

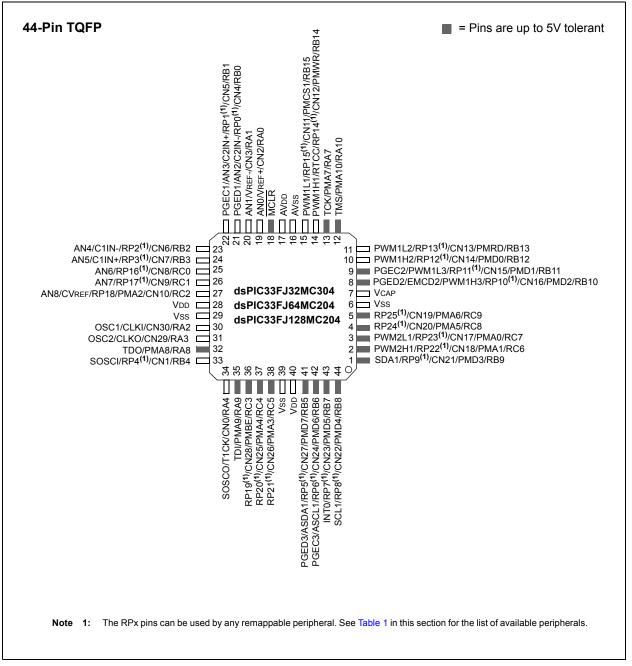
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details


E·XFI

Betuils	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc802-h-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams (Continued)

Pin Name	Pin Type	Buffer Type	PPS	Description
TMS	Ι	ST	No	JTAG Test mode select pin.
ТСК	Ι	ST	No	JTAG test clock input pin.
TDI	Ι	ST	No	JTAG test data input pin.
TDO	0	—	No	JTAG test data output pin.
INDX1	Ι	ST	Yes	Quadrature Encoder Index1 Pulse input.
QEA1	I	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
QEB1	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN1	0	CMOS	Yes	Position Up/Down Counter Direction State.
INDX2	Ι	ST	Yes	Quadrature Encoder Index2 Pulse input.
QEA2	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
QEB2	I	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock/Gate input in Timer mode.
UPDN2	0	CMOS	Yes	Position Up/Down Counter Direction State.
C1RX	I	ST	Yes	ECAN1 bus receive pin.
C1TX	0	—	Yes	ECAN1 bus transmit pin.
RTCC	0	_	No	Real-Time Clock Alarm Output.
CVREF	0	ANA	No	Comparator Voltage Reference Output.
C1IN-	Ι	ANA	No	Comparator 1 Negative Input.
C1IN+	I	ANA	No	Comparator 1 Positive Input.
C1OUT	0	_	Yes	Comparator 1 Output.
C2IN-	Ι	ANA	No	Comparator 2 Negative Input.
C2IN+	Ι	ANA	No	Comparator 2 Positive Input.
C2OUT	0		Yes	Comparator 2 Output.
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes).
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).
PMA2 -PMPA10	0	_	No	Parallel Master Port Address (Demultiplexed Master modes).
PMBE	Ō		No	Parallel Master Port Byte Enable Strobe.
PMCS1	0	_	No	Parallel Master Port Chip Select 1 Strobe.
PMD0-PMPD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/ Data (Multiplexed Master modes).
PMRD	0	_	No	Parallel Master Port Read Strobe.
PMWR	Ō	—	No	Parallel Master Port Write Strobe.
DAC1RN	0	_	No	DAC1 Negative Output.
DAC1RP	0	—	No	DAC1 Positive Output.
DAC1RM	0		No	DAC1 Output indicating middle point value (typically 1.65V).
DAC2RN	0		No	DAC2 Negative Output.
DAC2RP	0	—	No	DAC2 Positive Output.
DAC2RM	0	1	No	DAC2 Output indicating middle point value (typically 1.65V).

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PoweO = OutputI = InputTTL = TTL input buffer

REGISTER	7-7: IFS2:	NTERRUPT	FLAG STAT	US REGISTI	ER 2					
U-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
	DMA4IF	PMPIF		—		_	_			
bit 15							bit			
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
	_	_	DMA3IF	C1IF ⁽¹⁾	C1RXIF ⁽¹⁾	SPI2IF	SPI2EIF			
bit 7							bit			
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'				
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown			
bit 14	1 = Interrupt	request has or	curred	Complete Interr	rupt Flag Status I	bit				
	0 = Interrupt request has not occurred									
bit 13	PMPIF: Parallel Master Port Interrupt Flag Status bit 1 = Interrupt request has occurred									
		request has our								
bit 12-5	•	ted: Read as								
bit 4	DMA3IF: DM	A Channel 3 E	Data Transfer C	Complete Interr	rupt Flag Status I	oit				
		request has or								
	•	request has no		(4)						
bit 3			pt Flag Status	bit ⁽¹⁾						
		request has ou request has no								
bit 2	•	•		errupt Flag Sta	itus bit(1)					
5112	C1RXIF: ECAN1 Receive Data Ready Interrupt Flag Status bit ⁽¹⁾ 1 = Interrupt request has occurred									
	0 = Interrupt request has not occurred									
bit 1	SPI2IF: SPI2	Event Interrup	ot Flag Status b	pit						
		request has or								
h # 0	•	request has no		L:4						
bit 0		2 Error Interru request has or	pt Flag Status	JIQ						
		request has oc								

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

bit 10 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	R/W-0 QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is di or module is enable dule is enable	^{0'} le Disable bit isabled nabled sable bit	U-0 — U = Unimple '0' = Bit is cle	U-0 U-0	U-0 U-0 d as '0' x = Bit is unkn	PMPMD bit 8 U-0 bit 0		
R/W-0 CRCMD bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 15-11 L bit 15-11 L bit 10 C Dit 15 L bit 10 C bit 3 F bit 4 1 Dit 7 C Dit 7 C	DAC1MD iit DR Jnimplement CMPMD: Con . = Comparate . = Comparate Comparate CMPMD: RT . = RTCC mo . = RTCC mo	QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	PWM2MD bit 0' le Disable bit isabled nabled sable bit	U = Unimple	mented bit, read	d as '0'	U-0 — bit 0		
CRCMD bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 10 L 0 1 0 1 0 0 bit 8 F 1 0 bit 7 C bit 7 1	DAC1MD iit DR Jnimplement CMPMD: Con . = Comparate . = Comparate Comparate CMPMD: RT . = RTCC mo . = RTCC mo	QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	PWM2MD bit 0' le Disable bit isabled nabled sable bit	U = Unimple	mented bit, read	d as '0'	bit 0		
CRCMD bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 10 L 0 1 0 1 0 0 bit 8 F 1 0 bit 7 C bit 7 1	DAC1MD iit DR Jnimplement CMPMD: Con . = Comparate . = Comparate Comparate CMPMD: RT . = RTCC mo . = RTCC mo	QEI2MD W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	PWM2MD bit 0' le Disable bit isabled nabled sable bit	U = Unimple	mented bit, read	d as '0'	bit 0		
bit 7 Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 9 F 1 0 bit 8 F 1 0 bit 8 F 1 0 0 0 0 0 0 0 0 0 0 0 0 0	it DR Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	W = Writable '1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	bit 0' le Disable bit isabled nabled sable bit	-					
Legend: R = Readable b -n = Value at PC bit 15-11 L bit 10 C 1 0 bit 9 F 1 0 bit 8 F 1 0 bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	'1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-					
R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 9 F bit 8 F bit 8 F bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	'1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-			own		
R = Readable b -n = Value at PC bit 15-11 L bit 10 C bit 9 F bit 8 F bit 8 F bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	'1' = Bit is set ted: Read as ' nparator Modu or module is di or module is e 'CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-			own		
bit 15-11 L bit 10 C bit 9 F bit 8 F bit 8 F bit 7 C	Jnimplement CMPMD: Con = Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	ted: Read as ' nparator Modu or module is di or module is e CC Module Di dule is disable	^{0'} le Disable bit isabled nabled sable bit	-			own		
bit 10 C	CMPMD: Con = Comparate = Comparate RTCCMD: RT = RTCC mo = RTCC mo	nparator Modu or module is di or module is e CC Module Di dule is disable	le Disable bit isabled nabled sable bit						
bit 10 C	CMPMD: Con = Comparate = Comparate RTCCMD: RT = RTCC mo = RTCC mo	nparator Modu or module is di or module is e CC Module Di dule is disable	le Disable bit isabled nabled sable bit						
bit 9 F 1 0 bit 8 F 1 0 bit 7 C	= Comparat = Comparat RTCCMD: RT = RTCC mo = RTCC mo	or module is d or module is e CC Module Di dule is disable	isabled nabled sable bit						
bit 9 F 1 0 bit 8 F 1 0 bit 7 C	= Comparat RTCCMD: RT = RTCC mo = RTCC mo	or module is e CC Module Di dule is disable	nabled sable bit						
bit 9 F 1 0 bit 8 F 1 0 bit 7 C	RTCCMD: RT = RTCC mo = RTCC mo	CC Module Di dule is disable	sable bit						
1 0 bit 8 F 1 0 bit 7 C	= RTCC mo = RTCC mo	dule is disable							
0 bit 8 F 1 0 bit 7 C	= RTCC mo		d						
bit 8 F 1 0 bit 7 C			h						
1 0 bit 7 C		P Module Disal							
bit 7 C	= PMP mod	ule is disabled							
1	= PMP mod	ule is enabled							
	CRCMD: CRC	C Module Disal	ble bit						
0		ule is disabled							
-		ule is enabled							
		C1 Module Dis							
_		dule is disable dule is enableo							
		2 Module Disa							
		lule is disabled							
0	= QEI2 mod	lule is enabled							
bit 4 F	PWM2MD: PV	VM2 Module D	Disable bit						
bit 3-0 L			1 = PWM2 module is disabled 0 = PWM2 module is enabled						

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER	11-4: RPINF	R4: PERIPHEI	RAL PIN SE	ELECT INPU	T REGISTER	4	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_			T5CKR<4:0	>	
bit 15		·					bit
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		_			T4CKR<4:0	>	
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable	oit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown
	11001 = Inpo • • • • • •	ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0					
bit 7-5	Unimplemer	nted: Read as ')'				
bit 4-0	11111 = Inpr 11001 = Inpr •	 Assign Timera ut tied to Vss ut tied to RP25 	t External Cl	ock (T4CK) to t	the correspond	ling RPn pin	
		ut tied to RP1					

00000 = Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
—	_	_			QEB1R<4:0>								
bit 15	•						bit 8						
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
	—	—			QEA1R<4:0>								
bit 7							bit 0						
Legend:													
R = Readabl	le bit	W = Writable I	oit	U = Unimplemented bit, read as '0		l as '0'							
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown							
bit 15-13	Unimplemen	ted: Read as ')'										
bit 12-8	QEB1R<4:0>	: Assign B (QE	B1) to the co	rresponding pir	I								
	11111 = Inp u												
	11001 = Inpu	ut tied to RP25											
	•												
	•												
						•							
	•												
	• 00001 = Inpu												
hit 7 E	00000 = Inp u	ut tied to RP0	\ `										
	00000 = Inpu Unimplemen	ut tied to RP0 Ited: Read as '0											
bit 7-5 bit 4-0	00000 = Inpu Unimplemen QEA1R<4:0>	ut tied to RP0 Ited: Read as '(-: Assign A (QE		rresponding pir	1								
	00000 = Inpu Unimplemen QEA1R<4:0> 11111 = Inpu	ut tied to RP0 Ited: Read as '(Assign A (QE) It tied to Vss		rresponding pir	I								
bit 7-5 bit 4-0	00000 = Inpu Unimplemen QEA1R<4:0> 11111 = Inpu	ut tied to RP0 Ited: Read as '(-: Assign A (QE		rresponding pir	I								

00001 = Input tied to RP1

00000 = Input tied to RP0

REGISTER	13-2: TyCON	I: TIMER CO	NTROL RE	GISTER (y = 3	3 or 5)					
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽²⁾	_	TSIDL ⁽¹⁾		—	_	—	_			
bit 15							bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
	TGATE ⁽²⁾	TCKPS<	:1:0> ⁽²⁾	—	_	TCS ⁽²⁾	_			
bit 7							bit (
Legend:										
R = Readabl	e bit	W = Writable k	oit	U = Unimplem	nented bit. rea	d as '0'				
-n = Value at		'1' = Bit is set	•							
		1 Bit io cot				X Bitle dillar	••••			
bit 15	TON: Timery	On bit ⁽²⁾								
	1 = Starts 16-									
	0 = Stops 16-	bit Timerx								
bit 14	Unimplemen	ted: Read as 'o)'							
bit 13	TSIDL: Stop i	n Idle Mode bit ⁽	(1)							
		ue timer operati timer operation		vice enters Idle i e	mode					
bit 12-7	Unimplemen	ted: Read as '0)'							
bit 6	TGATE: Time	rx Gated Time	Accumulatio	n Enable bit ⁽²⁾						
	When TCS =	1:								
	•	nis bit is ignored.								
		When TCS = 0: 1 = Gated time accumulation enabled								
		e accumulation								
bit 5-4				ale Select bits ⁽²⁾						
	11 = 1:256 pr	-								
	10 = 1:64 pre									
		01 = 1:8 prescale value								
	00 = 1:1 pres									
bit 3-2	-	ted: Read as '0								
bit 1		Clock Source S								
		clock from TxCk	K pin							
bit 0	0 = Internal cl	ted: Read as '0	,,							
DILU	Unimplemen	ieu: Read as 10	1							

REGISTER 13-2: TyCON: TIMER CONTROL REGISTER (y = 3 or 5)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), these bits have no effect.

14.1 Input Capture Resources

Many useful resources related to Input Capture are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

14.1.1 KEY RESOURCES

- Section 12. "Input Capture" (DS70198)
- Code Samples
- Application Notes
- · Software Libraries
- · Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
_	_	—		_	IMV<	<1:0>	CEID	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	
QEOUT		QECK<2:0>		—	—	_		
bit 7							bit (
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	1 as '0'		
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	is unknown	
bit 15-11	Unimplomo	ntod: Dood op '	۰ ،					
	-	nted: Read as '						
bit 10-9		ndex Match Valu						
		EBx input pins of	-	ex puise when	Ine POSICINT I	egister is to be	reset.	
			L .					
		ature Count Mod		put signal for i	match on indox	nuleo		
	IMV1 =	Required State	of Phase B ir					
	IMV1 = IMV0 =	Required State Required State	of Phase B ir of Phase A ir					
	IMV1 = IMV0 = In x4 Quadra IMV1 =	Required State	of Phase B ir of Phase A ir l <u>e</u> : input signal fo	nput signal for r or Index state n	match on index natch (0 = Phas	pulse se A, 1 = Phase		
bit 8	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 =	Required State Required State ature Count Mod Selects Phase	of Phase B ir of Phase A ir le: input signal fo of the selecte	nput signal for i or Index state n	match on index natch (0 = Phas	pulse se A, 1 = Phase		
bit 8	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count	Required State Required State ature Count Mod Selects Phase Required state	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit	nput signal for r or Index state n ed Phase input	match on index natch (0 = Phas	pulse se A, 1 = Phase		
bit 8	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt	Required State Required State ature Count Mod Selects Phase Required state t Error Interrupt	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa	nput signal for n or Index state n ed Phase input bled	match on index natch (0 = Phas	pulse se A, 1 = Phase		
bit 8 bit 7	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt	Required State Required State ature Count Mod Selects Phase Required state t Error Interrupt s due to count e	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal	nput signal for r or Index state n ed Phase input bled bled	match on index natch (0 = Phas signal for matcl	pulse se A, 1 = Phase		
	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil	Required State Required State ature Count Mod Selects Phase Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F bled	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena	match on index natch (0 = Phas signal for matcl	pulse se A, 1 = Phase		
	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
bit 7	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0>	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
bit 7	IMV1 = IMV0 = In x4 Quadra IMV1 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disat : QEAx/QEBx/IN Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 C	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs disat : QEAx/QEBx/IN Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 (C) 100 = 1:32 (C)	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disat : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 C 100 = 1:32 C 011 = 1:16 C	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disat : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 (C) 100 = 1:32 (C)	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		
bit 7	IMV1 = IMV0 = IMV0 = IMV0 = CEID: Count 1 = Interrupt 0 = Interrupt 0 = Interrupt QEOUT: QE 1 = Digital fil 0 = Digital fil QECK<2:0> 111 = 1:256 110 = 1:128 101 = 1:64 C 100 = 1:32 C 011 = 1:16 C	Required State Required State Selects Phase Required state Required state t Error Interrupt s due to count e s due to count e s due to count e Ax/QEBx/INDXx ter outputs enab ter outputs disal : QEAx/QEBx/IN Clock Divide Clock Divide Clock Divide Clock Divide Clock Divide ock Divide ock Divide	of Phase B ir of Phase A ir le: input signal fo of the selecte Disable bit rrors are disa rrors are enal c Pin Digital F oled oled (normal p	nput signal for n or Index state n ed Phase input bled bled ilter Output Ena bin operation)	match on index natch (0 = Phas signal for matcl able bit	pulse se A, 1 = Phase		

	0-J. JFIAC	UNZ. SPIX CC						
R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	_	—	—	—		
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
—		—	—	—	—	FRMDLY	—	
bit 7							bit (
Legend:								
R = Readable	bit	W = Writable b	pit	U = Unimplen	nented bit, read	d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15	FRMEN: Fran	med SPIx Suppo	ort bit					
	1 = Framed SPIx support enabled (\overline{SSx} pin used as frame sync pulse input/output) 0 = Framed SPIx support disabled							
bit 14	SPIFSD: Frai	me Sync Pulse I	Direction Cor	ntrol bit				
	1 = Frame sy	nc pulse input (slave)					
bit 13	 0 = Frame sync pulse output (master) FRMPOL: Frame Sync Pulse Polarity bit 							

REGISTER 18-3: SPIxCON2: SPIx CONTROL REGISTER 2

1 = Frame sync pulse is active-high0 = Frame sync pulse is active-low

FRMDLY: Frame Sync Pulse Edge Select bit

1 = Frame sync pulse coincides with first bit clock0 = Frame sync pulse precedes first bit clock

Unimplemented: This bit must not be set to '1' by the user application

Unimplemented: Read as '0'

bit 12-2

bit 1

bit 0

19.2 I²C Resources

Many useful resources related to I^2C are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwprod-
	ucts/Devices.aspx?dDoc-
	Name=en532315

19.2.1 KEY RESOURCES

- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

19.3 I²C Registers

The I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CxSTAT are read/write:

- I2CxRSR is the shift register used for shifting data internal to the module and the user application has no access to it
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- The I2CxADD register holds the slave address
- A status bit, ADD10, indicates 10-bit Address mode
- The I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

REGISTER 20-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read/clear only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 →0 transition) resets the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	 1 = Receive buffer has data, at least one more character can be read 0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART**" (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

22.6 ADC Control Registers

R/W-0	U-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0
ADON	—	ADSIDL	ADDMABM	-	AD12B	FORM	1<1:0>
bit 15							bit 8
-							
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/C-0
						HC, HS	HC, HS
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE
bit 7							bit 0

REGISTER 22-1: AD1CON1: ADC1 CONTROL REG
--

Legend: HC = Cleared by hardware		HS = Set by hardware		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown	

bit 15	ADON: ADC Operating Mode bit
	1 = ADC module is operating
	0 = ADC is off
bit 14	Unimplemented: Read as '0'
bit 13	ADSIDL: Stop in Idle Mode bit
	1 = Discontinue module operation when device enters Idle mode0 = Continue module operation in Idle mode
bit 12	ADDMABM: DMA Buffer Build Mode bit
	 1 = DMA buffers are written in the order of conversion. The module provides an address to the DMA channel that is the same as the address used for the non-DMA stand-alone buffer 0 = DMA buffers are written in Scatter/Gather mode. The module provides a scatter/gather address
	to the DMA channel, based on the index of the analog input and the size of the DMA buffer
bit 11	Unimplemented: Read as '0'
bit 10	AD12B: 10-bit or 12-bit Operation Mode bit
	 1 = 12-bit, 1-channel ADC operation 0 = 10-bit, 4-channel ADC operation
bit 9-8	FORM<1:0>: Data Output Format bits
	For 10-bit operation: 11 = Signed fractional (Dout = sddd dddd dd00 0000, where s =.NOT.d<9>) 10 = Fractional (Dout = dddd dddd dd00 0000) 01 = Signed integer (Dout = ssss sssd dddd dddd, where s = .NOT.d<9>) 00 = Integer (Dout = 0000 00dd dddd dddd)
	For 12-bit operation:
	11 = Signed fractional (Dout = sddd dddd dddd 0000, where s = .NOT.d<11>)
	10 = Fractional (Dout = dddd dddd dddd 0000)
	01 = Signed Integer (Dout = ssss sddd dddd dddd, where s = .NOT.d<11>) 00 = Integer (Dout = 0000 dddd dddd dddd)
bit 7-5	SSRC<2:0>: Sample Clock Source Select bits
Sit i O	111 = Internal counter ends sampling and starts conversion (auto-convert)110 = Reserved
	 101 = Motor Control PWM2 interval ends sampling and starts conversion 100 = GP timer (Timer5 for ADC1) compare ends sampling and starts conversion 011 = Motor Control PWM1 interval ends sampling and starts conversion 010 = GP timer (Timer3 for ADC1) compare ends sampling and starts conversion 001 = Active transition on INT0 pin ends sampling and starts conversion 000 = Clearing sample bit ends sampling and starts conversion
bit 4	Unimplemented: Read as '0'

REGISTER 22-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

bit 3	SIMSAM: Simultaneous Sample Select bit (only applicable when CHPS<1:0> = 01 or 1x)
	<pre>When AD12B = 1, SIMSAM is: U-0, Unimplemented, Read as '0' 1 = Samples CH0, CH1, CH2, CH3 simultaneously (when CHPS<1:0> = 1x); or Samples CH0 and CH1 simultaneously (when CHPS<1:0> = 01) 0 = Samples multiple channels individually in sequence</pre>
bit 2	ASAM: ADC Sample Auto-Start bit
	 1 = Sampling begins immediately after last conversion. SAMP bit is auto-set 0 = Sampling begins when SAMP bit is set
bit 1	SAMP: ADC Sample Enable bit
	 1 = ADC sample/hold amplifiers are sampling 0 = ADC sample/hold amplifiers are holding If ASAM = 0, software can write '1' to begin sampling. Automatically set by hardware if ASAM = 1. If SSRC = 000, software can write '0' to end sampling and start conversion. If SSRC ≠ 000, automatically cleared by hardware to end sampling and start conversion.
bit 0	DONE: ADC Conversion Status bit
	 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit does NOT affect any operation in

progress. Automatically cleared by hardware at start of a new conversion.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 22-5: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—		—	CH123N	NB<1:0>	CH123SB
bit 15				-			bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	—	—		—	CH123N	VA<1:0>	CH123SA
bit 7				•			bit 0
Legend:							
R = Readable bit W = Writable bit		oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x = Bit is unknown				

bit 15-11 Unimplemented: Read as '0'

bit 10-9

CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits dsPIC33FJ32MC302, dsPIC33FJ64MC202/802 and dsPIC33FJ128MC202/802 devices only: If AD12B = 1: 11 = Reconved

- 11 = Reserved 10 = Reserved
- 01 = Reserved 00 = Reserved

If AD12B = 0:

11 = Reserved 10 = Reserved 01 = CH1, CH2, CH3 negative input is VREF-00 = CH1, CH2, CH3 negative input is VREF-

dsPIC33FJ32MC304, dsPIC33FJ64MC204/804 and dsPIC33FJ128MC204/804 devices only:

If AD12B = 1: 11 = Reserved 10 = Reserved 01 = Reserved 00 = Reserved

If AD12B = 0:

11 = Reserved

10 = CH1 negative input is AN6, CH2 negative input is AN7, CH3 negative input is AN8

01 = CH1, CH2, CH3 negative input is VREF-00 = CH1, CH2, CH3 negative input is VREF-

00

bit 8

CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit <u>If AD12B = 1:</u> 1 = Reserved

0 = Reserved

If AD12B = 0:

1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5

0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2

bit 7-3 Unimplemented: Read as '0'

REGISTER 23-3: DAC1DFLT: DAC DEFAULT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DAC1D	FLT<15:8>				
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
			DAC1D)FLT<7:0>				
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			it	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set '0' = Bit is cleared			ared	x = Bit is unkr	nown			

bit 15-0 DAC1DFLT<15:0>: DAC Default Value bits

REGISTER 23-4: DAC1LDAT: DAC LEFT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1LD	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1LD)AT<7:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 DAC1LDAT<15:0>: Left Channel Data Port bits

REGISTER 23-5: DAC1RDAT: DAC RIGHT DATA REGISTER

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1RD	AT<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			DAC1RD)AT<7:0>			
bit 7							bit (

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0 DAC1RDAT<15:0>: Right Channel Data Port bits

28.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices include the following features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection and CodeGuard[™] Security
- · JTAG Boundary Scan Interface
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit Emulation

Address Bit 7 Bit 6 Bit 1 Bit 0 Name Bit 5 Bit 4 Bit 3 Bit 2 0xF80000 FBS RBS<1:0> BSS<2:0> BWRP FSS⁽¹⁾ 0xF80002 RSS<1:0> SSS<2:0> SWRP 0xF80004 GWRP FGS ____ ____ GSS<1:0> ____ ____ ____ 0xF80006 FOSCSEL FNOSC<2:0> IESO OSCIOFNC POSCMD<1:0> 0xF80008 FOSC FCKSM<1:0> **IOL1WAY** 0xF8000A FWDT FWDTEN WINDIS _ WDTPRE WDTPOST<3:0> PWMPIN 0xF8000C FPOR HPOL LPOL ALTI2C FPWRT<2:0> Reserved⁽²⁾ 0xF8000E FICD **JTAGEN** ICS<1:0> 0xF80010 FUID0 User Unit ID Byte 0 0xF80012 FUID1 User Unit ID Byte 1 0xF80014 FUID2 User Unit ID Byte 2 0xF80016 FUID3 User Unit ID Byte 3

TABLE 28-1: DEVICE CONFIGURATION REGISTER MAP

Legend: — = unimplemented bit, read as '0'.

Note 1: This Configuration register is not available and reads as 0xFF on dsPIC33FJ32MC302/304 devices.

2: These bits are reserved for use by development tools and must be programmed as '1'.

28.1 Configuration Bits

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices provide nonvolatile memory implementations for device Configuration bits. Refer to **Section 25.** "**Device Configuration**" (DS70194) in the "*dsPIC33F/PIC24H Family Reference Manual*" for more information on this implementation.

The Configuration bits can be programmed (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These bits are mapped starting at program memory location 0xF80000.

The individual Configuration bit descriptions for the Configuration registers are shown in Table 28-2.

Note that address 0xF80000 is beyond the user program memory space. It belongs to the configuration memory space (0x800000-0xFFFFFF), which can only be accessed using table reads and table writes.

The Device Configuration register map is shown in Table 28-1.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions	
SP10	TscP	Maximum SCK Frequency	—	_	15	MHz	See Note 3	
SP20	TscF	SCKx Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4	
SP21	TscR	SCKx Output Rise Time	—	—		ns	See parameter DO31 and Note 4	
SP30	TdoF	SDOx Data Output Fall Time	-	—	_	ns	See parameter DO32 and Note 4	
SP31	TdoR	SDOx Data Output Rise Time	-	—	_	ns	See parameter DO31 and Note 4	
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	-	6	20	ns	—	
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	—	ns	—	

TABLE 31-33: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions		
		ADC Accuracy (10-bit Mode	e) – Meas	urement	ts with e	xternal	VREF+/VREF-		
AD20b	Nr	Resolution ⁽¹⁾	1() data bi	ts	bits			
AD21b	INL	Integral Nonlinearity	-1.5	_	+1.5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1	—	<1	LSb	Vinl = AVss = Vrefl = 0V, AVdd = Vrefh = 3.6V		
AD23b	Gerr	Gain Error	—	3	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD24b	EOFF	Offset Error	—	2	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V		
AD25b	—	Monotonicity	_			—	Guaranteed		
		ADC Accuracy (10-bit Mode	e) – Meas	uremen	ts with ir	nternal V	VREF+/VREF-		
AD20b	Nr	Resolution ⁽¹⁾	1(0 data bi	ts	bits			
AD21b	INL	Integral Nonlinearity	-1	—	+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V		
AD25b	—	Monotonicity	—		_	—	Guaranteed		
		Dynamic	Performa	nce (10-	bit Mode	e)			
AD30b	THD	Total Harmonic Distortion			-64	dB	_		
AD31b	SINAD	Signal to Noise and Distortion	57	58.5		dB			
AD32b	SFDR	Spurious Free Dynamic Range	72	_		dB	_		
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—		
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits	—		

TABLE 31-45: ADC MODULE SPECIFICATIONS (10-BIT MODE)

Note 1: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		10	25	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	—		ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35		_	ns	_		

TABLE 32-10: SPIx MASTER MODE (CKE = 0) TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

TABLE 32-11: SPIX MODULE MASTER MODE (CKE = 1) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	10	25	ns	_		
HSP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	35	_	_	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	28	_	_	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	35			ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.