Welcome to **E-XFL.COM** What is "Embedded - Microcontrollers"? "Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications. Applications of "<u>Embedded - Microcontrollers</u>" | etails . | | |---------------------------|---| | roduct Status | Active | | Core Processor | dsPIC | | Core Size | 16-Bit | | peed | 40 MIPs | | onnectivity | I ² C, IrDA, LINbus, SPI, UART/USART | | eripherals | Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT | | umber of I/O | 35 | | rogram Memory Size | 64KB (64K x 8) | | ogram Memory Type | FLASH | | EPROM Size | - | | AM Size | 8K x 8 | | oltage - Supply (Vcc/Vdd) | 3V ~ 3.6V | | ata Converters | A/D 9x10b/12b | | scillator Type | Internal | | perating Temperature | -40°C ~ 85°C (TA) | | lounting Type | Surface Mount | | ackage / Case | 44-VQFN Exposed Pad | | upplier Device Package | 44-QFN (8x8) | | urchase URL | https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc204-i-ml | FIGURE 3-2: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04 PROGRAMMER'S MODEL #### 6.1 Resets Resources Many useful resources related to Resets are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315 #### 6.1.1 KEY RESOURCES - Section 8. "Reset" (DS70192) - · Code Samples - · Application Notes - · Software Libraries - · Webinars - All related dsPIC33F/PIC24H Family Reference Manuals Sections - · Development Tools TABLE 6-2: OSCILLATOR PARAMETERS | Symbol | Parameter | Value | | | |--------|----------------------------------|----------------|--|--| | VPOR | POR threshold | 1.8V nominal | | | | TPOR | POR extension time | 30 μs maximum | | | | VBOR | BOR threshold | 2.5V nominal | | | | TBOR | BOR extension time | 100 μs maximum | | | | TPWRT | Programmable power-up time delay | | | | | TFSCM | Fail-Safe Clock Monitor Delay | 900 μs maximum | | | Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise, the device may not function correctly. The user application must ensure that the delay between the time POWER IS APPLIED The user application must ensure that the delay between the time POWER IS APPLIED Becomes inactive, is long enough to get all operating parameters within specification. #### 6.4 Power-on Reset (POR) A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable. The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 31.0 "Electrical Characteristics" for details. The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset. # 6.4.1 Brown-out Reset (BOR) and Power-up Timer (PWRT) The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable. The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset. The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released. The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to Section 28.0 "Special Features" for further details. Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point FIGURE 7-1: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04 INTERRUPT VECTOR TABLE #### 7.5 Interrupt Registers # REGISTER 7-1: SR: CPU STATUS REGISTER(1) | R-0 | R-0 | R/C-0 | R/C-0 | R-0 | R/C-0 | R -0 | R/W-0 | |--------|-----|-------|-------|-----|-------|------|-------| | OA | OB | SA | SB | OAB | SAB | DA | DC | | bit 15 | | | | | | | bit 8 | | R/W-0 ⁽³⁾ | R/W-0 ⁽³⁾ | R/W-0 ⁽³⁾ | R-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |----------------------|----------------------|----------------------|-----|-------|-------|-------|-------| | IPL2 ⁽²⁾ | IPL1 ⁽²⁾ | IPL0 ⁽²⁾ | RA | N | OV | Z | С | | bit 7 | | | | | | | bit 0 | Legend: C = Clear only bit R = Readable bit U = Unimplemented bit, read as '0' S = Set only bit W = Writable bit -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 7-5 IPL<2:0>: CPU Interrupt Priority Level Status bits⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8) Note 1: For complete register details, see Register 3-1. 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1. 3: The IPL<2:0> status bits are read-only when the NSTDIS bit (INTCON1<15>) = 1. #### REGISTER 7-2: CORCON: CORE CONTROL REGISTER⁽¹⁾ | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R-0 | R-0 | R-0 | |--------|-----|-----|-------|-------|-----|---------|-------| | _ | _ | _ | US | EDT | | DL<2:0> | | | bit 15 | | | | | | | bit 8 | | R/W-0 | R/W-0 | R/W-1 | R/W-0 | R/C-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-------|-------|--------|---------------------|-------|-------|-------| | SATA | SATB | SATDW | ACCSAT | IPL3 ⁽²⁾ | PSV | RND | IF | | bit 7 | | | | | | | bit 0 | **Legend:** C = Clear only bit R = Readable bit W = Writable bit -n = Value at POR '1' = Bit is set 0' = Bit is cleared 'x = Bit is unknown U = Unimplemented bit, read as '0' bit 3 IPL3: CPU Interrupt Priority Level Status bit 3⁽²⁾ 1 = CPU interrupt priority level is greater than 7 0 = CPU interrupt priority level is 7 or less **Note 1:** For complete register details, see Register 3-2. 2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level. #### REGISTER 8-8: DMACS1: DMA CONTROLLER STATUS REGISTER 1 | U-0 | U-0 | U-0 | U-0 | R-1 | R-1 | R-1 | R-1 | |--------|-----|-----|-----|-----|-------|--------|-------| | _ | _ | _ | _ | | LSTCH | H<3:0> | | | bit 15 | | | | | | | bit 8 | | R-0 |-------|-------|-------|-------|-------|-------|-------|-------| | PPST7 | PPST6 | PPST5 | PPST4 | PPST3 | PPST2 | PPST1 | PPST0 | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-12 Unimplemented: Read as '0' bit 11-8 LSTCH<3:0>: Last DMA Channel Active bits 1111 = No DMA transfer has occurred since system Reset 1110-1000 = Reserved 0111 = Last data transfer was by DMA Channel 7 0110 = Last data transfer was by DMA Channel 6 0101 = Last data transfer was by DMA Channel 5 0100 = Last data transfer was by DMA Channel 4 0011 = Last data transfer was by DMA Channel 3 0010 = Last data transfer was by DMA Channel 2 0001 = Last data transfer was by DMA Channel 1 0000 = Last data transfer was by DMA Channel 0 bit 7 PPST7: Channel 7 Ping-Pong Mode Status Flag bit 1 = DMA7STB register selected 0 = DMA7STA register selected bit 6 PPST6: Channel 6 Ping-Pong Mode Status Flag bit 1 = DMA6STB register selected 0 = DMA6STA register selected bit 5 **PPST5:** Channel 5 Ping-Pong Mode Status Flag bit 1 = DMA5STB register selected 0 = DMA5STA register selected bit 4 PPST4: Channel 4 Ping-Pong Mode Status Flag bit 1 = DMA4STB register selected 0 = DMA4STA register selected bit 3 PPST3: Channel 3 Ping-Pong Mode Status Flag bit 1 = DMA3STB register selected 0 = DMA3STA register selected bit 2 PPST2: Channel 2 Ping-Pong Mode Status Flag bit 1 = DMA2STB register selected 0 = DMA2STA register selected bit 1 PPST1: Channel 1 Ping-Pong Mode Status Flag bit 1 = DMA1STB register selected 0 = DMA1STA register selected bit 0 PPST0: Channel 0 Ping-Pong Mode Status Flag bit 1 = DMA0STB register selected 0 = DMA0STA register selected #### 11.2 Open-Drain Configuration In addition to the PORT, LAT and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output. The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification. See "Pin Diagrams" for the available pins and their functionality. #### 11.3 Configuring Analog Port Pins The AD1PCFGL and TRIS registers control the operation of the analog-to-digital port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) is converted. The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default. When the PORT register is read, all pins configured as analog input channels are read as cleared (a low level). Pins configured as digital inputs do not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications. #### 11.4 I/O Port Write/Read Timing One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically, this instruction would be an NOP, as shown in Example 11-1. #### 11.5 Input Change Notification The input change notification function of the I/O ports allows the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices to generate interrupt requests to the processor in response to a change-of-state on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state. Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins. Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins. **Note:** Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output. #### **EXAMPLE 11-1: PORT WRITE/READ EXAMPLE** ``` MOV 0xFF00, W0 ; Configure PORTB<15:8> as inputs MOV W0, TRISBB ; and PORTB<7:0> as outputs NOP ; Delay 1 cycle btss PORTB, #13 ; Next Instruction ``` # REGISTER 11-33: RPOR12: PERIPHERAL PIN SELECT OUTPUT REGISTER 12⁽¹⁾ | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|-------|-------|------------|-------|-------| | _ | _ | _ | | | RP25R<4:0> | | | | bit 15 | | | | | | | bit 8 | | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |-------|-----|-----|-------|-------|------------|-------|-------| | _ | _ | _ | | | RP24R<4:0> | | | | bit 7 | | | | | | | bit 0 | | Legend: | | | | |-------------------|------------------|-----------------------|--------------------| | R = Readable bit | W = Writable bit | U = Unimplemented bit | t, read as '0' | | -n = Value at POR | '1' = Bit is set | '0' = Bit is cleared | x = Bit is unknown | bit 15-13 Unimplemented: Read as '0' bit 12-8 RP25R<4:0>: Peripheral Output Function is Assigned to RP25 Output Pin bits (see Table 11-2 for peripheral function numbers) bit 7-5 Unimplemented: Read as '0' bit 4.0 RP24R<4:0>: Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 11-2 for bit 4-0 **RP24R<4:0>:** Peripheral Output Function is Assigned to RP24 Output Pin bits (see Table 11-2 for peripheral function numbers) Note 1: This register is implemented in 44-pin devices only. #### REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 | U-0 | U-0 | U-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | R/W-0 | |--------|-----|-----|--------|--------|--------|-------|--------------------| | _ | _ | _ | DISSCK | DISSDO | MODE16 | SMP | CKE ⁽¹⁾ | | bit 15 | | | | | | | bit 8 | | R/W-0 |---------------------|-------|-------|--------------------------|-------|-------|-------|----------------------| | SSEN ⁽³⁾ | CKP | MSTEN | SPRE<2:0> ⁽²⁾ | | | PPRE< | <1:0> ⁽²⁾ | | bit 7 | | | | | | | bit 0 | Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-13 Unimplemented: Read as '0' bit 12 DISSCK: Disable SCKx Pin bit (SPI Master modes only) 1 = Internal SPI clock is disabled, pin functions as I/O 0 = Internal SPI clock is enabled bit 11 DISSDO: Disable SDOx Pin bit 1 = SDOx pin is not used by module; pin functions as I/O 0 = SDOx pin is controlled by the module bit 10 MODE16: Word/Byte Communication Select bit 1 = Communication is word-wide (16 bits) 0 = Communication is byte-wide (8 bits) bit 9 SMP: SPIx Data Input Sample Phase bit Master mode: 1 = Input data sampled at end of data output time 0 = Input data sampled at middle of data output time Slave mode: SMP must be cleared when SPIx is used in Slave mode. bit 8 **CKE:** SPIx Clock Edge Select bit⁽¹⁾ 1 = Serial output data changes on transition from active clock state to Idle clock state (see bit 6) 0 = Serial output data changes on transition from Idle clock state to active clock state (see bit 6) bit 7 SSEN: Slave Select Enable bit (Slave mode)⁽³⁾ $1 = \overline{SSx}$ pin used for Slave mode $0 = \overline{SSx}$ pin not used by module. Pin controlled by port function bit 6 **CKP:** Clock Polarity Select bit 1 = Idle state for clock is a high level; active state is a low level 0 = Idle state for clock is a low level; active state is a high level bit 5 MSTEN: Master Mode Enable bit 1 = Master mode 0 = Slave mode Note 1: This bit is not used in Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1). 2: Do not set both Primary and Secondary prescalers to a value of 1:1. 3: This bit must be cleared when FRMEN = 1. #### REGISTER 21-22: CIRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1 | R/C-0 |---------|---------|---------|---------|---------|---------|--------|--------| | RXFUL15 | RXFUL14 | RXFUL13 | RXFUL12 | RXFUL11 | RXFUL10 | RXFUL9 | RXFUL8 | | bit 15 | | | | | | | bit 8 | | R/C-0 |--------|--------|--------|--------|--------|--------|--------|--------| | RXFUL7 | RXFUL6 | RXFUL5 | RXFUL4 | RXFUL3 | RXFUL2 | RXFUL1 | RXFUL0 | | bit 7 | | | | | | | bit 0 | **Legend:** C = Writable bit, but only '0' can be written to clear the bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits 1 = Buffer is full (set by module) 0 = Buffer is empty #### REGISTER 21-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2 | R/C-0 |---------|---------|---------|---------|---------|---------|---------|---------| | RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 | | bit 15 | | | | | | | bit 8 | | R/C-0 |---------|---------|---------|---------|---------|---------|---------|---------| | RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 | | bit 7 | | | | | | | bit 0 | Legend:C = Writable bit, but only '0' can be written to clear the bitR = Readable bitW = Writable bitU = Unimplemented bit, read as '0'-n = Value at POR'1' = Bit is set'0' = Bit is clearedx = Bit is unknown bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits 1 = Buffer is full (set by module) 0 = Buffer is empty #### 27.1 PMP Resources Many useful resources related to PMP are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information. Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315 #### 27.1.1 KEY RESOURCES - Section 35. "Parallel Master Port (PMP)" (DS70299) - · Code Samples - · Application Notes - · Software Libraries - Webinars - All related dsPIC33F/PIC24H Family Reference Manuals Sections - · Development Tools TABLE 28-5: CODE FLASH SECURITY SEGMENT SIZES FOR 128 KB DEVICES | CONFIG BITS | BSS<2:0> = x11 0K | BSS<2:0> = x10 1K | BSS<2:0> = x01 4K | BSS<2:0> = x00 8K | |-----------------------|--|--|--|--| | SSS<2:0> = x11
0K | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 004000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 0157FEh 0157FEh 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FEh 002000h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 0157FEh 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FEh 002000h 003FFEh 002000h 003FFEh 004000h 007FFEh 008000h 00FFEH 010000h 0157FEh 0157FEh | | SSS<2:0> = x10
4K | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 00200h 003FFEh 004000h 007FFEh 004000h 007FFEh 008000h 00ABFEh 00157FEh 00157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000200h 003FFEh 004000h 007FFEh 004000h 007FFEh 00400h 007FFEh 00800h 00ABFEh 00405 007FFEh 00800h 00ABFEh 00157FEh 00157FEh 00157FEh 00157FEh 00157FEh 00157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 003FFEh 004000h 003FFEh 004000h 007FEh 008000h 007FFEh 008000h 00ABFEh 00157FEh 00157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 002000h 003FFEh 004000h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 007FFEh 008000h 00ABFEh | | SSS<2:0> = x01
8K | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 00157FEh 0157FEh 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 0157FEh 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 00200h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 00200h 002FFEh 004000h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 0157FEh | | SSS<2:0> = x00
16K | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FEEh 00200h 003FFEh 00400h 007FFEh 00400h 007FFEh 00800h 00FFEH 010000h 0157FEh 0157FEh 0157FEh 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FEFh 00200h 003FFEh 00400h 003FFEh 00400h 007FFEh 00800h GS = 27648 IW 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FEh 00200h 001FEh 00200h 003FFEh 00400h 007FFEh 00800h 007FFEh 00800h 00FFFEh 010000h 0157FEh | VS = 256 IW 000000h 0001FEh 000200h 0007FEh 000800h 001FFEh 000800h 001FFEh 000000h 003FFEh 004000h 007FFEh 008000h 007FFEh 008000h 00FFFEh 010000h 00157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh 0157FEh | #### 30.7 MPLAB SIM Software Simulator The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC® DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers. The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool. # 30.8 MPLAB REAL ICE In-Circuit Emulator System MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit. The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with in-circuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5). The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables. # 30.9 MPLAB ICD 3 In-Circuit Debugger System MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller devices. It debugs and programs PIC® Flash microcontrollers and dsPIC® DSCs with the powerful, yet easy-to-use graphical user interface of MPLAB Integrated Development Environment (IDE). The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers. # 30.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express The MPLAB PICkit 3 allows debugging and $\mathsf{PIC}^{\mathbb{R}}$ dsPIC® programming of and microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming™. The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software. TABLE 31-11: ELECTRICAL CHARACTERISTICS: BOR | DC CHARACTERISTICS | | Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended | | | | | | | |--------------------|--------|---|--|--------------------|-----|------|-------|------------| | Param
No. | Symbol | Characteristic | | Min ⁽¹⁾ | Тур | Max | Units | Conditions | | BO10 | VBOR | BOR Event on VDD transition high-to-low | | 2.40 | - | 2.55 | V | VDD | Note 1: Parameters are for design guidance only and are not tested in manufacturing. #### TABLE 31-12: DC CHARACTERISTICS: PROGRAM MEMORY | DC CHARACTERISTICS | | Standard Operating Co
(unless otherwise state
Operating temperature | | | ed) | | | |--------------------|--------|---|--------|--------------------|------|-------|--| | Param
No. | Symbol | Characteristic | Min | Typ ⁽¹⁾ | Max | Units | Conditions | | | | Program Flash Memory | | | | | | | D130 | EP | Cell Endurance | 10,000 | _ | _ | E/W | -40° C to +125° C | | D131 | VPR | VDD for Read | VMIN | _ | 3.6 | V | VMIN = Minimum operating voltage | | D132B | VPEW | VDD for Self-Timed Write | VMIN | _ | 3.6 | V | VMIN = Minimum operating voltage | | D134 | TRETD | Characteristic Retention | 20 | _ | _ | Year | Provided no other specifications are violated, -40° C to +125° C | | D135 | IDDP | Supply Current during Programming | _ | 10 | _ | mA | _ | | D136a | TRW | Row Write Time | 1.32 | _ | 1.74 | ms | TRW = 11064 FRC cycles,
TA = +85°C, See Note 2 | | D136b | Trw | Row Write Time | 1.28 | _ | 1.79 | ms | TRW = 11064 FRC cycles,
TA = +125°C, See Note 2 | | D137a | TPE | Page Erase Time | 20.1 | _ | 26.5 | ms | TPE = 168517 FRC cycles,
TA = +85°C, See Note 2 | | D137b | TPE | Page Erase Time | 19.5 | _ | 27.3 | ms | TPE = 168517 FRC cycles,
TA = +125°C, See Note 2 | | D138a | Tww | Word Write Cycle Time | 42.3 | _ | 55.9 | μs | Tww = 355 FRC cycles,
TA = +85°C, See Note 2 | | D138b | Tww | Word Write Cycle Time | 41.1 | _ | 57.6 | μs | Tww = 355 FRC cycles,
TA = +125°C, See Note 2 | Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. 2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b'0111111 (for Min), TUN<5:0> = b'100000 (for Max). This parameter depends on the FRC accuracy (see Table 31-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). For complete details on calculating the Minimum and Maximum time see Section 5.3 "Programming Operations". #### TABLE 31-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS | ., ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | | . E.K.II. KE VOEI / KEOO | | OO | .0,0 | | | | |---|--|--|-----|-----|------|-------|--|--| | | Standard Operating Conditions (unless otherwise stated): Operating temperature $-40^{\circ}\text{C} \le \text{TA} \le +85^{\circ}\text{C}$ for Industrial $-40^{\circ}\text{C} \le \text{TA} \le +125^{\circ}\text{C}$ for Extended | | | | | | | | | Param
No. | Symbol | Characteristics | Min | Тур | Max | Units | Comments | | | _ | CEFC | External Filter Capacitor Value ⁽¹⁾ | 4.7 | 10 | _ | μF | Capacitor must be low series resistance (< 5 ohms) | | **Note 1:** Typical VCAP voltage = 2.5V when VDD ≥ VDDMIN. FIGURE 31-24: I2Cx BUS START/STOP BITS TIMING CHARACTERISTICS (SLAVE MODE) # FIGURE 31-25: I2Cx BUS DATA TIMING CHARACTERISTICS (SLAVE MODE) # 28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLMETERS | | | | |--------------------------|------------------|-----------|------------|------|--|--| | | Dimension Limits | MIN | NOM | MAX | | | | Number of Pins | N | | 28 | | | | | Pitch | е | | 1.27 BSC | | | | | Overall Height | А | _ | _ | 2.65 | | | | Molded Package Thickness | A2 | 2.05 | _ | _ | | | | Standoff § | A1 | 0.10 | _ | 0.30 | | | | Overall Width | Е | 10.30 BSC | | | | | | Molded Package Width | E1 | 7.50 BSC | | | | | | Overall Length | D | | 17.90 BSC | | | | | Chamfer (optional) | h | 0.25 | _ | 0.75 | | | | Foot Length | L | 0.40 | _ | 1.27 | | | | Footprint | L1 | | 1.40 REF | | | | | Foot Angle Top | ф | 0° | _ | 8° | | | | Lead Thickness | С | 0.18 | _ | 0.33 | | | | Lead Width | b | 0.31 | _ | 0.51 | | | | Mold Draft Angle Top | OX. | 5° | _ | 15° | | | | Mold Draft Angle Bottom | β | 5° | _ | 15° | | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. § Significant Characteristic. - 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15 mm per side. - 4. Dimensioning and tolerancing per ASME Y14.5M. - BSC: Basic Dimension. Theoretically exact value shown without tolerances. - REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-052B # 44-Lead Plastic Quad Flat, No Lead Package (ML) – 8x8 mm Body [QFN] **Note:** For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging | | Units | | MILLIMETERS | | | | |------------------------|------------------|----------|-------------|------|--|--| | | Dimension Limits | | | MAX | | | | Number of Pins | N | | 44 | | | | | Pitch | е | | 0.65 BSC | | | | | Overall Height | A | 0.80 | 0.90 | 1.00 | | | | Standoff | A1 | 0.00 | 0.02 | 0.05 | | | | Contact Thickness | A3 | 0.20 REF | | | | | | Overall Width | E | 8.00 BSC | | | | | | Exposed Pad Width | E2 | 6.30 | 6.45 | 6.80 | | | | Overall Length | D | | 8.00 BSC | • | | | | Exposed Pad Length | D2 | 6.30 | 6.45 | 6.80 | | | | Contact Width | b | 0.25 | 0.30 | 0.38 | | | | Contact Length | L | 0.30 | 0.40 | 0.50 | | | | Contact-to-Exposed Pad | K | 0.20 | _ | _ | | | #### Notes: - 1. Pin 1 visual index feature may vary, but must be located within the hatched area. - 2. Package is saw singulated. - 3. Dimensioning and tolerancing per ASME Y14.5M. BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only. Microchip Technology Drawing C04-103B | CiCFG2 register2 | 266 | Operations | 74 | |--|--------------|---|-----| | CiCTRL1 register2 | 258 | Programming Algorithm | 77 | | CiCTRL2 register2 | 259 | RTSP Operation | 74 | | CiEC register2 | 265 | Table Instructions | 73 | | CiFCTRL register2 | 261 Fle | xible Configuration | 335 | | CiFEN1 register2 | 267 | | | | CiFIFO register2 | 262 H | | | | CiFMSKSEL1 register2 | 271 Hig | h Temperature Electrical Characteristics | 413 | | CiFMSKSEL2 register2 | | • | | | CilNTE register2 | | | | | CilNTF register2 | | Ports | 163 | | CiRXFnEID register2 | | Parallel I/O (PIO) | 163 | | CiRXFnSID register2 | | Write/Read Timing | | | CiRXFUL1 register | ^ | | | | CiRXFUL2 register2 | | Operating Modes | 239 | | CiRXMnEID register | | Registers | 241 | | CiRXMnSID register | | Circuit Debugger | 341 | | CiRXOVF1 register | | Circuit Emulation | | | CiRXOVF2 register | | Circuit Serial Programming (ICSP) | | | CiTRmnCON register | | | | | CiVEC register | | ut Capture | | | ECAN1 Register Map (C1CTRL1.WIN = 0 or 1) | | Registers | | | | | ut Change Notification | | | ECAN1 Register Map (C1CTRL1.WIN = 0)
ECAN1 Register Map (C1CTRL1.WIN = 1) | | truction Addressing Modes | | | • | | File Register Instructions | | | Frame Types | | Fundamental Modes Supported | | | Modes of Operation | | MAC Instructions | | | Overview | 253 | MCU Instructions | | | ECAN Registers | | Move and Accumulator Instructions | | | Acceptance Filter Enable Register (CiFEN1) | | Other Instructions | 64 | | Acceptance Filter Extended Identifier Register n (CiR) | | truction Set | | | nEID) | | Overview | | | Acceptance Filter Mask Extended Identifier Registe | | Summary | 345 | | (CiRXMnEID) | | truction-Based Power-Saving Modes | 155 | | Acceptance Filter Mask Standard Identifier Registe | | Idle | | | (CiRXMnSID) | | Sleep | 155 | | Acceptance Filter Standard Identifier Register n (CiR) | | ernal RC Oscillator | | | nSID) | | Use with WDT | | | Baud Rate Configuration Register 1 (CiCFG1)2 | | ernet Address | 455 | | Baud Rate Configuration Register 2 (CiCFG2)2 | | errupt Control and Status Registers | 93 | | Control Register 1 (CiCTRL1)2 | | IECx | 93 | | Control Register 2 (CiCTRL2)2 | | IFSx | 93 | | FIFO Control Register (CiFCTRL)2 | | INTCON1 | 93 | | FIFO Status Register (CiFIFO)2 | | INTCON2 | 93 | | Filter 0-3 Buffer Pointer Register (CiBUFPNT1) 2 | | IPCx | 93 | | Filter 12-15 Buffer Pointer Register (CiBUFPNT4) 2 | | errupt Setup Procedures | 130 | | Filter 15-8 Mask Selection Register (CiFMSKSEL2). 2 | 272 | Initialization | | | Filter 4-7 Buffer Pointer Register (CiBUFPNT2) 2 | 268 | Interrupt Disable | 130 | | Filter 7-0 Mask Selection Register (CiFMSKSEL1) 2 | 271 | Interrupt Service Routine | | | Filter 8-11 Buffer Pointer Register (CiBUFPNT3) 2 | 268 | Trap Service Routine | | | Interrupt Code Register (CiVEC)2 | 260 Inte | errupt Vector Table (IVT) | | | Interrupt Enable Register (CiINTE)2 | | errupts Coincident with Power Save Instructions | | | Interrupt Flag Register (CilNTF)2 | 263 | strupto comordent with rower cure motivations | 100 | | Receive Buffer Full Register 1 (CiRXFUL1)2 | 274 J | | | | Receive Buffer Full Register 2 (CiRXFUL2)2 | | AG Boundary Scan Interface | 335 | | Receive Buffer Overflow Register 2 (CiRXOVF2)2 | 7- | AG Interface | | | Receive Overflow Register (CiRXOVF1)2 | 017 | TO Internace | 54 | | ECAN Transmit/Receive Error Count Register (CiEC) 2 | | | | | ECAN TX/RX Buffer m Control Register (CiTRmnCON)2 | | mory Organization | 31 | | Electrical Characteristics | | | | | AC | 140 | crochip Internet Web Site | 450 | | Enhanced CAN Module | 1010 | des of Operation | 051 | | Equations | -00 | Disable | | | Device Operating Frequency1 | 144 | Initialization | | | Errata | | Listen All Messages | | | LITAGE | 0 | Listen Only | | | F | | Loopback | | | Flash Program Memory | 73 | Normal Operation | | | Flash Program Memory | 1110 | dulo Addressing | | | Control Registers | + | Applicability | 66 |