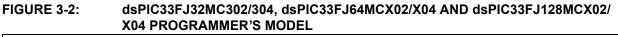


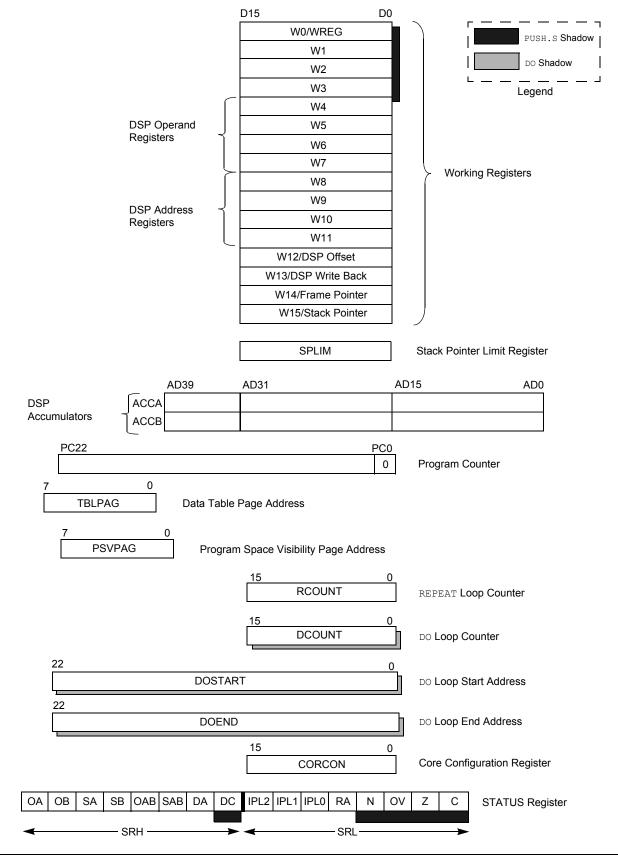
Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"


Details


E·XFI

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	· · · · · · · · · · · · · · · · · · ·
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	28-SOIC (0.295", 7.50mm Width)
Supplier Device Package	28-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc802-i-so

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Special Function Register Maps 4.4

TABLE 4-1: **CPU CORE REGISTERS MAP**

DS7029	
)1G-pag	
je 42	

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								0000
WREG1	0002								Working Re	gister 1								0000
WREG2	0004								Working Re	gister 2								0000
WREG3	0006								Working Re	gister 3								0000
WREG4	0008								Working Re	gister 4								0000
WREG5	000A		Working Register 5									0000						
WREG6	000C								Working Re	gister 6								0000
WREG7	000E								Working Re	gister 7								0000
WREG8	0010								Working Re	gister 8								0000
WREG9	0012								Working Re	gister 9								0000
WREG10	0014								Working Reg	jister 10								0000
WREG11	0016								Working Reg	jister 11								0000
WREG12	0018								Working Reg	ister 12								0000
WREG13	001A								Working Reg	jister 13								0000
WREG14	001C								Working Reg	jister 14								0000
WREG15	001E								Working Reg	jister 15								0800
SPLIM	0020							Stac	k Pointer Lir	nit Register								XXXX
ACCAL	0022								ACCA	L								XXXX
ACCAH	0024								ACCA	Н								XXXX
ACCAU	0026				ACCA<	39>							ACO	CAU				XXXX
ACCBL	0028								ACCB	L								XXXX
ACCBH	002A								ACCB	Н								XXXX
ACCBU	002C				ACCB<	39>							ACO	CBU				XXXX
PCL	002E							Program	Counter Lov	w Word Reg	ister							XXXX
PCH	0030	_		—			—		_			Progra	am Counter	High Byte R	Register			0000
TBLPAG	0032	_	—	—			_					Table	Page Addre	ss Pointer F	Register			0000
PSVPAG	0034	_		—			—		—		Prog	ram Memor	y Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	nter Registe	er							XXXX
DCOUNT	0038								DCOUNT<									XXXX
DOSTARTL	003A							DOST	ARTL<15:1	>							0	XXXX
DOSTARTH	003C	_	—	_	—	—	—	—	—	_	_			DOSTAF	RTH<5:0>			00xx
DOENDL	003E							DOE	NDL<15:1>	•		•					0	XXXX
DOENDH	0040	_	—	—	—	—	—	—	—	_	—			DOEN	DH<5:0>			00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	N	OV	Z	С	0000
CORCON	0044	—	—	_	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020

4.8.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDH).

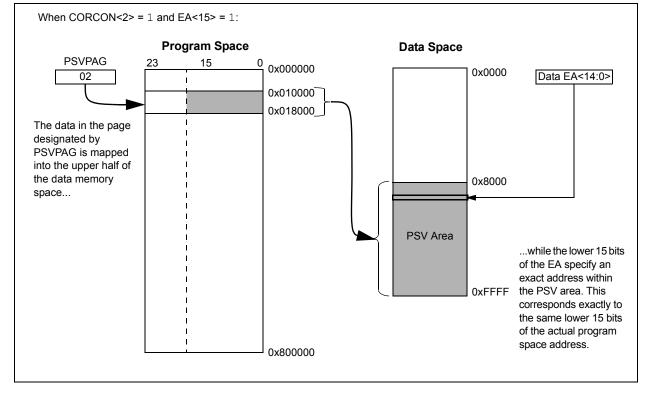
Program space access through the data space occurs if the Most Significant bit of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-11), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.

Note:	PSV access is temporarily disabled during
	table reads/writes.


For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- · Execution in the first iteration
- Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the ${\tt REPEAT}$ loop allows the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-11: PROGRAM SPACE VISIBILITY OPERATION

5.2 RTSP Operation

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 31-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.


All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 31-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time, and Word Write Cycle Time parameters (see Table 31-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be \pm 5%. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \text{ Cycles}}{7.37 \text{ MHz} \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 \text{ms}$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory:

- NVMCON: The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.
- NVMKEY: NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to Section 5.3 "Programming Operations" for further details.

5.5 Flash Programming Resources

Many useful resources related to Flash programming are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

5.5.1 KEY RESOURCES

- Section 5. "Flash Programming" (DS70191)
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

7.3 Interrupt Control and Status Registers

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices implement a total of 30 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable bit (NSTDIS) as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table (AIVT).

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number bits (VECNUM<6:0>) and Interrupt level bits (ILR<3:0>) in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first position of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU control registers contain bits that control interrupt functionality.

- The CPU Status register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user software can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit, which together with IPL<2:0>, also indicates the current CPU priority level. The IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-32.

7.4 Interrupts Resources

Many useful resources related to Interrupts are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the product page using the link above, enter this URL in your browser:
	http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

7.4.1 KEY RESOURCES

- Section 32. "Interrupts (Part III)" (DS70214)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
FLTA1IF	RTCIF	DMA5IF		_	QEI1IF	PWM1IF	_
bit 15				÷			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>	—	_			—	_
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimple	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own
bit 14 bit 13	0 = Interrupt RTCIF: Real 1 = Interrupt 0 = Interrupt DMA5IF: DM 1 = Interrupt	request has occ request has not -Time Clock and request has occ request has not IA Channel 5 Da request has occ request has not	occurred Calendar Ir urred occurred ta Transfer urred			s bit	
bit 12-11	Unimpleme	nted: Read as '0	,				
bit 10	1 = Interrupt	1 Event Interrupt request has occ request has not	urred	s bit			
bit 9	PWM1IF: PV	VM1 Event Interr	upt Flag Sta	atus bit			
		request has occ request has not					

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

Unimplemented: Read as '0'

bit 8-0

8.0 DIRECT MEMORY ACCESS (DMA)

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 38. "Direct Memory Access (DMA) (Part III)" (DS70215) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Direct Memory Access (DMA) is a very efficient mechanism of copying data between peripheral SFRs (e.g., UART Receive register, Input Capture 1 buffer), and buffers or variables stored in RAM, with minimal CPU intervention. The DMA controller can automatically copy entire blocks of data without requiring the user software to read or write the peripheral Special Function Registers (SFRs) every time a peripheral interrupt occurs. The DMA controller uses a dedicated bus for data transfers and therefore, does not steal cycles from the code execution flow of the CPU. To exploit the DMA capability, the corresponding user buffers or variables must be located in DMA RAM.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 peripherals that can utilize DMA are listed in Table 8-1.

Peripheral to DMA Association	DMAxREQ Register IRQSEL<6:0> Bits	DMAxPAD Register Values to Read From Peripheral	DMAxPAD Register Values to Write to Peripheral
INT0 – External Interrupt 0	0000000	—	—
IC1 – Input Capture 1	0000001	0x0140 (IC1BUF)	—
OC1 – Output Compare 1 Data	0000010	—	0x0182 (OC1R)
OC1 – Output Compare 1 Secondary Data	0000010	—	0x0180 (OC1RS)
IC2 – Input Capture 2	0000101	0x0144 (IC2BUF)	—
OC2 – Output Compare 2 Data	0000110	—	0x0188 (OC2R)
OC2 – Output Compare 2 Secondary Data	0000110	—	0x0186 (OC2RS)
TMR2 – Timer2	0000111	—	—
TMR3 – Timer3	0001000	—	—
SPI1 – Transfer Done	0001010	0x0248 (SPI1BUF)	0x0248 (SPI1BUF)
UART1RX – UART1 Receiver	0001011	0x0226 (U1RXREG)	—
UART1TX – UART1 Transmitter	0001100	—	0x0224 (U1TXREG)
ADC1 – ADC1 Convert Done	0001101	0x0300 (ADC1BUF0)	—
UART2RX – UART2 Receiver	0011110	0x0236 (U2RXREG)	—
UART2TX – UART2 Transmitter	0011111	—	0x0234 (U2TXREG)
SPI2 – Transfer Done	0100001	0x0268 (SPI2BUF)	0x0268 (SPI2BUF)
ECAN1 – RX Data Ready	0100010	0x0440 (C1RXD)	—
PMP - Master Data Transfer	0101101	0x0608 (PMDIN1)	0x0608 (PMDIN1)
ECAN1 – TX Data Request	1000110	—	0x0442 (C1TXD)
DAC1 - Right Data Output	1001110	—	0x3F6 (DAC1RDAT)
DAC2 - Left Data Output	1001111	—	0x03F8 (DAC1LDAT)

TABLE 8-1: DMA CHANNEL TO PERIPHERAL ASSOCIATIONS

12.0 TIMER1

- This data sheet summarizes the features Note 1: dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter.

The Timer1 module has the following unique features over other timers:

- Can be operated from the low power 32 kHz crystal oscillator available on the device.
- Can be operated in Asynchronous Counter mode from an external clock source.
- The external clock input (T1CK) can optionally be synchronized to the internal device clock and the clock synchronization is performed after the prescaler.

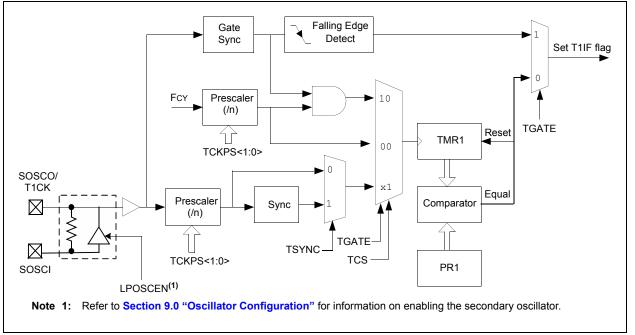
The unique features of Timer1 allow it to be used for Real-Time Clock (RTC) applications. A block diagram of Timer1 is shown in Figure 12-1.

The Timer1 module can operate in one of the following modes:

- Timer mode
- · Gated Timer mode
- Synchronous Counter mode
- Asynchronous Counter mode

In Timer and Gated Timer modes, the input clock is derived from the internal instruction cycle clock (FcY). In Synchronous and Asynchronous Counter modes, the input clock is derived from the external clock input at the T1CK pin.

The Timer modes are determined by the following bits:


- Timer Clock Source Control bit (TCS): T1CON<1>
- Timer Synchronization Control bit (TSYNC): T1CON<2>
- Timer Gate Control bit (TGATE): T1CON<6>

Timer control bit setting for different operating modes are given in the Table 12-1.

TABLE 12-1: TIMER MODE SETTINGS

Mode	TCS	TGATE	TSYNC
Timer	0	0	Х
Gated timer	0	1	х
Synchronous Counter	1	х	1
Asynchronous Counter	1	х	0

FIGURE 12-1: 16-BIT TIMER1 MODULE BLOCK DIAGRAM

REGISTER	13-2: TyCON	I: TIMER CO	NTROL RE	GISTER (y = 3	3 or 5)		
R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
TON ⁽²⁾	_	TSIDL ⁽¹⁾		—	_	—	_
bit 15							bit 8
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0
	TGATE ⁽²⁾	TCKPS<	:1:0> ⁽²⁾	—	_	TCS ⁽²⁾	_
bit 7							bit (
Legend:							
R = Readabl	e bit	W = Writable k	oit	U = Unimplen	nented bit. rea	d as '0'	
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own
		1 Bit io cot				X Bitle dillar	••••
bit 15	TON: Timery	On bit ⁽²⁾					
	1 = Starts 16-						
	0 = Stops 16-	bit Timerx					
bit 14	Unimplemen	ted: Read as 'o)'				
bit 13	TSIDL: Stop i	n Idle Mode bit ⁽	(1)				
		ue timer operati timer operation		vice enters Idle i e	mode		
bit 12-7	Unimplemen	ted: Read as '0)'				
bit 6	TGATE: Time	rx Gated Time	Accumulatio	n Enable bit ⁽²⁾			
	When TCS =	1:					
	This bit is igno						
	When TCS =		a a a la la al				
		e accumulation e accumulation					
bit 5-4				ale Select bits ⁽²⁾			
	11 = 1:256 pr	-					
	10 = 1:64 pre						
	01 = 1:8 pres						
	00 = 1:1 pres						
bit 3-2	-	ted: Read as '0					
bit 1		Clock Source S					
		clock from TxCk	K pin				
bit 0	0 = Internal cl	ted: Read as '0	, ,				
DILU	Unimplemen	ieu: Read as 10	1				

REGISTER 13-2: TyCON: TIMER CONTROL REGISTER (y = 3 or 5)

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (TxCON<3>), these bits have no effect.

15.2 Output Compare Resources

Many useful resources related to Output Compare are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note: In the event you are not able to access the product page using the link above, enter this URL in your browser: http://www.microchip.com/wwwproducts/ Devices.aspx?dDocName=en532315

15.2.1 KEY RESOURCES

- Section 13. "Output Compare" (DS70209)
- Code Samples
- Application Notes
- · Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

NOTES:

REGISTER 1	9-2: I2CxS	TAT: I2Cx ST	ATUS REG	STER							
R-0, HSC	R-0, HSC	U-0	U-0	U-0	R/C-0, HS	R-0, HSC	R-0, HSC				
ACKSTAT	TRSTAT			_	BCL	GCSTAT	ADD10				
bit 15				·		·	bit 8				
R/C-0, HS	R/C-0, HS	R-0, HSC	R/C-0, HSC	R/C-0, HSC	R-0, HSC	R-0, HSC	R-0, HSC				
IWCOL	I2COV	D_A	Р	S	RW	RBF	TBF				
bit 7	1			I			bit (
Legend:		C = Clear on	ly bit	U = Unimpler	nented bit, rea	d as '0'					
R = Readable	bit	W = Writable	-	HS = Set in h		HSC = Hardw	are set/cleare				
-n = Value at P	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr					
	•		•	0 21010 010							
bit 15	(when operat 1 = NACK re 0 = ACK rece	cknowledge St ting as I ² C™ m ceived from sla eived from slav t or clear at end	aster, applica ave e		ransmit operati	on)					
bit 14	TRSTAT: Tra 1 = Master tr 0 = Master tr	nsmit Status bi ansmit is in pro ansmit is not in	t (when opera ogress (8 bits - o progress	ting as I ² C ma + ACK)		e to master trans and of slave Ack	·				
bit 13-11	Unimplemer	nted: Read as	ʻ0 '								
bit 10	BCL: Master Bus Collision Detect bit										
	0 = No collisi	llision has beer on t at detection o			peration						
bit 9	1 = General (0 = General (neral Call Statu call address wa call address wa t when address	as received as not received		ess. Hardware o	clear at Stop dei	ection.				
bit 8	1 = 10-bit ad 0 = 10-bit ad	bit Address Stat dress was mate dress was not i t at match of 2r	ched matched	ched 10-bit ad	dress. Hardwa	re clear at Stop	detection.				
bit 7	IWCOL: Writ	e Collision Det	ect bit								
	0 = No collisi	on	c		ause the I ² C mo ousy (cleared by	-					
bit 6		vive Overflow F				· · · ·					
	1 = A byte wa 0 = No overfl	as received wh ow	ile the I2CxR0	-	still holding the						
bit 5		ddress bit (whe									
	1 = Indicates 0 = Indicates	that the last by that the last by	yte received w yte received w	vas data vas device add	ress by reception of	slave byte.					
bit 4	0 = Stop bit v	that a Stop bit vas not detecte t or clear when	ed last		p detected.						

REGISTER 19-2: I2CxSTAT: I2Cx STATUS REGISTER

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
FLTEN15	FLTEN14	FLTEN13	FLTEN12	FLTEN11	FLTEN10	FLTEN9	FLTEN8
bit 15							bit 8
511 15							DIL

| R/W-1 |
|--------|--------|--------|--------|--------|--------|--------|--------|
| FLTEN7 | FLTEN6 | FLTEN5 | FLTEN4 | FLTEN3 | FLTEN2 | FLTEN1 | FLTEN0 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-0

FLTENn: Enable Filter n to Accept Messages bits

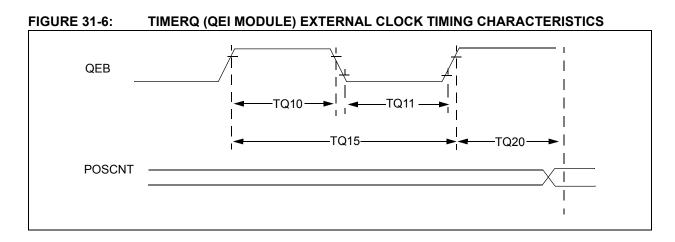
1 = Enable Filter n

0 = Disable Filter n

REGISTER 21-12: CIBUFPNT1: ECAN™ FILTER 0-3 BUFFER POINTER REGISTER

REGISTER	ZI-1Z. CIDU	FFINIT. ECAN		U-3 DUFFER		EGISTER			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F3BF	P<3:0>			F2BI	><3:0>			
bit 15				-			bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	F1BF	°<3:0>			F0BI	><3:0>			
bit 7							bit C		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-12		RX Buffer mas							
		r hits received ir							
	1110 = Filte	1110 = Filter hits received in RX Buffer 14							
	•								
	•								
	•								
	0001 = Filte	r hits received ir	n RX Buffer 1						
	0000 = Filte	r hits received ir	n RX Buffer 0						
bit 11-8	F2BP<3:0>:	RX Buffer mas	k for Filter 2 (same values as	; bit 15-12)				
bit 7-4	F1BP<3:0>:	RX Buffer mas	k for Filter 1 (same values as	bit 15-12)				
bit 3-0		RX Buffer mas							
					- /				

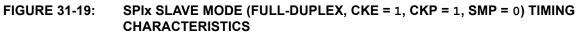
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_	_			SAMC<4:0>	1)	
bit 15							bit
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS	<7:0> ⁽²⁾			
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	oit	U = Unimpler	nented bit, rea	ad as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unk	nown
bit 15		Conversion Clo	ck Source bit				
		rnal RC clock					
		rived from syste					
bit 14-13	-	nted: Read as '0					
bit 12-8		: Auto Sample T	ime bits ⁽¹⁾				
	11111 = 31 ⁻	Tad					
	•						
	•						
	•						
	00001 = 1 TA 00000 = 0 TA						
bit 7-0	ADCS<7:0>:	ADC Conversion	on Clock Sele	ct bits ⁽²⁾			
	11111111 =	Reserved					
	•						
	•						
	•						
	•						
	01000000 =	Reserved					
	00111111 =	TCY · (ADCS<7	7:0> + 1) = 64	• TCY = TAD			
	•						
	•						
	•						
		TCY · (ADCS<7					
		TCY · (ADCS<7					
	00000000 =						



2: This bit is not used if AD1CON3<15> (ADRC) = 1.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	—	—	—	_	—	—	
bit 15							bit 8	
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
CVREN	CVROE	CVRR	CVRSS		CVF	२<3:0>		
bit 7							bit C	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, rea	ıd as '0'		
-n = Value at	POR	'1' = Bit is set	t	'0' = Bit is cleared x = Bit is unknown				
bit 15-8	Unimplemen	ted: Read as '	0'					
bit 7	CVREN: Comparator Voltage Reference Enable bit							
	 1 = CVREF circuit powered on 0 = CVREF circuit powered down 							
bit 6	CVROE: Comparator VREF Output Enable bit							
	 CVREF voltage level is output on CVREF pin CVREF voltage level is disconnected from CVREF pin CVRR: Comparator VREF Range Selection bit 							
bit 5								
	1 = CVRSRC range should be 0 to 0.625 CVRSRC with CVRSRC/24 step size							
				9 CVRSRC with				
bit 4	CVRSS: Comparator VREF Source Selection bit							
	1 = Comparator reference source CVRSRC = VREF+ – VREF-							
	0 = Comparator reference source CVRSRC = AVDD – AVSS							
bit 3-0		•	EF Value Selec	ction 0 ⊴CVR<3	:0> ≤15 bits			
	When CVRR							
	CVREF = (CVR)	<3:0>/ 24) ● (0	_VRSRC)					

REGISTER 24-2: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER


 $\frac{VREF}{CVREF} = (CVRES.0) + (24) \bullet (CVRSRC)$ $\frac{When CVRR}{CVREF} = 1/4 \bullet (CVRSRC) + (CVR < 3:0 > /32) \bullet (CVRSRC)$

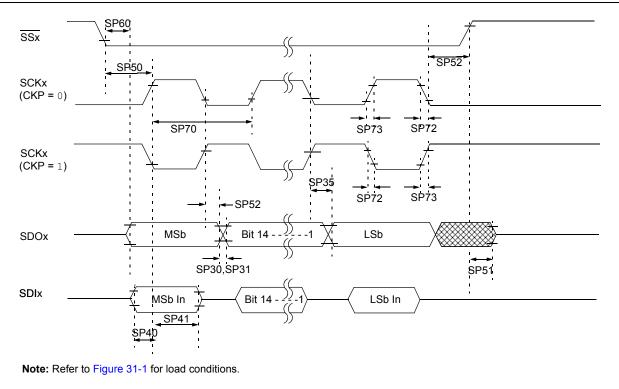
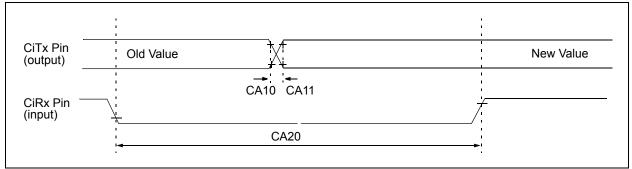


TABLE 31-25: QEI MODULE EXTERNAL CLOCK TIMING REQUIREMENTS


AC CHARACTERISTICS				(unles	ard Operating s otherwise s ting temperatu	tated) ire -40	°C≤Ta≤	+85°C fo	/ or Industrial for Extended
Param No.	Symbol	Characteristic ⁽¹⁾			Min	Тур	Max	Units	Conditions
TQ10	TtQH	TQCK High Time	Synchronous, with prescaler		Тсү + 20		_	ns	Must also meet parameter TQ15
TQ11	TtQL	TQCK Low Time	Synchronous, with prescaler		Тсү + 20			ns	Must also meet parameter TQ15
TQ15	TtQP	TQCP Input Period	Synchronous, with prescaler		2 * Tcy + 40			ns	_
TQ20	TCKEXTMRL	Delay from External Edge to Timer Increi		lock	0.5 TCY		1.5 Tcy	_	—

Note 1: These parameters are characterized but not tested in manufacturing.

FIGURE 31-26: ECAN MODULE I/O TIMING CHARACTERISTICS

TABLE 31-42: ECAN MODULE I/O TIMING REQUIREMENTS

				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Typ ⁽²⁾	Мах	Units	Conditions		
CA10	TioF	Port Output Fall Time	_			ns	See parameter D032		
CA11	TioR	Port Output Rise Time	_		_	ns	See parameter D031		
CA20	Tcwf	Pulse Width to Trigger CAN Wake-up Filter	120	_		ns	—		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

NOTES:

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Operation Example	65
Start and End Address	
W Address Register Selection	
Motor Control PWM	213
Motor Control PWM Module	
2-Output Register Map	48
6-Output Register Map	47
MPLAB ASM30 Assembler, Linker, Librarian	354
MPLAB Integrated Development Environment Software	353
MPLAB PM3 Device Programmer	356
MPLAB REAL ICE In-Circuit Emulator System	355
MPLINK Object Linker/MPLIB Object Librarian	354

Ν

NVN	1 Module	
	Register Map	62
ο		

Р
Packaging
Details
Marking
Peripheral Module Disable (PMD)
Pinout I/O Descriptions (table)
PMD Module
Register Map62
PORTA
Register Map60, 61
PORTB
Register Map61
Power-on Reset (POR)
Power-Saving Features
Clock Frequency and Switching 155
Program Address Space
Construction
Data Access from Program Memory Using Program
Space Visibility71
Data Access from Program Memory Using Table Instruc-
tions70
Data Access from, Address Generation69
Memory Map35
Table Read Instructions
TBLRDH
TBLRDL
Visibility Operation
Program Memory
Interrupt Vector
Organization
Reset Vector
Q
Quadrature Encoder Interface (QEI)
Quadrature Encoder Interface (QEI) Module
Register Map
R

R
Reader Response
Register Map
CRC
Dual Comparator60
Parallel Master/Slave Port 59
Real-Time Clock and Calendar60
Registers
AD1CHS0 (ADC1 Input Channel 0 Select 293
AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 291

AD1CON1 (ADC1 Control 1)	
AD1CON2 (ADC1 Control 2)	
AD1CON3 (ADC1 Control 3)	
AD1CON4 (ADC1 Control 4)	
AD1CSSL (ADC1 Input Scan Select Low)	
AD1PCFGL (ADC1 Port Configuration Low)	
CiBUFPNT1 (ECAN Filter 0-3 Buffer Pointer)	
CiBUFPNT2 (ECAN Filter 4-7 Buffer Pointer)	
CiBUFPNT3 (ECAN Filter 8-11 Buffer Pointer)	
CiBUFPNT4 (ECAN Filter 12-15 Buffer Pointer)	
CiCFG1 (ECAN Baud Rate Configuration 1)	
CiCFG2 (ECAN Baud Rate Configuration 2) CiCTRL1 (ECAN Control 1)	
CICTRL2 (ECAN Control 2)	
CIEC (ECAN Transmit/Receive Error Count)	
CIFCTRL (ECAN FIFO Control)	
CiFEN1 (ECAN Acceptance Filter Enable)	
CiFIFO (ECAN FIFO Status)	
CiFMSKSEL1 (ECAN Filter 7-0 Mask Selection) .	
272	27 1,
CiINTE (ECAN Interrupt Enable)	264
CiINTF (ECAN Interrupt Flag)	
CiRXFnEID (ECAN Acceptance Filter n Extended	Identi-
fier)	
CiRXFnSID (ECAN Acceptance Filter n Standard	
fier)	
CiRXFUL1 (ECAN Receive Buffer Full 1)	274
CiRXFUL2 (ECAN Receive Buffer Full 2)	274
CiRXMnEID (ECAN Acceptance Filter Mask n Ex	tended
Identifier)	273
CiRXMnSID (ECAN Acceptance Filter Mask n St	
Identifier)	
CiRXOVF1 (ECAN Receive Buffer Overflow 1)	
CiRXOVF2 (ECAN Receive Buffer Overflow 2)	
CiTRBnSID (ECAN Buffer n Standard Identifier)	277,
278, 280	070
CiTRmnCON (ECAN TX/RX Buffer m Control)	
CiVEC (ECAN Interrupt Code) CLKDIV (Clock Divisor)	
CORCON (Core Control)	
DFLTCON (QEI Control)	
DMACS0 (DMA Controller Status 0)	
DMACS1 (DMA Controller Status 1)	
DMAxCNT (DMA Channel x Transfer Count)	
DMAxCON (DMA Channel x Control)	
DMAxPAD (DMA Channel x Peripheral Address)	
DMAxREQ (DMA Channel x IRQ Select)	
DMAxSTA (DMA Channel x RAM Start Address A	
DMAxSTB (DMA Channel x RAM Start Address E	3). 136
DSADR (Most Recent DMA RAM Address)	141
I2CxCON (I2Cx Control)	
I2CxMSK (I2Cx Slave Mode Address Mask)	246
I2CxSTAT (I2Cx Status)	
IFS0 (Interrupt Flag Status 0)	
IFS1 (Interrupt Flag Status 1) 10	0, 107
IFS2 (Interrupt Flag Status 2) 10	02, 109
IFS3 (Interrupt Flag Status 3) 10	03, 110
IFS4 (Interrupt Flag Status 4) 10)4, 111
INTCON1 (Interrupt Control 1)	95
INTCON2 (Interrupt Control 2)	~-
INITTREC Interrupt Control and Status Desister	97
INTTREG Interrupt Control and Status Register	97 129
IPC0 (Interrupt Priority Control 0)	97 129 112
IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1)	97 129 112 113
IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11)	97 129 112 113 122
IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC14 (Interrupt Priority Control 14)	97 129 112 113 122 123
IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC14 (Interrupt Priority Control 14) IPC15 (Interrupt Priority Control 15)	97 129 112 113 122 123 124
IPC0 (Interrupt Priority Control 0) IPC1 (Interrupt Priority Control 1) IPC11 (Interrupt Priority Control 11) IPC14 (Interrupt Priority Control 14)	97 129 112 113 122 123 124 125