31-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

AC CHARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial
	$-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended Operating voltage VDD range as described in Table 31-1.

FIGURE 31-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 31-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosco	OSC2/SOSCO pin	_	—	15	pF	In XT and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	_	400	pF	In I ² C™ mode

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Indus $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Exte					
Param No.	Symbol	Characteristic	Min	Тур	Мах	Units	Conditions	
PS1	TdtV2wrH	Data in Valid before WR or CS Inactive (setup time)	20		_	ns	_	
PS2	TwrH2dtl	WR or CS Inactive to Data-In Invalid (hold time)	20	_	_	ns	_	
PS3	TrdL2dtV	$\overline{\text{RD}}$ and $\overline{\text{CS}}$ to Active Data-Out Valid	—	_	80	ns	_	
PS4	TrdH2dtl	RD Active or CS Inactive to Data-Out Invalid	10	_	30	ns	_	

TABLE 31-53: SETTING TIME SPECIFICATIONS

FIGURE 31-31: PARALLEL MASTER PORT READ TIMING DIAGRAM

	P1	P2	P3 P4	P1	P2 P3	P4	P1	P2
System Clock								
PMA<13:8>	 		Address	si i	 			ł l
PMD<7:0>		Addre:	ss <7:0>		PM6	Data		
PMRD PMWR			PM3-		/			
PMALL/PMALH	 	PN	11					
PMCS1			 		, , , , , , ,		 	
	l I		ļ		I	· ·	I	I

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACT	ERISTICS		(unless oth	perating Co erwise state emperature	d)	W to 3.6V +150°C for High Temperature	
Parameter No.	Typical	Мах	Units	Conditions			
Power-Down (Current (IPD)						
HDC60e	250	2000	μA	+150°C	3.3V	Base Power-Down Current ^(1,3)	
HDC61c	3	5	μA	+150°C	3.3V	Watchdog Timer Current: ΔIwDT ^(2,4)	

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 32-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARA	(unless oth	nerwise s	,		V for High Temperature			
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions			
HDC72a	39	45	1:2	mA				
HDC72f	18	25	1:64	mA	+150°C	3.3V	20 MIPS	
HDC72g	18	25	1:128	mA				

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

IPC18 (Interrupt Priority Control 18) 127, 128
IPC2 (Interrupt Priority Control 2)114
IPC3 (Interrupt Priority Control 3)
IPC4 (Interrupt Priority Control 4)
IPC5 (Interrupt Priority Control 5)
IPC6 (Interrupt Priority Control 6)
IPC0 (Interrupt Priority Control 7)
IPC7 (Interrupt Priority Control 7)
IPC8 (Interrupt Priority Control 8)
IPC9 (Interrupt Priority Control 9) 121
NVMCON (Flash Memory Control)75
NVMKEY (Nonvolatile Memory Key)76
OCxCON (Output Compare x Control)
OSCCON (Oscillator Control) 147
OSCTUN (FRC Oscillator Tuning) 151
P1DC3 (PWM Duty Cycle 3)
PLLFBD (PLL Feedback Divisor)150
PMD1 (Peripheral Module Disable Control Register 1)
158
PMD2 (Peripheral Module Disable Control Register 2)
160 DMD2 (Desiste and Markula Disatula Osstatul Desister 2)
PMD3 (Peripheral Module Disable Control Register 3)
161
PWMxCON1 (PWM Control 1)220
PWMxCON2 (PWM Control 2)
PxDC1 (PWM Duty Cycle 1) 226
PxDC2 (PWM Duty Cycle 2) 226
PxDTCON1 (Dead-Time Control 1) 222
PxDTCON2 (Dead-Time Control 2)
PxFLTACON (Fault A Control)
PxOVDCON (Override Control)
PxSECMP (Special Event Compare)
PxTCON (PWM Time Base Control). 217, 300, 301, 302
PxTMR (PWM Timer Count Value)
PxTPER (PWM Time Base Period)218
QEICON (QEI Control)229
RCON (Reset Control)81
SPIxCON1 (SPIx Control 1)236
SPIxCON2 (SPIx Control 2)238
SPIxSTAT (SPIx Status and Control)
SR (CPU Status)
T1CON (Timer1 Control)
TCxCON (Input Capture x Control)
TxCON (Type B Time Base Control)
TyCON (Type C Time Base Control)
UxMODE (UARTx Mode)
UxSTA (UARTx Status and Control)251
Reset
Illegal Opcode
Trap Conflict
Uninitialized W Register
Reset Sequence
Resets79
S
Serial Peripheral Interface (SPI)
Software Reset Instruction (SWR)
Software Simulator (MPLAB SIM)
Software Stack Pointer, Frame Pointer
CALLL Stack Frame63
Special Features of the CPU
SPI Module
SPI1 Register Map50
Symbols Used in Opcode Descriptions
System Control
Register Map
1.02 Negisier map01, 02
т

AC	
Timer1	195
Timer2/3	199
Timing Characteristics	
CLKO and I/O	372
Timing Diagrams	
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAM	1 = 0.
ASAM = 0, SSRC<2:0> = 000)	
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAM	
ASAM = 1, SSRC<2:0> = 111,	,
SAMC<4:0> = 00001)	405
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAN	
ASAM = 1, SSRC<2:0> = 111, SAMC<4:	n = 0, n > -
00001)	
12-bit ADC Conversion (ASAM = 0, SSRC<2:0> =	405
	000)
403	~~
Brown-out Situations	
ECAN I/O	
External Clock	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	397
I2Cx Bus Start/Stop Bits (Master Mode)	395
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture (CAPx)	378
Motor Control PWM	380
Motor Control PWM Fault	
OC/PWM	379
Output Compare (OCx)	
QEA/QEB Input	
QEI Module Index Pulse	
Reset, Watchdog Timer, Oscillator Start-up Timer	
and Power-up Timer	373
Timer1, 2, 3 External Clock	
TimerQ (QEI Module) External Clock	
Timing Requirements	
ADC Conversion (10-bit mode)	423
ADC Conversion (12-bit Mode)	
CLKO and I/O	
External Clock	
Input Capture	
SPIx Master Mode (CKE = 0)	
SPIx Module Master Mode (CKE = 1)	
SPIx Module Slave Mode (CKE = 0)	
SPIX Module Slave Mode (CKE = 0)	420
Timing Specifications	420
	400
10-bit ADC Conversion Requirements	
12-bit ADC Conversion Requirements	
CAN I/O Requirements	
I2Cx Bus Data Requirements (Master Mode)	
I2Cx Bus Data Requirements (Slave Mode)	
Motor Control PWM Requirements	
Output Compare Requirements	
PLL Clock	
QEI External Clock Requirements	
QEI Index Pulse Requirements	
Quadrature Decoder Requirements	381
Reset, Watchdog Timer, Oscillator Start-up Timer,	
Power-up Timer and Brown-out Reset	
Requirements	
Simple OC/PWM Mode Requirements	
Timer1 External Clock Requirements	
Timer2 External Clock Requirements	376
Timer3 External Clock Requirements	
U	

UART Module

UART1 Register Map	49
Universal Asynchronous Receiver Transmitter (UART) 2	247

Temperature and Voltage Specifications