

Welcome to E-XFL.COM

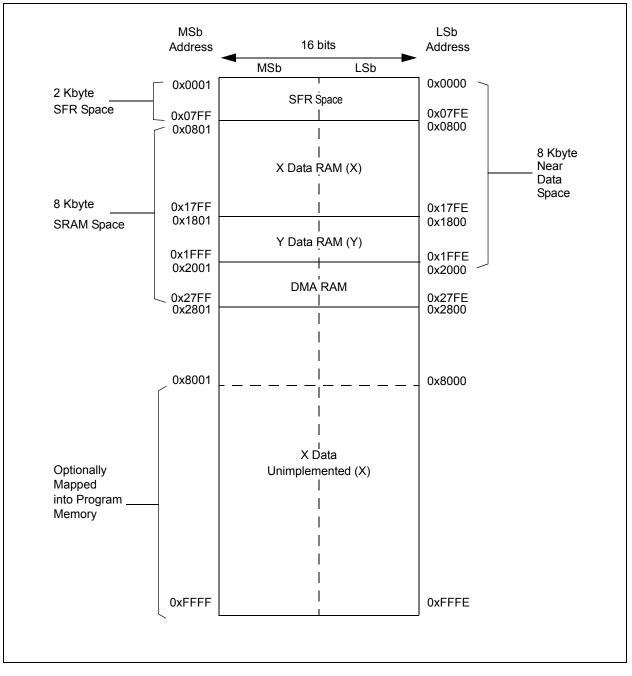
What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc802-e-sp


Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 1-1: PINOUT I/O DESCRIPTIONS						
Pin Name	Pin Type	Buffer Type	PPS	Description		
AN0-AN8	I	Analog	No	Analog input channels.		
CLKI	 0	ST/CMOS	No No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally, functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.		
OSC1		ST/CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS		
OSC2	I/O	_	No	otherwise. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.		
SOSCI SOSCO	 0	ST/CMOS	No No	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.		
CN0-CN30	I	ST	No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.		
IC1-IC2 IC7-IC8		ST ST	Yes Yes	Capture inputs 1/2. Capture inputs 7/8.		
OCFA OC1-OC4	 0	ST —	Yes Yes	Compare Fault A input (for Compare Channels 1, 2, 3 and 4). Compare outputs 1 through 4.		
INT0	I	ST	No	External interrupt 0.		
INT1		ST	Yes	External interrupt 1.		
INT2 RA0-RA4	1	ST	Yes	External interrupt 2.		
RA0-RA4 RA7-RA10	1/O 1/O	ST ST	No No	PORTA is a bidirectional I/O port. PORTA is a bidirectional I/O port.		
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.		
RC0-RC9	I/O	ST	No	PORTC is a bidirectional I/O port.		
T1CK	I	ST	No	Timer1 external clock input.		
T2CK		ST	Yes	Timer2 external clock input.		
T3CK T4CK		ST ST	Yes Yes	Timer3 external clock input. Timer4 external clock input.		
T5CK		ST	Yes	Timer5 external clock input.		
U1CTS	1	ST	Yes	UART1 clear to send.		
U1RTS	0	_	Yes	UART1 ready to send.		
U1RX	I	ST	Yes	UART1 receive.		
U1TX	0	—	Yes	UART1 transmit.		
U2CTS	I	ST	Yes	UART2 clear to send.		
U2RTS	0	-	Yes	UART2 ready to send.		
U2RX U2TX		ST —	Yes Yes	UART2 receive. UART2 transmit.		
SCK1 SDI1	I/O	ST ST	Yes Yes	Synchronous serial clock input/output for SPI1. SPI1 data in.		
SD01	0		Yes	SPI1 data out.		
SS1	I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.		
SCK2	I/O	ST	Yes	Synchronous serial clock input/output for SPI2.		
SDI2	I	ST	Yes	SPI2 data in.		
SDO2	0	_	Yes	SPI2 data out.		
SS2	I/O	ST	Yes	SPI2 slave synchronization or frame pulse I/O.		
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.		
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.		
ASCL1	I/O	ST	No	Alternate synchronous serial clock input/output for I2C1.		
ASDA1	I/O	ST	No	Alternate synchronous serial data input/output for I2C1.		
		S compatibl				
		Frigger input eral Pin Sele		MOS levels O = Output I = Input TTL = TTL input buffer		
сг						

TABLE 1-1: PINOUT I/O DESCRIPTIONS

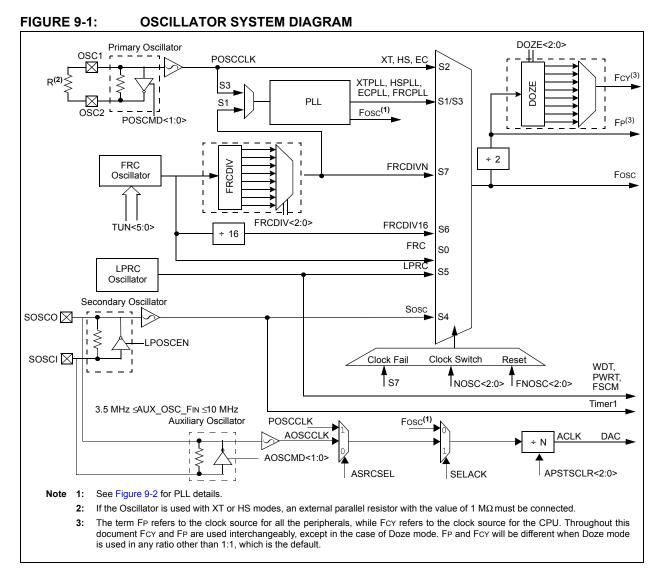
FIGURE 4-4: DATA MEMORY MAP FOR dsPIC33FJ128MC202/204 AND dsPIC33FJ64MC202/ 204 DEVICES WITH 8 KB RAM

TABLE 4-1: CPU CORE REGISTERS MAP (CONTINUED)

							,											
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
MODCON	0046	XMODEN	YMODEN	-	BWM<3:0> YWM<3:0> XWM<3:0>									0000				
XMODSRT	0048		XS<15:1>								0	XXXX						
XMODEND	004A		XE<15:1>									1	XXXX					
YMODSRT	004C							Y	′S<15:1>								0	XXXX
YMODEND	004E							Y	′E<15:1>								1	XXXX
XBREV	0050	BREN								XB<14:0>								XXXX
DISICNT	0052	—	— — Disable Interrupts Counter Register								XXXX							

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1 (CONTINUED)


bit 2	CMIE: Comparator Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 1	MI2C1IE: I2C1 Master Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled
bit 0	SI2C1IE: I2C1 Slave Events Interrupt Enable bit
	1 = Interrupt request enabled0 = Interrupt request not enabled

9.0 OSCILLATOR CONFIGURATION

- Note 1: This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 39. "Oscillator (Part III)" (DS70216) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 oscillator system provides:

- External and internal oscillator options as clock sources
- An on-chip Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- · Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- An Oscillator Control register (OSCCON)
- Non-volatile Configuration bits for main oscillator selection
- · An auxiliary crystal oscillator for audio DAC
- A simplified diagram of the oscillator system is shown in Figure 9-1.

9.3 Oscillator Control Registers

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y				
		COSC<2:0>				NOSC<2:0> ⁽²⁾					
bit 15							bit 8				
R/W-0) R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0				
CLKLO		LOCK	0-0	CF	0-0	LPOSCEN	OSWEN				
bit 7		LOOK					bit 0				
Legend:		C = Clear only	/ bit	y = Value set	from Configura	ation bits on POF	२				
R = Read	able bit	W = Writable	oit	U = Unimple	mented bit, rea	d as '0'					
-n = Value	e at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkno	own				
bit 15	Unimplomor	ted: Dood oo '	`,								
bit 14-12	-	nted: Read as '		hite (road only)						
DIL 14-12		Current Oscilla C (FRC) oscilla)						
		C (FRC) oscilla									
		ower RC (LPR									
		dary Oscillator									
		y oscillator (XT,		PLL							
		ry oscillator (XT, C (FRC) oscilla		-by-N and PL	(FRCDIVN +	PLL)					
		C (FRC) oscilla									
bit 11	Unimplemer	ted: Read as ')'								
bit 10-8	NOSC<2:0>:	New Oscillator	Selection bits	_S (2)							
		111 = Fast RC (FRC) oscillator with Divide-by-n 110 = Fast RC (FRC) oscillator with Divide-by-16									
				e-by-16							
		ower RC (LPRC dary Oscillator	·								
		y oscillator (XT,		PLL							
		y oscillator (XT,									
		C (FRC) oscilla		e-by-N and PL	L (FRCDIVN +	PLL)					
bit 7		C (FRC) oscilla Clock Lock Enal									
	-			disabled (FCI	(SM<1:0> (FO	SC<7:6>) = 0b0 ⁻	1)				
		itching is disab				00 1.0 / 0.00	<u>· /</u>				
	0 = Clock sv	vitching is enabl	ed, system cl	ock source ca	n be modified b	y clock switching	9				
bit 6		ripheral Pin Sel									
	•	ial pin select is			•						
hit 5	-	ial pin select is ₋ock Status bit (nte to peripher	ai pin select re	gisters allowed					
bit 5		s that PLL is in I	• /	tart-un timer is	satisfied						
		s that PLL is out				L is disabled					
bit 4	Unimplemer	nted: Read as ')'								
Note 1:	Writes to this regis										
•	in the "dsPIC33F/	-									
2:	Direct clock switch This applies to clo	ck switches in e	either direction	n. In these inst	ances, the app						
3:	mode as a transiti This register is res				:5.						
5.	THIS TEGISLET IS LES	ber only on a Po	wei-on Resel	$(1^{\circ}OR)$.							

REGISTER 9-1: OSCCON: OSCILLATOR CONTROL REGISTER^(1,3)

© 2007-2012 Microchip Technology Inc.

REGISTER 11-9: RPINR13: PERIPHERAL PIN SELECT INPUT REGISTER 13

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	—	—	—	_	—	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_		_	FLTA2R<4:0>					
bit 7							bit 0	
Legend:								
R = Readable I	oit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown					

bit 15-5 Unimplemented: Read as '0'

bit 4-0

FLTA2R<4:0>: Assign PWM2 Fault (FLTA2) to the corresponding RPn pin 11111 = Input tied to Vss 11001 = Input tied to RP25 •

00001 = Input tied to RP1 00000 = Input tied to RP0

REGISTER 11-19: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			SS2R<4:0>		
bit 7		·					bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimple				U = Unimpler	nented bit, read	as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			
-							

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25 • • • • • • • • • •

00000 = Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ ____ ____ ____ _ ___ ____ ____ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

REGISTER 11-20: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

Note 1: This register is disabled on devices without an ECAN[™] module.

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
_	_	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L				
bit 15				1			bit 8				
R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
FLTAM	—	_	—	—	FAEN3	FAEN2	FAEN1				
bit 7							bit				
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	iown				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13-8	EA OV/vUZ214	FAOVxH<3:1>:FAOVxL<3:1>: Fault Input A PWM Override Value bits									
2.0 0	1 = The PWN	l output pin is c	lriven active c	it A PWM Over on an external F on an external	ault input eve						
bit 7	1 = The PWN	l output pin is c l output pin is c	lriven active c	on an external F	ault input eve						
	1 = The PWN 0 = The PWM FLTAM: Fault 1 = The Fault	l output pin is c l output pin is c : A Mode bit A input pin fur	driven active of driven inactive actions in the o	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode		ON<13:8>				
bit 7	1 = The PWN 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault	l output pin is c l output pin is c : A Mode bit A input pin fur	Iriven active of Iriven inactive Inctions in the of Iches all contro	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode	rent	ON<13:8>				
	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen	l output pin is c l output pin is c A Mode bit A input pin fur A input pin late	driven active of driven inactive actions in the of ches all contro	on an external F on an external Cycle-by-Cycle	Fault input eve I Fault input ev mode	rent	ON<13:8>				
bit 7 bit 6-3	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault	l output pin is o l output pin is o A Mode bit A input pin fur A input pin lato ted: Read as f Input A Enable	driven active of driven inactive notions in the of ches all contro 0' e bit	on an external F on an external Cycle-by-Cycle	ault input eve I Fault input ev mode ogrammed sta	rent	ON<13:8>				
bit 7 bit 6-3	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin late ted: Read as ' Input A Enable /PWMxL3 pin p	driven active of driven inactive notions in the ches all contro 0' e bit pair is controlle	on an external F on an external Cycle-by-Cycle ol pins to the pr	ault input eve I Fault input ev mode ogrammed sta ut A	rent	ON<13:8>				
bit 7 bit 6-3 bit 2	1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as f Input A Enable /PWMxL3 pin p Input A Enable	driven active of driven inactive octions in the o ches all contro o' e bit pair is controllo pair is not con e bit	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault	Fault input eve I Fault input ev mode ogrammed sta ut A Input A	rent	ON<13:8>				
bit 7 bit 6-3 bit 2	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as Input A Enable /PWMxL3 pin p Input A Enable /PWMxL2 pin p	driven active of driven inactive actions in the of ches all contro o' e bit pair is controllo pair is not con e bit pair is controllo	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp	Fault input eve I Fault input ev mode ogrammed sta ut A Input A ut A	rent	ON<13:8>				
bit 7 bit 6-3 bit 2 bit 1	 1 = The PWM 0 = The PWM FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 0 = PWMxH2 0 = PWMxH2 	l output pin is c l output pin is c A Mode bit A input pin fur A input pin lat ted: Read as Input A Enable /PWMxL3 pin p Input A Enable /PWMxL2 pin p	driven active of driven inactive octions in the ches all contro o' e bit pair is controllo pair is controllo pair is controllo pair is not con	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault ed by Fault Inp	Fault input eve I Fault input ev mode ogrammed sta ut A Input A ut A	rent	ON<13:8>				
bit 7 bit 6-3	 1 = The PWW 0 = The PWW FLTAM: Fault 1 = The Fault 0 = The Fault Unimplemen FAEN3: Fault 1 = PWMxH3 0 = PWMxH3 FAEN2: Fault 1 = PWMxH2 0 = PWMxH2 0 = PWMxH2 FAEN1: Fault 1 = PWMxH1 	I output pin is o output pin is o A Mode bit A input pin fur A input pin lato ted: Read as f Input A Enable /PWMxL3 pin p /PWMxL2 pin p /PWMxL2 pin p /PWMxL2 pin p /PWMxL2 pin p	driven active of driven inactive actions in the ches all contro o' e bit pair is controll pair is not con e bit pair is controll pair is not con e bit pair is not con e bit	on an external F on an external Cycle-by-Cycle of pins to the pr ed by Fault Inp trolled by Fault ed by Fault Inp	Fault input eve I Fault input eve mode ogrammed sta ut A Input A Input A Input A	rent	ON<13:8>				

REGISTER 16-9: PxFLTACON: FAULT A CONTROL REGISTER⁽¹⁾

Note 1: PWM2 supports only one PWM I/O pin pair.

REGISTER	21-13: CIDU	JEPNIZ: ECA		4-1 DUFFER		EGISTER				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F7B	P<3:0>			F6BF	P<3:0>				
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F5B	P<3:0>			F4BF	P<3:0>				
bit 7							bit 0			
Legend:										
R = Readabl	le bit	W = Writable	bit	U = Unimpler	U = Unimplemented bit, read as '0'					
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	x = Bit is unki	it is unknown				
bit 15-12	1111 = Filte 1110 = Filte	: RX Buffer Mas er hits received in er hits received in er hits received in er hits received in	n RX FIFO bu n RX Buffer 1 n RX Buffer 1	4						
bit 11-8	F6BP<3:0>	: RX Buffer Mas	k for Filter 6 (same values as	bit 15-12)					
bit 7-4	F5BP<3:0>	: RX Buffer Mas	k for Filter 5 (same values as	bit 15-12)					

REGISTER 21-13: CIBUFPNT2: ECAN™ FILTER 4-7 BUFFER POINTER REGISTER

bit 3-0	F4BP<3:0>: RX Buffer Mask for Filter 4	(same values as bit 15-12)
		· /

REGISTER 21-14: CIBUFPNT3: ECAN™ FILTER 8-11 BUFFER POINTER REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F11BF	P<3:0>		F10BP<3:0>						
bit 15				·			bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	F9BP	<3:0>			F8B	P<3:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, rea	id as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	= Bit is unknown			
bit 15-12	F11BP<3:0>: RX Buffer Mask for Filter 11									
		hits received in								
	1110 = Filter	hits received ir	n RX Buffer 14	1						
	•									
	•									
	•									
		hits received ir								
	0000 = Filter	hits received ir	n RX Buffer 0							
bit 11-8	F10BP<3:0>	: RX Buffer Ma	sk for Filter 10) (same values	as bit 15-12)					
bit 7-4	F9BP<3:0>:	RX Buffer Masl	k for Filter 9 (s	same values as	bit 15-12)					

BUFFER 21-3	: ECAN	™ MESSAGE	BUFFER \	NORD 2				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
EID5	EID4	EID3	EID2	EID1	EID0	RTR	RB1	
bit 15							bit 8	
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		—	RB0	DLC3	DLC2	DLC1	DLC0	
bit 7							bit 0	
Legend:								
R = Readable b	oit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown				
bit 15-10 bit 9	RTR: Remot	xtended Identifie e Transmission e will request rer nessage	Request bit	ssion				
h:+ 0								

bit 8	RB1: Reserved Bit 1
	User must set this bit to '0' per CAN protocol.
bit 7-5	Unimplemented: Read as '0'
bit 4	RB0: Reserved Bit 0
	User must set this bit to '0' per CAN protocol.
bit 3-0	DLC<3:0>: Data Length Code bits

BUFFER 21-4: ECAN™ MESSAGE BUFFER WORD 3

-			-				
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 1			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			B	yte 0			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	id as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown

bit 15-8 Byte 1<15:8>: ECAN™ Message byte 0

Byte 0<7:0>: ECAN Message byte 1 bit 7-0

BUFFER 21-7: ECAN™ MESSAGE BUFFER WORD 6

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 7			
bit 15							bit 8
R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
			Ву	rte 6			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimpler	nented bit, read	d as '0'	
-n = Value at P0	OR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-8 Byte 7<15:8>: ECAN™ Message byte 7

bit 7-0 Byte 6<7:0>: ECAN Message byte 6

BUFFER 21-8: ECAN™ MESSAGE BUFFER WORD 7

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_	_	_			FILHIT<4:0>(1)			
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	_	-	_	-	_	_	_	
bit 7							bit (
Legend:								
R = Readable bit W = V		W = Writable b	pit	U = Unimpler	nented bit, read	ad as '0'		
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared			x = Bit is unknown			

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **FILHIT<4:0>:** Filter Hit Code bits⁽¹⁾

Encodes number of filter that resulted in writing this buffer.

bit 7-0 Unimplemented: Read as '0'

Note 1: Only written by module for receive buffers, unused for transmit buffers.

REGISTER 22-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER (CONTINUED)

```
bit 4-0 CH0SA<4:0>: Channel 0 Positive Input Select for Sample A bits

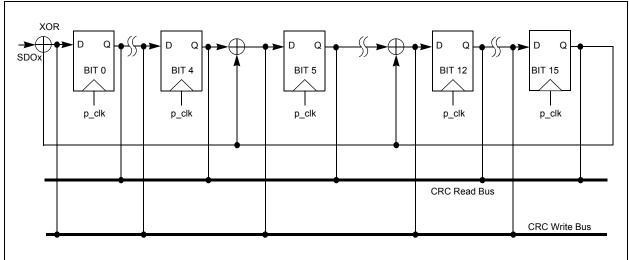
dsPIC33FJ32MC304, dsPIC33FJ64MC204/804 and dsPIC33FJ128MC204/804 devices only:

01000 = Channel 0 positive input is AN8

.

00010 = Channel 0 positive input is AN2

00001 = Channel 0 positive input is AN1


00000 = Channel 0 positive input is AN0

dsPIC33FJ32MC302, dsPIC33FJ64MC202/802 and dsPIC33FJ128MC202/802 devices only:

00101 = Channel 0 positive input is AN5

.
```

00010 = Channel 0 positive input is AN2 00001 = Channel 0 positive input is AN1 00000 = Channel 0 positive input is AN0

FIGURE 26-2: CRC GENERATOR RECONFIGURED FOR $x^{16} + x^{12} + x^5 + 1$

26.2 User Interface

26.2.1 DATA INTERFACE

To start serial shifting, a '1' must be written to the CRCGO bit.

The module incorporates a FIFO that is 8 deep when PLEN (PLEN<3:0>) > 7, and 16 deep, otherwise. The data for which the CRC is to be calculated must first be written into the FIFO. The smallest data element that can be written into the FIFO is one byte. For example, if PLEN = 5, then the size of the data is PLEN + 1 = 6. The data must be written as follows:

```
data[5:0] = crc_input[5:0]
data[7:6] = `bxx
```

Once data is written into the CRCWDAT MSb (as defined by PLEN), the value of VWORD (VWORD<4:0>) increments by one. The serial shifter starts shifting data into the CRC engine when CRCGO = 1 and VWORD > 0. When the MSb is shifted out, VWORD decrements by one. The serial shifter continues shifting until the VWORD reaches 0. Therefore, for a given value of PLEN, it will take (PLEN + 1) * VWORD number of clock cycles to complete the CRC calculations.

When VWORD reaches 8 (or 16), the CRCFUL bit will be set. When VWORD reaches 0, the CRCMPT bit will be set.

To continually feed data into the CRC engine, the recommended mode of operation is to initially "prime" the FIFO with a sufficient number of words so no interrupt is generated before the next word can be written. Once that is done, start the CRC by setting the CRCGO bit to '1'. From that point onward, the VWORD bits should be polled. If they read less than 8 or 16, another word can be written into the FIFO.

To empty words already written into a FIFO, the CRCGO bit must be set to '1' and the CRC shifter allowed to run until the CRCMPT bit is set.

Also, to get the correct CRC reading, it will be necessary to wait for the CRCMPT bit to go high before reading the CRCWDAT register.

If a word is written when the CRCFUL bit is set, the VWORD Pointer will roll over to 0. The hardware will then behave as if the FIFO is empty. However, the condition to generate an interrupt will not be met; therefore, no interrupt will be generated (See Section 26.2.2 "Interrupt Operation").

At least one instruction cycle must pass after a write to CRCWDAT before a read of the VWORD bits is done.

26.2.2 INTERRUPT OPERATION

When the VWORD4:VWORD0 bits make a transition from a value of '1' to '0', an interrupt will be generated.

26.3 Operation in Power-Saving Modes

26.3.1 SLEEP MODE

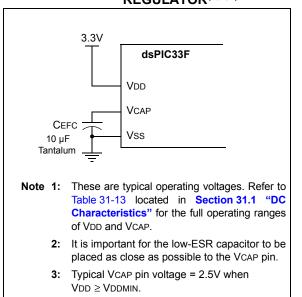
If Sleep mode is entered while the module is operating, the module will be suspended in its current state until clock execution resumes.

26.3.2 IDLE MODE

To continue full module operation in Idle mode, the CSIDL bit must be cleared prior to entry into the mode.

If CSIDL = 1, the module will behave the same way as it does in Sleep mode; pending interrupt events will be passed on, even though the module clocks are not available.

28.2 On-Chip Voltage Regulator


All of the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/ X04 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family incorporate an on-chip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 Ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 28-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 31-13 located in Section 31.0 "Electrical Characteristics".

Note:	It is important for the low-ESR capacitor to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 μ s for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 28-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR^(1,2,3)

28.3 Brown-Out Reset (BOR)

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit, if enabled, continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

TABLE 31-4: DC TEMPERATURE AND VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq + 85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq + 125^{\circ}C \mbox{ for Extended} \end{array}$					
Param No. Symbol Characteristic Min T				Тур ⁽¹⁾	Max	Units	Conditions	
Operati	ng Voltag	6						
DC10	Supply V	/oltage						
	Vdd		3.0	_	3.6	V	Industrial and Extended	
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_	—	V	—	
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_	
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.03	_	—	V/ms	0-3.0V in 0.1s	

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

TABLE 31-38:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3	
SP72	TscF	SCKx Input Fall Time	—	—		ns	See parameter DO32 and Note 4	
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—	
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—	
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—	
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—	
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow $ to SCKx \uparrow or SCKx Input	120	—	—	ns	_	
SP51	TssH2doZ	SSx	10	—	50	ns	—	
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4	

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

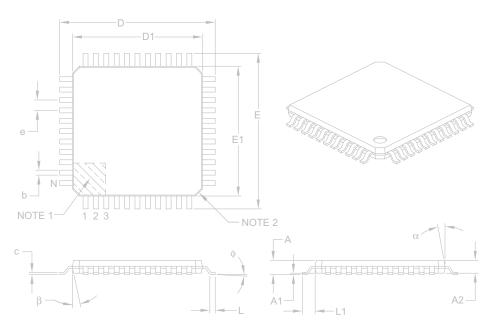
4: Assumes 50 pF load on all SPIx pins.

АС СНИ	ARACTER	RISTICS	(unless	d Operat otherwis ng temper	e stated) ature -4	0°C ≤Ta :	OV to 3.6V ≤+85°C for Industrial ≤+125°C for Extended
Param No.	Symbol	Characteristic	Min	Typ ⁽¹⁾	Max	Units	Conditions
		Cloc	k Parame	eters			
AD50	TAD	ADC Clock Period	76	_	_	ns	_
AD51	tRC	ADC Internal RC Oscillator Period	_	250	_	ns	—
		Con	version F	Rate			
AD55	tCONV	Conversion Time	_	12 TAD	_	_	_
AD56	FCNV	Throughput Rate	_	_	1.1	Msps	—
AD57	TSAMP	Sample Time	2 Tad	—	—	_	—
		Timin	g Param	eters			
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2 Tad	—	3 Tad	—	Auto-Convert Trigger not selected
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2 Tad	—	3 Tad	—	_
AD62	tcss	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	_	—	_
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾	—	—	20	μs	_

TABLE 31-47: ADC CONVERSION (10-BIT MODE) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.


3: The tDPU is the time required for the ADC module to stabilize at the appropriate level when the module is turned on (AD1CON1<ADON>='1'). During this time, the ADC result is indeterminate.

AC/DC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$					
Param No.	Symbol	Characteristic	Min Typ Max Units Co			Conditions			
		Clo	ock Para	meters					
DA01	Vod+	Positive Output Differential Voltage	1	1.15	2	V	Vod+ = Vdach - Vdacl See Note 1,2		
DA02	Vod-	Negative Output Differential Voltage	-2	-1.15	-1	V	Vod- = VDACL - VDACH See Note 1,2		
DA03	Vres	Resolution		16		bits			
DA04	Gerr	Gain Error	_	3.1	_	%	—		
DA08	FDAC	Clock frequency	—	_	25.6	MHz	—		
DA09	FSAMP	Sample Rate	0	_	100	kHz	_		
DA10	FINPUT	Input data frequency	0	_	45	kHz	Sampling frequency = 100 kHz		
DA11	TINIT	Initialization period	1024	—		Clks	Time before first sample		
DA12	SNR	Signal-to-Noise Ratio	_	61		dB	Sampling frequency = 96 kHz		

Note 1: Measured VDACH and VDACL output with respect to VSS, with 15 μA load and FORM bit (DACxCON<8>) = 0.
 2: This parameter is tested at -40°C ≤ TA ≤+85°C only.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
Dime	ension Limits	MIN	NOM	MAX
Number of Leads	N		44	
Lead Pitch	е		0.80 BSC	
Overall Height	А	-	-	1.20
Molded Package Thickness	A2	0.95	1.00	1.05
Standoff	A1	0.05	-	0.15
Foot Length	L	0.45	0.60	0.75
Footprint	L1		1.00 REF	
Foot Angle	φ	0°	3.5°	7°
Overall Width	E		12.00 BSC	
Overall Length	D		12.00 BSC	
Molded Package Width	E1		10.00 BSC	
Molded Package Length	D1		10.00 BSC	
Lead Thickness	С	0.09	-	0.20
Lead Width	b	0.30	0.37	0.45
Mold Draft Angle Top	α	11°	12°	13°
Mold Draft Angle Bottom	β	11°	12°	13°

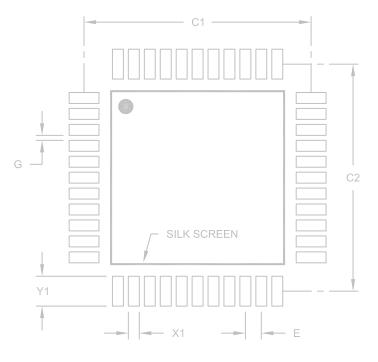
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Chamfers at corners are optional; size may vary.

3. Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.25 mm per side.

4. Dimensioning and tolerancing per ASME Y14.5M.


BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-076B

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units			
Dimensi	on Limits	MIN	NOM	MAX
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A