

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

⊡XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	28-VQFN Exposed Pad
Supplier Device Package	28-QFN-S (6x6)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc802-e-mm

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MODCON	0046	XMODEN	YMODEN	—	_		BWN	1<3:0>			YWM	<3:0>			XWM	<3:0>		0000
XMODSRT	0048							X	S<15:1>								0	XXXX
XMODEND	004A							X	E<15:1>								1	XXXX
YMODSRT	004C							Y	S<15:1>								0	XXXX
YMODEND	004E							Y	E<15:1>								1	XXXX
XBREV	0050	BREN							2	<b<14:0></b<14:0>								XXXX
DISICNT	0052	_	_						Disabl	e Interrupts	Counter R	egister						XXXX

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABL	E 4-2:	CHA	ANGE N	OTIFICA	TION R	EGISTEI	R MAP F	OR dsP	IC33FJ1	28MC20	2/802, d	IsPIC33I	J64MC	202/802	AND de	sPIC33F	J32MC3	;02
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	—	—	—	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	CN30IE	CN29IE	—	CN27IE	—	—	CN24IE	CN23IE	CN22IE	CN21IE	_	-	_	_	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	—	—	—	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	_	CN30PUE	CN29PUE	_	CN27PUE	_	_	CN24PUE	CN23PUE	CN22PUE	CN21PUE	_	_	_	_	CN16PUE	0000
1							D											

x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal. Legend:

CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ128MC204/804, dsPIC33FJ64MC204/804 AND dsPIC33FJ32MC304 **TABLE 4-3**:

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	CN10IE	CN9IE	CN8IE	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	—	CN30IE	CN29IE	CN28IE	CN27IE	CN26IE	CN25IE	CN24IE	CN23IE	CN22IE	CN21IE	CN20IE	CN19IE	CN18IE	CN17IE	CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	CN10PUE	CN9PUE	CN8PUE	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	CN30PUE	CN29PUE	CN28PUE	CN27PUE	CN26PUE	CN25PUE	CN24PUE	CN23PUE	CN22PUE	CN21PUE	CN20PUE	CN19PUE	CN18PUE	CN17PUE	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE	4-5:	TIMEF	R REGIS	STER M	٩P													
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	—	—	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	-	0000
TMR2	0106								Timer2	Register								0000
TMR3HLD	0108						Tin	ner3 Holding	g Register (fo	or 32-bit time	r operations of	only)						XXXX
TMR3	010A								Timer3	Register								0000
PR2	010C								Period	Register 2								FFFF
PR3	010E								Period	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	-	—	—	—	—	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T3CON	0112	TON	—	TSIDL	-	—	—	—	—	_	TGATE	TCKP	S<1:0>		—	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tin	ner5 Holding	g Register (fo	or 32-bit time	r operations o	only)						XXXX
TMR5	0118								Timer5	Register								0000
PR4	011A								Period	Register 4								FFFF
PR5	011C								Period	Register 5								FFFF
T4CON	011E	TON	—	TSIDL	-	—	—	—	—	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
Legend:	x = un	known valu	e on Reset	. — = unimp	lemented, r	ead as '0'. I	Reset value	s are show	n in hexade	cimal.								

TABLE 4-6: INPUT CAPTURE REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regist	er							XXXX
IC1CON	0142	I	—	ICSIDL		—	I	_	-	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144								Input 2 Ca	pture Regist	er							XXXX
IC2CON	0146	I	—	ICSIDL		—	I	_	-	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regist	er							XXXX
IC7CON	015A	I	—	ICSIDL		—	I	_	-	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C								Input 8 Ca	pture Regist	er							XXXX
IC8CON	015E	-	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Vector Number	IVT Address	AIVT Address	Interrupt Source
55-64	0x000072-0x000084	0x000172-0x000184	Reserved
65	0x000086	0x000186	PWM1 – PWM1 Period Match
66	0x000088	0x000188	QEI1 – Position Counter Compare
67-68	0x00008A-0x00008C	0x00018A-0x00018C	Reserved
69	0x00008E	0x00018E	DMA5 – DMA Channel 5
70	0x000090	0x000190	RTCC – Real Time Clock
71	0x000092	0x000192	FLTA1 – PWM1 Fault A
72	0x000094	0x000194	Reserved
73	0x000096	0x000196	U1E – UART1 Error
74	0x000098	0x000198	U2E – UART2 Error
75	0x00009A	0x00019A	CRC – CRC Generator Interrupt
76	0x00009C	0x00019C	DMA6 – DMA Channel 6
77	0x00009E	0x00019E	DMA7 – DMA Channel 7
78	0x0000A0	0x0001A0	C1TX – ECAN1 TX Data Request
79-80	0x0000A2-0x0000A4	0x0001A2-0x0001A4	Reserved
81	0x0000A6	0x0001A6	PWM2 – PWM2 Period Match
82	0x0000A8	0x0001A8	FLTA2 – PWM2 Fault A
83	0x0000AA	0x0001AA	QEI2 – Position Counter Compare
84-85	0x0000AC-0x0000AE	0x0001AC-0x0001AE	Reserved
86	0x0000B0	0x0001B0	DAC1R – DAC1 Right Data Request
87	0x0000B2	0x0001B2	DAC1L – DAC1 Left Data Request
88-126	0x0000B4-0x0000FE	0x0001B4-0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS (CONTINUED)

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)

bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

8.1 DMA Resources

Many useful resources related to DMA are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

8.1.1 KEY RESOURCES

- Section 38. "Direct Memory Access (Part III)" (DS70215)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

8.2 DMAC Registers

Each DMAC Channel x (x = 0, 1, 2, 3, 4, 5, 6 or 7) contains the following registers:

- A 16-bit DMA Channel Control register (DMAxCON)
- A 16-bit DMA Channel IRQ Select register (DMAxREQ)
- A 16-bit DMA RAM Primary Start Address register (DMAxSTA)
- A 16-bit DMA RAM Secondary Start Address register (DMAxSTB)
- A 16-bit DMA Peripheral Address register (DMAxPAD)
- A 10-bit DMA Transfer Count register (DMAxCNT)

An additional pair of status registers, DMACS0 and DMACS1, are common to all DMAC channels. DMACS0 contains the DMA RAM and SFR write collision flags, XWCOLx and PWCOLx, respectively. DMACS1 indicates DMA channel and Ping-Pong mode status.

The DMAxCON, DMAxREQ, DMAxPAD and DMAxCNT are all conventional read/write registers. Reads of DMAxSTA or DMAxSTB reads the contents of the DMA RAM Address register. Writes to DMAxSTA or DMAxSTB write to the registers. This allows the user to determine the DMA buffer pointer value (address) at any time.

The interrupt flags (DMAxIF) are located in an IFSx register in the interrupt controller. The corresponding interrupt enable control bits (DMAxIE) are located in an IECx register in the interrupt controller, and the corresponding interrupt priority control bits (DMAxIP) are located in an IPCx register in the interrupt controller.

18.1 SPI Helpful Tips

- 1. In Frame mode, if there is a possibility that the master may not be initialized before the slave:
 - a) If FRMPOL (SPIxCON2<13>) = 1, use a pull-down resistor on SSx.
 - b) If FRMPOL = 0, use a pull-up resistor on $\frac{1}{SSx}$.

Note:	This	insures	that	the	first	fra	ame
	transr	nission a	after	initializa	ation	is	not
	shifte	d or corru	pted.				

- 2. In non-framed 3-wire mode, (i.e., not using SSx from a master):
 - a) If CKP (SPIxCON1<6>) = 1, always place a pull-up resistor on SSx.
 - b) If CKP = <u>0</u>, always place a pull-down resistor on SSx.
 - **Note:** This will insure that during power-up and initialization the master/slave will not lose sync due to an errant SCK transition that would cause the slave to accumulate data shift errors for both transmit and receive appearing as corrupted data.
- FRMEN (SPIxCON2<15>) = 1 and SSEN (SPIxCON1<7>) = 1 are exclusive and invalid. In Frame mode, SCKx is continuous and the Frame sync pulse is active on the SSx pin, which indicates the start of a data frame.
 - **Note:** Not all third-party devices support Frame mode timing. Refer to the SPI electrical characteristics for details.
- In Master mode only, set the SMP bit (SPIxCON1<9>) to a '1' for the fastest SPI data rate possible. The SMP bit can only be set at the same time or after the MSTEN bit (SPIxCON1<5>) is set.

To avoid invalid slave read data to the master, the user's master software must guarantee enough time for slave software to fill its write buffer before the user application initiates a master write/read cycle. It is always advisable to preload the SPIxBUF transmit register in advance of the next master transaction cycle. SPIxBUF is transferred to the SPI shift register and is empty once the data transmission begins.

18.2 SPI Resources

Many useful resources related to SPI are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

18.2.1 KEY RESOURCES

- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

	0-0				K/VV-U		
I2CEN		IZCSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN
DIT 15							DIT 8
R/M-0	R/M_0	R///-0				RW-0 HC	
GCEN	STREN			RCEN	PEN	RSEN	SEN
bit 7	OTILLI	NOILDT	NORLIN	ROEN	1 214	ROLIN	bit 0
Legend:		U = Unimpler	nented bit. rea	d as '0'			
R = Readable	bit	W = Writable	bit	HS = Set in h	nardware	HC = Cleared	in Hardware
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	12CEN: 12Cx 1	Enable bit					
	1 = Enables tl	he I2Cx modul	e and configur	es the SDAx a	and SCLx pins a	as serial port pir	าร
	0 = Disables t	the I2Cx modu	le. All I ² C™ pii	ns are controll	ed by port funct	tions	
bit 14	Unimplemen	ted: Read as '	0'				
bit 13	I2CSIDL: Stop	p in Idle Mode	bit				
	1 = Discontinu	ue module ope	ration when de	evice enters a	n Idle mode		
bit 12			ntrol bit (when	onerating as	$l^2 C slave)$		
Dit 12	1 = Release S	SCI x clock		operating as			
	0 = Hold SCL	x clock low (clo	ock stretch)				
	<u>If STREN = 1</u> Bit is R/W (i e	software car	write '0' to ini	tiate stretch a	nd write '1' to re	elease clock) H	lardware clear
	at beginning c	of slave transm	ission. Hardwa	are clear at en	d of slave rece	otion.	
	If STREN = 0	<u>:</u>					
	Bit is R/S (i.e. transmission.	, software can	only write '1' t	o release cloc	k). Hardware cl	ear at beginning	g of slave
bit 11	IPMIEN: Intell	ligent Peripher	al Managemer	nt Interface (IP	MI) Enable bit		
	1 = IPMI mod 0 = IPMI mod	e is enabled; a e disabled	II addresses A	cknowledged			
bit 10	A10M: 10-bit	Slave Address	bit				
	1 = I2CxADD	is a 10-bit slav	e address				
	0 = I2CxADD	is a 7-bit slave	address				
bit 9	DISSLW: Disa	able Slew Rate	Control bit				
	1 = Slew rate	control disable	d d				
bit 8	SMEN: SMbu	is Innut Levels	u hit				
Sito	1 = Enable I/C	D pin threshold	s compliant wi	th SMbus spe	cification		
	0 = Disable S	Mbus input thr	esholds				
bit 7	GCEN: Gener	ral Call Enable	bit (when ope	rating as I ² C s	slave)		
	1 = Enable int	terrupt when a	general call a	ddress is recei	ived in the I2Cx	RSR	
	(module is	s enabled for re	eception)				
hit 6		an auuress uis v Clock Stratak	auleu Enable bit (w	hen operating	$a e^{12} C e^{12} (a)$		
	Used in coniu	nction with SC	IRFI hit	nen operating	as i U slave)		
	1 = Enable so	oftware or recei	ve clock stretc	hing			
	0 = Disable so	oftware or rece	ive clock strete	ching			

REGISTER 19-1: I2CxCON: I2Cx CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
—	—	_	—	—	AMSK9	AMSK8
						bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
					•	bit 0
oit	W = Writable	bit	U = Unimpler	nented bit, read	as '0'	
OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	lown
	U-0 — R/W-0 AMSK6 Dit	U-0 U-0 — — R/W-0 R/W-0 AMSK6 AMSK5 Dit W = Writable OR '1' = Bit is set	U-0 U-0 U-0 — — — — R/W-0 R/W-0 R/W-0 AMSK6 AMSK6 AMSK5 AMSK4	U-0 U-0 U-0 U-0 — — — — — R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 bit W = Writable bit U = Unimpler OR '1' = Bit is set '0' = Bit is cle	U-0 U-0 U-0 U-0 U-0 — _ <th< td=""><td>U-0 U-0 U-0 U-0 R/W-0 — — — — AMSK9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 bit W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn</td></th<>	U-0 U-0 U-0 U-0 R/W-0 — — — — AMSK9 R/W-0 R/W-0 R/W-0 R/W-0 R/W-0 AMSK6 AMSK5 AMSK4 AMSK3 AMSK2 AMSK1 bit W = Writable bit U = Unimplemented bit, read as '0' OR '1' = Bit is set '0' = Bit is cleared x = Bit is unkn

REGISTER 19-3: I2CxMSK: I2Cx SLAVE MODE ADDRESS MASK REGISTER

bit 15-10 Unimplemented: Read as '0'

bit 9-0 AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

0 = Disable masking for bit x; bit match required in this position

20.3 UART Control Registers

REGISTER 20-1: UxMODE: UARTx MODE REGISTER

R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	—	UEN	<1:0>
bit 15							bit 8

R/W-0, HC	R/W-0	R/W-0, HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSEI	_<1:0>	STSEL
bit 7							bit 0

Legend:	HC = Hardware cleared		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	UARTEN: UARTx Enable bit
	 1 = UARTx is enabled; all UARTx pins are controlled by UARTx as defined by UEN<1:0> 0 = UARTx is disabled; all UARTx pins are controlled by port latches; UARTx power consumption minimal
bit 14	Unimplemented: Read as '0'
bit 13	USIDL: Stop in Idle Mode bit
	 1 = Discontinue module operation when device enters Idle mode 0 = Continue module operation in Idle mode
bit 12	IREN: IrDA [®] Encoder and Decoder Enable bit ⁽²⁾
	 1 = IrDA encoder and decoder enabled 0 = IrDA encoder and decoder disabled
bit 11	RTSMD: Mode Selection for UxRTS Pin bit
	 1 = UxRTS pin in Simplex mode 0 = UxRTS pin in Flow Control mode
bit 10	Unimplemented: Read as '0'
bit 9-8	UEN<1:0>: UARTx Enable bits
	 11 = UxTX, UxRX and BCLK pins are enabled and used; UxCTS pin controlled by port latches 10 = UxTX, UxRX, UxCTS and UxRTS pins are enabled and used 01 = UxTX, UxRX and UxRTS pins are enabled and used; UxCTS pin controlled by port latches 00 = UxTX and UxRX pins are enabled and used; UxCTS and UxRTS/BCLK pins controlled by port latches
bit 7	WAKE: Wake-up on Start bit Detect During Sleep Mode Enable bit
	 1 = UARTx continues to sample the UxRX pin; interrupt generated on falling edge; bit cleared in hardware on following rising edge 0 = No wake-up enabled
bit 6	LPBACK: UARTx Loopback Mode Select bit
	 1 = Enable Loopback mode 0 = Loopback mode is disabled
bit 5	ABAUD: Auto-Baud Enable bit
	 1 = Enable baud rate measurement on the next character – requires reception of a Sync field (55h) before other data; cleared in hardware upon completion 0 = Baud rate measurement disabled or completed
Note 1:	Refer to Section 17. "UART" (DS70188) in the <i>"dsPIC33F/PIC24H Family Reference Manual"</i> for information on enabling the UART module for receive or transmit operation.

2: This feature is only available for the 16x BRG mode (BRGH = 0).

REGISTER 22-7:	AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW ^(1,2)
REGISTER 22-7:	AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW ^{(1,2}

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	—	—	—	CSS8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CSS7	CSS6	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
bit 7					•		bit 0
Legend:							
R = Readable bit W = Writable bit			pit	U = Unimplemented bit, read as '0'			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is u			x = Bit is unk	nown			

bit 15-9 Unimplemented: Read as '0'

bit 8-0 CSS<8:0>: ADC Input Scan Selection bits

1 = Select ANx for input scan

0 = Skip ANx for input scan

Note 1: On devices without nine analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts VREFL.

2: CSSx = ANx, where x = 0 through 8.

REGISTER 22-8: AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW^(1,2,3)

U-0	U-0	U-0	U-0	U-0	U-0	U-0	R/W-0
—	—	—	—	_	—	—	PCFG8
bit 15							bit 8

| R/W-0 |
|-------|-------|-------|-------|-------|-------|-------|-------|
| PCFG7 | PCFG6 | PCFG5 | PCFG4 | PCFG3 | PCFG2 | PCFG1 | PCFG0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as 'O'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-9 Unimplemented: Read as '0'

bit 8-0 PCFG<8:0>: ADC Port Configuration Control bits

1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss

0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage

Note 1: On devices without nine analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.

- **2:** PCFGx = ANx, where x = 0 through 8.
- **3:** PCFGx bits have no effect if ADC module is disabled by setting the ADxMD bit in the PMDx register. In this case, all port pins are multiplexed with ANx will be in Digital mode.

FIGURE 26-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

26.2 User Interface

26.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 26.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

26.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

26.3 Operation in Power-Saving Modes

26.3.1 SLEEP MODE

If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

26.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

29.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ32MC302/ 304. dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- Bit-oriented operations
- · Literal operations
- DSP operations
- · Control operations

Table 29-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 29-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- · The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The $\ensuremath{\mathtt{MAC}}$ class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- · The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- · The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- · A program memory address
- The mode of the table read and table write instructions

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
29	DIV	DIV.S	Wm,Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.SD	Wm,Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV
		DIV.UD	Wm,Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None
32	ED	ED	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB
33	EDAC	EDAC	Wm*Wm,Acc,Wx,Wy,Wxd	Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С
36	FF1L	FF1L	Ws,Wnd	Find First One from Left (MSb) Side	1	1	С
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С
38	GOTO	GOTO	Expr	Go to address	2	2	None
		GOTO	Wn	Go to indirect	1	2	None
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z
		INC2	Ws,Wd	Wd = Ws + 2		1	C,DC,N,OV,Z
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
		MAC	Wm*Wm, Acc, Wx, Wxd, Wy, Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None
		MOV	f	Move f to f	1	1	None
		MOV	f,WREG	Move f to WREG	1	1	N,Z
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None
		MOV	Wn,f	Move Wn to f	1	1	None
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None
		MOV	WREG, f	Move WREG to f	1	1	None
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None
		MOV.D	Ws,Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None
47	MOVSAC	MOVSAC	Acc, Wx, Wxd, Wv, Wvd, AWB	Prefetch and store accumulator	1	1	None

TABLE 29-2: INSTRUCTION SET OVERVIEW (CONTINUED)

АС СНА		Standard (unless Operatin	d Operati otherwise g tempera	ng Cond e stated) ature -4	litions: 3.0 40°C ≤ TA ≤ 40°C ≤ TA ≤	OV to 3.6V ≤+85°C for Industrial ≤+125°C for Extended			
Param No.	Symbol	Characteristic	Min	Min Typ Max Units Conditions					
		Cloc	k Parame	ters					
AD50	Tad	ADC Clock Period	117.6	_	_	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	-	ns	—		
		Con	version R	ate					
AD55	tCONV	Conversion Time	_	14 Tad		ns	—		
AD56	FCNV	Throughput Rate	_	—	500	Ksps	—		
AD57	TSAMP	Sample Time	3 Tad	—			—		
		Timin	ig Parame	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽²⁾	2 Tad	_	3 Tad	—	Auto convert trigger not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽²⁾	2 Tad	—	3 Tad		—		
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽²⁾		0.5 TAD			_		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽²⁾	_	_	20	μs	_		

TABLE 31-46: ADC CONVERSION (12-BIT MODE) TIMING REQUIREMENTS

Note 1: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

2: These parameters are characterized but not tested in manufacturing.

3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

TABLE 32-4: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARACTERISTICS Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature				0V to 3.6V ≆+150°C for High Temperature			
Parameter No.	Typical	Мах	Units	Conditions			
Power-Down (Current (IPD)						
HDC60e	250	2000	μA	+150°C	3.3V	Base Power-Down Current ^(1,3)	
HDC61c	3	5	μΑ	+150°C 3.3V Watchdog Timer Current: ΔΙω _{DT} ^(2,4)			

Note 1: Base IPD is measured with all peripherals and clocks shut down. All I/Os are configured as inputs and pulled to Vss. WDT, etc., are all switched off, and VREGS (RCON<8>) = 1.

2: The ∆ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.

3: These currents are measured on the device containing the most memory in this family.

4: These parameters are characterized, but are not tested in manufacturing.

TABLE 32-5: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+150°C for High Temperature				
Parameter No.	Typical ⁽¹⁾	Мах	Doze Ratio	Units	Conditions		
HDC72a	39	45	1:2	mA			
HDC72f	18	25	1:64	mA	+150°C	3.3V	20 MIPS
HDC72g	18	25	1:128	mA			

Note 1: Parameters with Doze ratios of 1:2 and 1:64 are characterized, but are not tested in manufacturing.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

128:1

40

APPENDIX A: REVISION HISTORY

Revision A (August 2007)

Initial release of this document.

Revision B (March 2008)

This revision includes minor typographical and formatting changes throughout the data sheet text. In addition, redundant information was removed that is now available in the respective chapters of the *"dsPIC33F/PIC24H Family Reference Manual"*, which can be obtained from the Microchip web site (www.microchip.com).

The major changes are referenced by their respective section in the following table.

TABLE A-1: MAJOR SECTION UPDATES

Section Name	Update Description				
"High-Performance, 16-bit Digital Signal	Note 1 added to all pin diagrams (see "Pin Diagrams")				
Controllers"	Add External Interrupts column and Note 4 to the "dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 Controller Families" table				
Section 1.0 "Device Overview"	Updated parameters PMA0, PMA1 and PMD0 through PMPD7 (Table 1-1)				
Section 3.0 "Memory Organization"	Updated FAEN bits in Table 4-8				
Section 6.0 "Interrupt Controller"	IFS0-IFSO4 changed to IFSx (see Section 6.3.2 "IFSx")				
	IEC0-IEC4 changed to IECx (see Section 6.3.3 "IECx")				
	IPC0-IPC19 changed to IPCx (see Section 6.3.4 "IPCx")				
Section 7.0 "Direct Memory Access (DMA)"	Updated parameter PMP (see Table 8-1)				
Section 8.0 "Oscillator Configuration"	Updated the third clock source item (External Clock) in Section 8.1.1 "System Clock Sources"				
	Updated TUN<5:0> (OSCTUN<5:0>) bit description (see Register 8-4)				
Section 21.0 "10-bit/12-bit Analog-to-Digital Converter (ADC1)"	Added Note 2 to Figure 21-3				
Section 27.0 "Special Features"	Added Note 2 to Figure 27-1				
	Added parameter FICD in Table 27-1				
	Added parameters BKBUG, COE, JTAGEN and ICS in Table 27-2				
	Added Note after second paragraph in Section 27.2 "On-Chip Voltage Regulator"				

Revision C (May 2009)

This revision includes minor typographical and formatting changes throughout the data sheet text.

Global changes include:

- Changed all instances of OSCI to OSC1 and OSCO to OSC2
- Changed all instances of VDDCORE and VDDCORE/ VCAP to VCAP/VDDCORE

The other changes are referenced by their respective section in the following table.

Section Name	Update Description				
"High-Performance, 16-bit Digital Signal Controllers"	Updated all pin diagrams to denote the pin voltage tolerance (see "Pin Diagrams").				
	Added Note 2 to the 28-Pin QFN-S and 44-Pin QFN pin diagrams, which references pin connections to Vss.				
Section 1.0 "Device Overview"	Updated AVDD in the PINOUT I/O Descriptions (see Table 1-1).				
Section 2.0 "Guidelines for Getting Started with 16-bit Digital Signal Controllers"	Added new section to the data sheet that provides guidelines on getting started with 16-bit Digital Signal Controllers.				
Section 3.0 "CPU"	Updated CPU Core Block Diagram with a connection from the DSP Engine to the Y Data Bus (see Figure 3-1).				
	Vertically extended the X and Y Data Bus lines in the DSP Engine Block Diagram (see Figure 3-3).				
Section 4.0 "Memory Organization"	Updated Reset value for CORCON in the CPU Core Register Map (see Table 4-1).				
	Removed the FLTA1IE bit (IEC3) from the Interrupt Controller Register Map (see Table 4-4).				
	Updated bit locations for RPINR25 in the Peripheral Pin Select Input Register Map (see Table 4-24).				
	Updated the Reset value for CLKDIV in the System Control Register Map (see Table 4-36).				
Section 5.0 "Flash Program Memory"	Updated Section 5.3 "Programming Operations" with programming time formula.				
Section 9.0 "Oscillator	Updated the Oscillator System Diagram and added Note 2 (see Figure 9-1).				
Configuration	Updated default bit values for DOZE<2:0> and FRCDIV<2:0> in the Clock Divisor (CLKDIV) Register (see Register 9-2).				
	Added a paragraph regarding FRC accuracy at the end of Section 9.1.1 "System Clock Sources" .				
	Added Note 3 to Section 9.2.2 "Oscillator Switching Sequence".				
	Added Note 1 to the FRC Oscillator Tuning (OSCTUN) Register (see Register 9-4).				
Section 10.0 "Power-Saving	Added the following registers:				
Features"	PMD1: Peripheral Module Disable Control Register 1 (Register 10-1)				
	• PMD2: Peripheral Module Disable Control Register 2 (Register 10-2)				
	PMD3: Peripheral Module Disable Control Register 3 (Register 10-3)				

© 2007-2012 Microchip Technology Inc.