

Welcome to E-XFL.COM

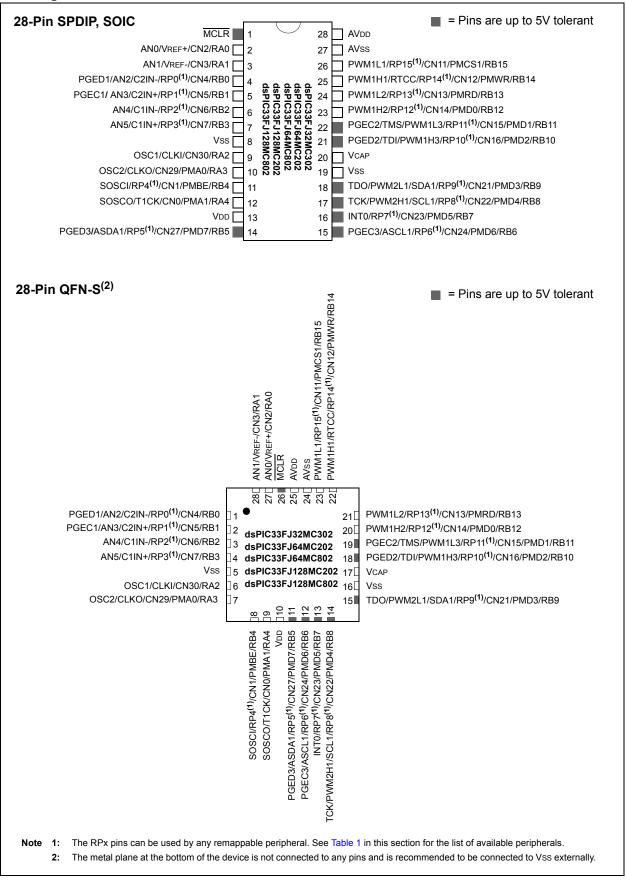
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI


Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc204t-i-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Pin Diagrams

Table of Contents

dsPIC	C33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 Product Families	2
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	
3.0	CPU	
4.0	Memory Organization	
5.0	Flash Program Memory	73
6.0	Resets	
7.0	Interrupt Controller	
8.0	Direct Memory Access (DMA)	131
9.0	Oscillator Configuration	143
10.0	Power-Saving Features	155
11.0	I/O Ports	163
	Timer1	
13.0	Timer2/3 And TImer4/5	199
14.0	Input Capture	205
15.0	Output Compare	209
	Motor Control PWM Module	
	Quadrature Encoder Interface (QEI) Module	
	Serial Peripheral Interface (SPI)	
	Inter-Integrated Circuit™ (I ² C™)	
20.0	Universal Asynchronous Receiver Transmitter (UART)	
	Enhanced CAN (ECAN™) Module	
	10-bit/12-bit Analog-to-Digital Converter (ADC1)	
23.0	Audio Digital-to-Analog Converter (DAC)	
	Comparator Module	
	Real-Time Clock and Calendar (RTCC)	
	Programmable Cyclic Redundancy Check (CRC) Generator	
	Parallel Master Port (PMP)	
28.0	Special Features	335
	Instruction Set Summary	
	Development Support	
	Electrical Characteristics	
	High Temperature Electrical Characteristics	
	DC and AC Device Characteristics Graphs	
	Packaging Information	
Appe	ndix A: Revision History	439
	<	
	Nicrochip Web Site	
	omer Change Notification Service	
Custo	omer Support	455
	ler Response	
Produ	uct Identification System	457

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine if either accumulator has overflowed, or one bit to determine if either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

- Bit 39 Overflow and Saturation:
- When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as super saturation and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).
- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x0080000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.8.3 ACCUMULATOR WRITE BACK

The MAC class of instructions (with the exception of MPY, MPY.N, ED and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator that is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.8.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored, and the least significant word is simply discarded.

Conventional rounding zero-extends bit 15 of the accumulator and adds it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (bit 16 of the accumulator) of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.8.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator write-back operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

Special Function Register Maps 4.4

TABLE 4-1: **CPU CORE REGISTERS MAP**

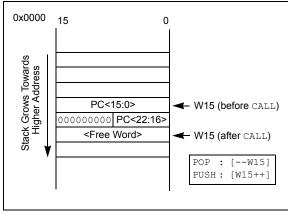
DS7029	
)1G-pag	
je 42	

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000		Working Register 0									0000						
WREG1	0002		Working Register 1								0000							
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A								Working Re	gister 5								0000
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Reg	jister 10								0000
WREG11	0016								Working Reg	jister 11								0000
WREG12	0018								Working Reg	ister 12								0000
WREG13	001A								Working Reg	jister 13								0000
WREG14	001C								Working Reg	jister 14								0000
WREG15	001E		Working Register 15							0800								
SPLIM	0020		Stack Pointer Limit Register							XXXX								
ACCAL	0022								ACCA	L								XXXX
ACCAH	0024								ACCA	Н								XXXX
ACCAU	0026				ACCA<	39>							ACO	CAU				XXXX
ACCBL	0028								ACCB	L								XXXX
ACCBH	002A								ACCB	Н								XXXX
ACCBU	002C				ACCB<	39>							ACO	CBU				XXXX
PCL	002E							Program	Counter Lov	w Word Reg	ister							XXXX
PCH	0030	_		—			—		_			Progra	am Counter	High Byte R	Register			0000
TBLPAG	0032	_	—	—			_					Table	Page Addre	ss Pointer F	Register			0000
PSVPAG	0034	_		—			—		—		Prog	ram Memor	y Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	nter Registe	er							XXXX
DCOUNT	0038								DCOUNT<									XXXX
DOSTARTL	003A							DOST	ARTL<15:1	>							0	XXXX
DOSTARTH	003C	_	—	_	—	—	—	—	—	_	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1>	•		•					0	XXXX
DOENDH	0040	_	—	—	—	—	—	—	—	_	—			DOEN	DH<5:0>			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	—	—	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020

4.4.1 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-6. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note: A PC push during exception processing concatenates the SRL register to the MSb of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. The SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, the SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using the W15 as a source or destination pointer, the resulting address is compared with the value in the SPLIM register. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap does not occur. The stack error trap occurs on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x2000 in RAM, initialize the SPLIM with the value 0x1FFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the Special Function Register (SFR) space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.4.2 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. The BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code when enabled. The SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.5 Instruction Addressing Modes

The addressing modes shown in Table 4-40 form the basis of the addressing modes optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those in the other instruction types.

4.5.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.5.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 <function> Operand 2
where:

Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb.

Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- · Register Indirect
- · Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal

Note: Not all instructions support all the addressing modes listed above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-40: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.5.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than any other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

Note:	For the MOV instructions, the addressing mode specified in the instruction can differ
	for the source and destination EA.
	However, the 4-bit Wb (Register Offset)
	field is shared by both source and
	destination (but typically only used by
	one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes listed above. Individual instructions may support different subsets of these addressing modes.

4.5.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY. N, MOVSAC and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note:	Register	Indirect	with	Register	Offset	
	Addressing mode is available only for W9					
	(in X space) and W11 (in Y space).					

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- · Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.5.5 OTHER INSTRUCTIONS

Apart from the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas, the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

FIGURE 7-1: dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/ X04 INTERRUPT VECTOR TABLE

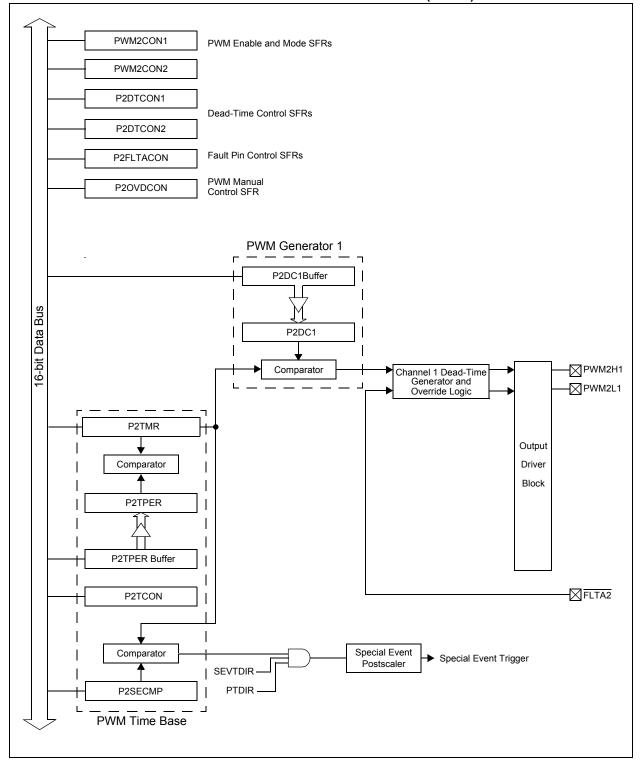
	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interview Vector Table (IVT)(1)
	Interrupt Vector 53	0x00007E	Interrupt Vector Table (IVT) ⁽¹⁾
ity	Interrupt Vector 54	0x000080	
jo	~		
Ē	~		
de	~		
Decreasing Natural Order Priority	Interrupt Vector 116	0x0000FC	
Iral	Interrupt Vector 117	0x0000FE	
atr	Reserved	0x000100	
Z	Reserved	0x000102	
sinç	Reserved		
eas	Oscillator Fail Trap Vector		
ů –	Address Error Trap Vector		
ă	Stack Error Trap Vector		
	Math Error Trap Vector		
	DMA Error Trap Vector		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		(4)
	~		Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~	_	
			1
	Interrupt Vector 116		
₩	Interrupt Vector 117	0x0001FE	
۲	Start of Code	0x000200	
Note 1: See	Table 7-1 for the list of impleme	ented interrupt v	rectors

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
_		QEI2IP<2:0>		_		FLTA2IP<2:0>					
bit 15							bit				
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0				
		PWM2IP<2:0>		_		_					
bit 7							bit				
Legend:											
R = Readab	ole bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'					
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	iown				
bit 15	Unimpleme	nted: Read as ')'								
bit 14-12	QEI2IP<2:0	CEI2IP<2:0>: QEI2 Interrupt Priority bits									
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)									
	•	•									
	•	•									
	• 001 = Interr	• 001 = Interrupt is priority 1									
		errupt source is disabled									
bit 11	Unimpleme	nted: Read as ')'								
bit 10-8	FLTA2IP<2:	0>: PWM2 Fault	A Interrupt F	Priority bits							
	111 = Interrupt is priority 7 (highest priority interrupt)										
	•	•									
	•										
	•										
		001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 7		nted: Read as '									
bit 6-4	-	0>: PWM2 Inter		oite							
DIL 0-4		upt is priority 7 (I									
	•		lightest phon	ty interrupt)							
	•										
	•										
		upt is priority 1									
	000 = Interr	upt source is dis	abled								

bit 3-0	Unimplemented: Read as '0'
---------	----------------------------

REGISTER 10-1: PMD1: PERIPHERAL MODULE DISABLE CONTROL REGISTER 1 (CONTINUED)

- bit 2 Unimplemented: Read as '0'
- bit 1 C1MD: ECAN1 Module Disable bit
 - 1 = ECAN1 module is disabled
 - 0 = ECAN1 module is enabled
- bit 0 AD1MD: ADC1 Module Disable bit
 - 1 = ADC1 module is disabled 0 = ADC1 module is enabled


15.2 Output Compare Resources

Many useful resources related to Output Compare are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

15.2.1 KEY RESOURCES

- Section 13. "Output Compare" (DS70209)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

FIGURE 16-2: 2-CHANNEL PWM MODULE BLOCK DIAGRAM (PWM2)

		CONTINUE		•					
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	—	_	—	PMOD3	PMOD2	PMOD1			
						bit 8			
R/W-1	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1			
PEN3H ⁽¹⁾	PEN2H ⁽¹⁾	PEN1H ⁽¹⁾	—	PEN3L ⁽¹⁾	PEN2L ⁽¹⁾	PEN1L ⁽¹⁾			
						bit (
e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'				
POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown				
Unimplemen	ted: Read as '	0'							
PMOD3:PMC	DD1: PWM I/O	Pair Mode bits	5						
1 = PWM I/O	pin pair is in th	e Independer	nt PWM Output	mode					
0 = PWM I/O									
	U-0 — R/W-1 PEN3H ⁽¹⁾ e bit POR Unimplemen PMOD3:PMC 1 = PWM I/O	U-0 U-0 - - R/W-1 R/W-1 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ e bit W = Writable POR '1' = Bit is set Unimplemented: Read as 'n PMOD3:PMOD1: PWM I/O 1 PWM I/O pin pair is in th	U-0 U-0 U-0 - - - R/W-1 R/W-1 R/W-1 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' PMOD3:PMOD1: PWM I/O Pair Mode bits 1 = PWM I/O pin pair is in the Independent	U-0 U-0 U-0 U-0 - - - - R/W-1 R/W-1 R/W-1 U-0 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ - e bit W = Writable bit U = Unimplemented POR '1' = Bit is set '0' = Bit is clession Unimplemented: Read as '0' PMOD3:PMOD1: PWM I/O Pair Mode bits 1 = PWM I/O pin pair is in the Independent PWM Output	- - - PMOD3 R/W-1 R/W-1 R/W-1 U-0 R/W-1 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ - PEN3L ⁽¹⁾ e bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared	U-0U-0U-0U-0R/W-0R/W-0PMOD3PMOD2R/W-1R/W-1R/W-1U-0R/W-1R/W-1PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ -PEN3L ⁽¹⁾ PEN2L ⁽¹⁾ e bitW = Writable bitU = Unimplemented bit, read as '0'POR'1' = Bit is set'0' = Bit is clearedx = Bit is unkrUnimplemented:Read as '0'PMOD3:PMOD1:PWM I/O Pair Mode bits1 = PWM I/O pin pair is in the Independent PWM Output mode			

REGISTER 16-5: PWMxCON1: PWM CONTROL REGISTER 1⁽²⁾

bit 7	Unimplemented: Read as '0'
bit 6-4	PEN3H:PEN1H: PWMxH I/O Enable bits ⁽¹⁾

 1 =	PWMxH	nin i	enabled	1 for	P\//M	output

- 0 = PWMxH pin disabled, I/O pin becomes general purpose I/O
- bit 3 Unimplemented: Read as '0'

- 1 = PWMxL pin is enabled for PWM output
 - 0 = PWMxL pin disabled, I/O pin becomes general purpose I/O
- **Note 1:** Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.
 - 2: PWM2 supports only one PWM I/O pin pair.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15				1			bit 8
R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
FLTAM	—	_	—	—	FAEN3	FAEN2	FAEN1
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13-8	EA OV/vUZ214						
				t A PWM Over			
2.0 0	1 = The PWN	l output pin is c	lriven active c	it A PWM Over on an external F on an external	ault input eve		
bit 7	1 = The PWN	l output pin is c l output pin is c	lriven active c	on an external F	ault input eve		
	1 = The PWN 0 = The PWM FLTAM: Fault 1 = The Fault	l output pin is c l output pin is c : A Mode bit A input pin fur	driven active of driven inactive actions in the o	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode		ON<13:8>
bit 7	1 = The PWN 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault	l output pin is c l output pin is c : A Mode bit A input pin fur	Iriven active of Iriven inactive Inctions in the of Iches all contro	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode	rent	ON<13:8>
	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen	l output pin is c l output pin is c A Mode bit A input pin fur A input pin late	driven active of driven inactive actions in the of ches all contro	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode	rent	ON<13:8>
bit 7 bit 6-3	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault	l output pin is o l output pin is o A Mode bit A input pin fur A input pin lato ted: Read as f Input A Enable	driven active of driven inactive notions in the of ches all contro 0' e bit	on an external F on an external Cycle-by-Cycle	ault input eve I Fault input ev mode ogrammed sta	rent	ON<13:8>
bit 7 bit 6-3	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin late ted: Read as ' Input A Enable /PWMxL3 pin p	driven active of driven inactive notions in the ches all contro 0' e bit pair is controllo	on an external F on an external Cycle-by-Cycle ol pins to the pr	ault input eve I Fault input ev mode ogrammed sta ut A	rent	ON<13:8>
bit 7 bit 6-3 bit 2	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as f Input A Enable /PWMxL3 pin p Input A Enable	driven active of driven inactive octions in the o ches all contro o' e bit pair is controllo pair is not con e bit	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault	Fault input eve I Fault input ev mode ogrammed sta ut A Input A	rent	ON<13:8>
bit 7 bit 6-3 bit 2	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as Input A Enable /PWMxL3 pin p Input A Enable /PWMxL2 pin p	driven active of driven inactive actions in the of ches all contro o' e bit pair is controllo pair is not con e bit pair is controllo	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp	Fault input eve I Fault input ev mode ogrammed sta ut A Input A ut A	rent	ON<13:8>
bit 7 bit 6-3 bit 2 bit 1	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 0 = PWMxH2 0 = PWMxH2 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as Input A Enable /PWMxL3 pin p Input A Enable /PWMxL2 pin p	driven active of driven inactive octions in the ches all contro o' e bit pair is controllo pair is controllo pair is controllo pair is controllo	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault ed by Fault Inp	Fault input eve I Fault input ev mode ogrammed sta ut A Input A ut A	rent	ON<13:8>
bit 7 bit 6-3	 1 = The PWW 0 = The PWW FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 0 = PWMxH2 0 = PWMxH2 FAEN1: Fault 1 = PWMxH1 	I output pin is o output pin is o A Mode bit A input pin fur A input pin lato ted: Read as f Input A Enable /PWMxL3 pin p /PWMxL2 pin p /PWMxL2 pin p /PWMxL2 pin p /PWMxL2 pin p	driven active of driven inactive actions in the ches all contro o' e bit pair is controll pair is not con e bit pair is controll pair is not con e bit pair is not con e bit	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault ed by Fault Inp	Fault input eve I Fault input eve mode ogrammed sta ut A Input A Input A Input A	rent	ON<13:8>

REGISTER 16-9: PxFLTACON: FAULT A CONTROL REGISTER⁽¹⁾

Note 1: PWM2 supports only one PWM I/O pin pair.

17.2 **QEI Control Registers**

R/W-0	U-0	R/W-0	R-0	R/W-0	R/W-0	R/W-0	R/W-0
CNTERR ⁽¹⁾		QEISIDL	INDEX	UPDN ⁽²⁾		QEIM<2:0>	
bit 15					·		bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SWPAB	PCDOUT	TQGATE	TQCK	PS<1:0>	POSRES	TQCS	UPDN_SR
bit 7							bit
Legend:	1.11		1.11				
R = Readable		W = Writable		•	mented bit, read		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unl	known
bit 15	CNTERR: Co	ount Error Statu	s Flag bit ⁽¹⁾				
	1 = Position of	count error has	occurred				
	0 = No positio	on count error h	nas occurred				
bit 14	Unimplemen	ted: Read as '	0'				
bit 13		p in Idle Mode					
		ue module ope module operat			lle mode		
bit 12							
DIL 12	1 = Index pin	Pin State Stat is High	us bit (read-o	niy)			
	0 = Index pin						
bit 11	UPDN: Positi	on Counter Dir	ection Status	bit ⁽²⁾			
		Counter Direction		• •			
		Counter Direction	•				
bit 10-8		Quadrature En					
	111 = Quadra (MAXx)		Interface enal	oled (x4 mode)	with position co	ounter reset by	/ match
	•	,	Interface enal	oled (x4 mode)	with Index Puls	se reset of pos	ition counter
					with position co		
	(MAXx						
				oled (x2 mode)	with Index Puls	se reset of pos	ition counter
		d (Module disa d (Module disa	,				
	001 = Starts						
	000 = Quadra	ature Encoder	Interface/Time	er off			
bit 7	SWPAB: Pha	ise A and Phas	e B Input Sw	ap Select bit			
	1 = Phase A a	and Phase B ir	puts swappe	d			
	0 = Phase A a	and Phase B ir	puts not swa	pped			
bit 6	PCDOUT: Po	sition Counter	Direction Stat	e Output Enab	le bit		
	1 = Position C	Counter Direction	on Status Out	put Enable (QB	El logic controls	state of I/O pi	n)
	0 = Position (Counter Direction	on Status Out	put Disabled (N	Normal I/O pin c	operation)	
Note 1: Thi	s bit only applie		2·0> = '110'	or '100'			
	ad-only bit whe				0FIM<2·0> = '(001'	
	escaler utilized f			white bit which			
	s bit applies on		-	r 110.			
	en configured f	-			<i>z</i> '		

REGISTER 17-1: QEIxCON: QEIx CONTROL REGISTER (x = 1 or 2)

5: When configured for QEI mode, this control bit is a 'don't care'.

© 2007-2012 Microchip Technology Inc.

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾
bit 15			2.000.0	2.0020			bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
SSEN ⁽³⁾	CKP	MSTEN		SPRE<2:0>(2	-)	PPRE<	<1:0> ⁽²⁾
bit 7							bit
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12	DISSCK: Dis 1 = Internal S		bit (SPI Maste abled, pin func	er modes only) tions as I/O			
bit 11	1 = SDOx pir	able SDOx Pin i is not used by i is controlled b	, module; pin f	unctions as I/C)		
bit 10	1 = Commun	ord/Byte Comm ication is word- ication is byte-	wide (16 bits)				
bit 9	Master mode 1 = Input data 0 = Input data Slave mode:	a sampled at en a sampled at m	nd of data out iddle of data o				
bit 8	1 = Serial out		ges on transitio		clock state to Idl ck state to activ		
bit 7	SSEN: Slave 1 = <u>SSx</u> pin ι	Select Enable ised for Slave i	bit (Slave mo node			·	
bit 6	CKP: Clock F 1 = Idle state	Polarity Select I for clock is a h	oit igh level; activ	/e state is a lov e state is a higl	v level		
bit 5		ter Mode Enat		U			

REGISTER 18-2: SPIxCON1: SPIx CONTROL REGISTER 1

- Note 1: This bit is not used in Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - 3: This bit must be cleared when FRMEN = 1.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	TR<1:0>
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ARP	T<7:0>			
bit 7							bit (
Legend:							
R = Readabl		W = Writable		•	nented bit, read		
-n = Value at	t POR	'1' = Bit is set	i	'0' = Bit is cle	ared	x = Bit is unkn	iown
bit 15		Alarm Enable bit					
bit 10	1 = Alarm i CHIME	s enabled (clear = 0)		ally after an ala	rm event when	ever ARPT<7:0)> = 0x00 and
	0 = Alarm i						
bit 14	-	ime Enable bit			II avar fram Ov		
		is enabled; ARP is disabled; ARF					
bit 13-10		0>: Alarm Mask					
		erved – do not u	•				
	101x = Res	erved – do not u	ise				
	1001 = Onc	e a year (excep	t when config	ured for Februa	ry 29th, once e	very 4 years)	
	1000 = Onc						
	0111 = Onc						
	0110 = Onc 0101 = Eve	•					
		ry 10 minutes					
	0011 = Eve						
	0011 = Eve 0010 = Eve	ry minute ry 10 seconds					
	0011 = Eve 0010 = Eve 0001 = Eve	ry minute ry 10 seconds ry second					
	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve	ry minute ry 10 seconds ry second ry half second					
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR<	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Va	-				
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR< Points to the	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val corresponding <i>J</i>	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR< Points to the the ALRMP	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val corresponding <i>J</i> TR<1:0> value d	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR< Points to the the ALRMP	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u>	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR< Points to the the ALRMP	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR< Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u>	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM ALRMVAL 11 = Unimp	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP' <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM' 00 = ALRM <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY	Alarm Value re	gisters when re	ading ALRMVA		
bit 9-8	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM ALRMVAL 11 = Unimp	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR	Alarm Value re	gisters when re	ading ALRMVA		
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL</u> 11 = Unimp 10 = ALRM 01 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC	Alarm Value re ecrements on	gisters when re every read or w	ading ALRMVA		
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second <1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA		
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA		
	0011 = Eve 0010 = Eve 0001 = Eve ALRMPTR Points to the the ALRMP ALRMVAL 11 = Unimp 10 = ALRM 00 = ALRM 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat	Alarm Value re ecrements on Counter Value	gisters when re every read or w	ading ALRMVA		
bit 9-8 bit 7-0	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat = Alarm will repe	Alarm Value re ecrements on Counter Value eat 255 more	gisters when re every read or w	ading ALRMVA		
	0011 = Eve 0010 = Eve 0001 = Eve 0000 = Eve ALRMPTR Points to the the ALRMP <u>ALRMVAL<</u> 11 = Unimp 10 = ALRM 00 = ALRM 01 = ALRM	ry minute ry 10 seconds ry second ry half second < 1:0>: Alarm Val e corresponding <i>J</i> TR<1:0> value d <u>15:8>:</u> lemented MNTH WD MIN <u>7:0>:</u> lemented DAY HR SEC :: Alarm Repeat	Alarm Value re ecrements on Counter Value eat 255 more f	gisters when re every read or w e bits imes	eading ALRMVA	ALH until it reach	nes '00'.

REGISTER 25-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

AC CHARACTERISTICS			Standard Operating		ure -40°	C ≤Ta ≤+	85°C for	(unless otherwise stated) Industrial or Extended
Param No.	Symbol Characteristic			Min	Typ ⁽¹⁾	Max	Units	Conditions
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range		0.8		8	MHz	ECPLL, XTPLL modes
OS51	Fsys	On-Chip VCO Syster Frequency	n	100	_	200	MHz	_
OS52	TLOCK	PLL Start-up Time (L	ock Time)	0.9	1.5	3.1	mS	—
OS53	DCLK	CLKO Stability (Jitter	·) ⁽²⁾	-3	0.5	3	%	Measured over 100 ms period

TABLE 31-17: PLL CLOCK TIMING SPECIFICATIONS (VDD = 3.0V TO 3.6V)

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. To calculate the effective jitter for individual time bases or communication clocks use this formula:

$$Peripheral Clock Jitter = \frac{DCLK}{\sqrt{\frac{FOSC}{Peripheral Bit Rate Clock}}}$$

For example: Fosc = 32 MHz, DCLK = 3%, SPI bit rate clock, (i.e., SCK) is 2 MHz.

$$SPI SCK Jitter = \left[\frac{D_{CLK}}{\sqrt{\left(\frac{32 MHz}{2 MHz}\right)}}\right] = \left[\frac{3\%}{\sqrt{16}}\right] = \left[\frac{3\%}{4}\right] = 0.75\%$$

TABLE 31-18: AC CHARACTERISTICS: INTERNAL RC ACCURACY

AC CHARACTERISTICSStandard Operating Conditions: 3.0V to 3.6V (unless otherwide) Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					trial				
Param No.	Characteristic	Min	Min Typ Max Units Conditions						
	Internal FRC Accuracy) FRC Fr	equency	= 7.37 N	IHz ⁽¹⁾				
F20	FRC	-2	_	+2	%	-40°C ≤TA ≤+85°C	VDD = 3.0-3.6V		
	FRC	-5	_	+5	%	$-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V			

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits can be used to compensate for temperature drift.

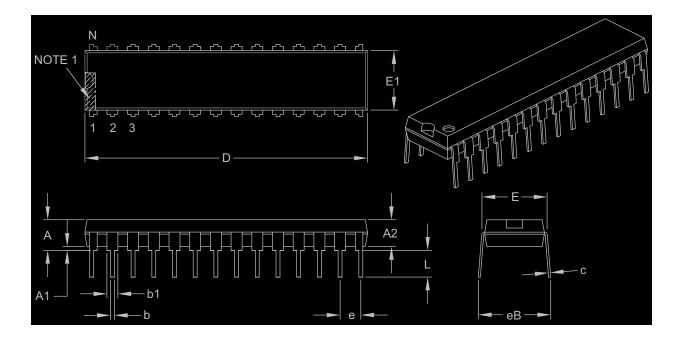
TABLE 31-19: INTERNAL RC ACCURACY

AC CHARACTERISTICSStandard Operating Conditions: $3.0V$ to $3.6V$ (unless otherw Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended								
Param No.	Characteristic	Min	Min Typ Max Units Conditions					
	LPRC @ 32.768 kHz ⁽¹⁾							
F21	LPRC	-20	±6	+20	%	$-40^{\circ}C \le TA \le +85^{\circ}C$	VDD = 3.0-3.6V	
	LPRC	-30	-30 — +30 % $-40^{\circ}C \le TA \le +125^{\circ}C$ VDD = 3.0-3.6V					

Note 1: Change of LPRC frequency as VDD changes.

© 2007-2012 Microchip Technology Inc.

DC CHA	RACTER	ISTICS	Tempo				≤Ta ≤+150°C for High
Param.	Symbol	Characteristic	Min.	Тур.	Max.	Units	Conditions
		Output Low Voltage I/O Pins: 2x Sink Driver Pins - RA2, RA7- RA10, RB10, RB11, RB7, RB4, RC3-RC9	_	_	0.4	V	lo∟ ≤1.8 mA, Vdd = 3.3V See Note 1
DO10 Vol	Output Low Voltage I/O Pins: 4x Sink Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2		_	0.4	V	Io∟ ≤3.6 mA, VDD = 3.3V See Note 1	
		Output Low Voltage I/O Pins: 8x Sink Driver Pins - RA3, RA4		_	0.4	V	IoL ⊴6 mA, VDD = 3.3V See Note 1
		Output High Voltage I/O Pins: 2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.4	_	_	V	IoL ≥ -1.8 mA, VDD = 3.3V See Note 1
DO20	Vон	Output High Voltage I/O Pins: 4x Source Driver Pins - RA0, RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.4	_	_	V	Io∟ ≥ -3 mA, Vod = 3.3V See Note 1
		Output High Voltage I/O Pins: 8x Source Driver Pins - RA4, RA3	2.4	_	_	V	Io∟ ≥ -6 mA, VDD = 3.3V See Note 1
		Output High Voltage	1.5	_	_		IOH ≥ -1.9 mA, VDD = 3.3V See Note 1
		2x Source Driver Pins - RA2, RA7-RA10, RB4, RB7, RB10, RB11, RC3-RC9	2.0	—	—	V	IOH ≥ -1.85 mA, VDD = 3.3V See Note 1
			3.0	_	_		Юн ≥ -1.4 mA, VDD = 3.3V See Note 1
		Output High Voltage 4x Source Driver Pins - RA0,	1.5	_	_		IOH ≥ -3.9 mA, VDD = 3.3V See Note 1
DO20A	Vон1	RA1, RB0-RB3, RB5, RB6, RB8, RB9, RB12-RB15, RC0-RC2	2.0	_	_	V	IOH ≥ -3.7 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -2 mA, VDD = 3.3V See Note 1
		Output High Voltage	1.5	_			IOH ≥ -7.5 mA, VDD = 3.3V See Note 1
		8x Source Driver Pins - RA3, RA4	2.0			V	IOH ≥ -6.8 mA, VDD = 3.3V See Note 1
			3.0	_	_		IOH ≥ -3 mA, VDD = 3.3V See Note 1


TABLE 32-6: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

Note 1: Parameters are characterized, but not tested.

33.1 Package Details

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES	
	Dimension Limits	MIN	NOM	MAX
Number of Pins	N		28	
Pitch	e		.100 BSC	
Top to Seating Plane	A		_	.200
Molded Package Thickness	A2	.120	.135	.150
Base to Seating Plane	A1	.015		_
Shoulder to Shoulder Width	E	.290	.310	.335
Molded Package Width	E1	.240	.285	.295
Overall Length	D	1.345	1.365	1.400
Tip to Seating Plane	L	.110	.130	.150
Lead Thickness	С	.008	.010	.015
Upper Lead Width	b1	.040	.050	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

Using the RCON Status Bits	
V	
Voltage Regulator (On-Chip)	339
W	
Watchdog Time-out Reset (WDTR)	
Watchdog Timer (WDT)	335, 340
Programming Considerations	
WWW Address	455
WWW, On-Line Support	9