

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	21
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 6x10b/12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Through Hole
Package / Case	28-DIP (0.300", 7.62mm)
Supplier Device Package	28-SPDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc802-i-sp

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

3.7 Arithmetic Logic Unit (ALU)

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts and logic operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV) and Digit Carry (DC) Status bits in the <u>SR register. The C and DC</u> Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.7.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- · 8-bit unsigned x 8-bit unsigned

3.7.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

3.8 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:

- · Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	$A = A + (x \bullet y)$	Yes
MAC	A = A + x2	No
MOVSAC	No change in A	Yes
MPY	$A = x \bullet y$	No
MPY	A = x 2	No
MPY.N	$A = -x \bullet y$	No
MSC	$A = A - x \bullet y$	Yes

TABLE	4-5:	TIMEF	R REGIS	STER M	٩P													
SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period	Register 1								FFFF
T1CON	0104	TON	—	TSIDL	—	—	—	—	_	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	-	0000
TMR2	0106		Timer2 Register 0000										0000					
TMR3HLD	0108		Timer3 Holding Register (for 32-bit timer operations only) xxxx															
TMR3	010A		Timer3 Register 0000															
PR2	010C		Period Register 2 FFFF									FFFF						
PR3	010E								Period	Register 3								FFFF
T2CON	0110	TON	—	TSIDL	-	—	—	—	—	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T3CON	0112	TON	—	TSIDL	-	—	—	—	—	_	TGATE	TCKP	S<1:0>		—	TCS	—	0000
TMR4	0114								Timer4	Register								0000
TMR5HLD	0116						Tin	ner5 Holding	g Register (fo	or 32-bit time	r operations o	only)						XXXX
TMR5	0118								Timer5	Register								0000
PR4	011A								Period	Register 4								FFFF
PR5	011C		Period Register 5 FFFF															
T4CON	011E	TON	—	TSIDL	-	—	—	—	—	_	TGATE	TCKP	S<1:0>	T32	—	TCS	—	0000
T5CON	0120	TON	_	TSIDL	_	_	_	_	_	_	TGATE	TCKP	S<1:0>	_	_	TCS	_	0000
Legend:	x = un	known valu	e on Reset	. — = unimp	lemented, r	ead as '0'. I	Reset value	s are show	n in hexade	cimal.								

TABLE 4-6: INPUT CAPTURE REGISTER MAP

SFR Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140	0140 Input 1 Capture Register										XXXX						
IC1CON	0142	I	—	ICSIDL		—	I	_	-	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC2BUF	0144	0144 Input 2 Capture Register										XXXX						
IC2CON	0146	I	—	ICSIDL		—	I	_	-	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC7BUF	0158								Input 7 Ca	pture Regist	er							XXXX
IC7CON	015A	I	—	ICSIDL		—	I	_	-	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC8BUF	015C	5C Input 8 Capture Register									XXXX							
IC8CON	015E	-	_	ICSIDL	_	_	_	_	_	ICTMR	ICI<	:1:0>	ICOV	ICBNE		ICM<2:0>		0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

5.0 FLASH PROGRAM MEMORY

- Note 1: This data sheet summarizes the features of dsPIC33FJ32MC302/304, the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/ X04 device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.

RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data either in blocks or rows of 64 instructions (192 bytes) at a time or a single program memory word, and erase program memory in blocks or pages of 512 instructions (1536 bytes) at a time.

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table read and table write instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. The TBLRDL and TBLWTL instructions can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. The TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

6.3 System Reset

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a Power-on Reset (POR) or a Brown-out Reset (BOR). On a cold Reset, the FNOSC Configuration bits in the FOSC device Configuration register selects the device clock source.

A warm Reset is the result of all other reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection bits (COSC<2:0>) in the Oscillator Control register (OSCCON<14:12>).

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The description of the sequence in which this occurs is shown in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd	_	_	Toscd
FRCPLL	Toscd	_	TLOCK	TOSCD + TLOCK
XT	Toscd	Tost	—	TOSCD + TOST
HS	Toscd	Tost	—	TOSCD + TOST
EC	—	—		—
XTPLL	Toscd	Тоѕт	TLOCK	Toscd + Tost + TLOCK
HSPLL	Toscd	Tost	TLOCK	Toscd + Tost + TLOCK
ECPLL	—	—	TLOCK	TLOCK
Sosc	Toscd	Tost		TOSCD + TOST
LPRC	Toscd	_	_	Toscd

TABLE 6-1: OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	U-0
FLTA1IE	RTCIE	DMA5IE			QEI1IE	PWM1IE	
bit 15							bit 8
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
 hit 7	_	_	_	_	_	—	— bit 0
							Dit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own
bit 15	FLTA1IE: PW	/M1 Fault A Inte	errupt Enable	bit			
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 14	RTCIE: Real-	Time Clock and	d Calendar Int	terrupt Enable	bit		
	1 = Interrupt r	request enable request not ena	d abled				
bit 13	DMA5IE: DM	A Channel 5 D	ata Transfer (Complete Interr	upt Enable bit		
	1 = Interrupt r	request enable	d	·	•		
	0 = Interrupt r	request not ena	abled				
bit 12-11	Unimplemen	ted: Read as '	0'				
bit 10	QEI1IE: QEI1	Event Interrup	ot Enable bit				
	1 = Interrupt r	request enable	d				
	0 = Interrupt r	request not ena	abled				
bit 9	PWM1IE: PW	/M1 Event Inter	rrupt Enable b	bit			
	1 = Interrupt r	request enable	d				

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

0 = Interrupt request not enabled

Unimplemented: Read as '0'

bit 8-0

INCOUST LIX						. 5	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_	—			T3CKR<4:0	1>	
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
		<u> </u>			T2CKR<4:0	>	
bit 7							bit (
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	It POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unki	nown
	11111 = Inp 11001 = Inp • • • • • • • • • • • • • • • • • • •	ut tied to Vss ut tied to RP25 ut tied to RP1 ut tied to RP0					
bit 7-5	Unimpleme	nted: Read as	'0'				
bit 4-0	T2CKR<4:0 11111 = Inp 11001 = Inp	>: Assign Time ut tied to Vss ut tied to RP25	r2 External Clo	ock (T2CK) to t	the correspond	ling RPn pin	
	00001 = Inp 00000 = Inp	ut tied to RP1 ut tied to RP0					

REGISTER 11-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

REGISTER 11-17: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	_	—			SS1R<4:0>		
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at P	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
			- 1				

bit 15-5 Unimplemented: Read as '0'

bit 4-0

SS1R<4:0>: Assign SPI1 Slave Select Input (SS1) to the corresponding RPn pin
 11111 = Input tied to Vss
 11001 = Input tied to RP25
 .
 .

00001 = Input tied to RP1 00000 = Input tied to RP0

13.0 TIMER2/3 AND TIMER4/5

- This data sheet summarizes the features Note 1: dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 of family devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 11. "Timers" (DS70205) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

Timer2 and Timer4 are Type B timers with the following specific features:

- A Type B timer can be concatenated with a Type C timer to form a 32-bit timer
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed after the prescaler

A block diagram of the Type B timer is shown in Figure 13-1.

Timer3 and Timer5 are Type C timers with the following specific features:

- A Type C timer can be concatenated with a Type B timer to form a 32-bit timer
- At least one Type C timer has the ability to trigger an analog-to-digital conversion
- The external clock input (TxCK) is always synchronized to the internal device clock and the clock synchronization is performed before the prescaler

A block diagram of the Type C timer is shown in Figure 13-2.

FIGURE 13-1: TYPE B TIMER BLOCK DIAGRAM (x = 2 or 4)

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) of "dsPIC33F/PIC24H the Family Reference Manual", which is available the Microchip from web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI include:

- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- · Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- · Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits, QEIM<2:0> bits (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 21-2: CICTRL2: ECAN™ CONTROL REGISTER 2									
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—		—	—	_	—		
bit 15							bit 8		
U-0	U-0	U-0	R-0	R-0	R-0	R-0	R-0		
DNCNT<4:0>									
bit 7							bit 0		
Legend:									
R = Readable I	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'			
-n = Value at POR (1' = Bit is set (0' = Bit is cleared x = Bit is unknown									
bit 15-5	Unimplemen	ted: Read as ')'						
bit 4-0	DNCNT<4:0>	•: DeviceNet™	Filter Bit Num	ber bits					

10010-11111 = Invalid selection

10001 = Compare up to data byte 3, bit 6 with EID<17>

•

•

00001 = Compare up to data byte 1, bit 7 with EID<0> 00000 = Do not compare data bytes

REGISTER 2	1-6: CilNTF	F: ECAN™ IN	TERRUPT	FLAG REGIS	STER		
U-0	U-0	R-0	R-0	R-0	R-0	R-0	R-0
	_	ТХВО	TXBP	RXBP	TXWAR	RXWAR	EWARN
bit 15						-	bit 8
R/C-0	R/C-0	R/C-0	U-0	R/C-0	R/C-0	R/C-0	R/C-0
IVRIF	WAKIF	ERRIF	—	FIFOIF	RBOVIF	RBIF	TBIF
bit 7							bit 0
Legend:		C = Writable I	oit, but only '0	' can be writte	n to clear the bit	•	
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown
bit 15-14	Unimplemen	ted: Read as '	0'				
bit 13	TXBO: Irans	mitter in Error S	State Bus Off	bit			
	1 = Transmitte	er is not in Rus	Off state				
bit 12	TXBP: Transi	mitter in Error §	State Bus Pas	sive bit			
2	1 = Transmitte	er is in Bus Pa	ssive state				
	0 = Transmitte	er is not in Bus	Passive state	Э			
bit 11	RXBP: Recei	ver in Error Sta	ite Bus Passiv	ve bit			
	1 = Receiver	is in Bus Passi	ve state				
h:+ 10			assive state	a a bit			
DICTO	1 = Transmitte	er is in Error W	r Slale Warnin arning state	ng bit			
	0 = Transmitte	er is not in Erro	or Warning state	ate			
bit 9	RXWAR: Rec	eiver in Error S	State Warning	bit			
	1 = Receiver	is in Error War	ning state				
	0 = Receiver	is not in Error \	Narning state				
bit 8	EWARN: Tran	nsmitter or Rec	eiver in Error	State Warning	j bit		
	\perp = Transmitte	er or Receiver	is in Error Sta	te warning sta	ile i state		
bit 7	IVRIE: Invalid	l Message Rec	eived Interrur	ot Elag bit	y state		
Sit 1	1 = Interrupt F	Request has or	curred	in lug bit			
	0 = Interrupt F	Request has no	ot occurred				
bit 6	WAKIF: Bus	Wake-up Activi	ty Interrupt FI	ag bit			
	1 = Interrupt F	Request has or	curred				
bit E		Request has no	ot occurred		TE <12:0> regist	or)	
DIL D		Deguest hes of			TF<13.02 Tegist	er)	
	1 = Interrupt F 0 = Interrupt F	Request has or	ot occurred				
bit 4	Unimplemen	ted: Read as '	0'				
bit 3	FIFOIF: FIFO	Almost Full In	∘ terrupt Flaα b	it			
	1 = Interrupt F	Request has or	curred				
	0 = Interrupt F	Request has no	ot occurred				
bit 2	RBOVIF: RX	Buffer Overflow	v Interrupt Fla	ag bit			
	1 = Interrupt F	Request has or	curred				
bit 1		Request has no					
	1 = Interrupt F	Request has or	curred				
	0 = Interrupt F	Request has no	ot occurred				
bit 0	TBIF: TX Buf	fer Interrupt Fla	ag bit				
	1 = Interrupt F	Request has o	curred				
	0 = Interrupt F	Request has no	ot occurred				

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 21-22: CiRXFUL1: ECAN™ RECEIVE BUFFER FULL REGISTER 1

R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL15	RXFUL14	RXFUL13	RXFUL12	RXFUL11	RXFUL10	RXFUL9	RXFUL8
bit 15							bit 8
R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0	R/C-0
RXFUL7	RXFUL6	RXFUL5	RXFUL4	RXFUL3	RXFUL2	RXFUL1	RXFUL0
bit 7							bit 0
Legend:		C = Writable b	oit, but only '0'	can be writter	n to clear the bit		
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	

'0' = Bit is cleared

x = Bit is unknown

bit 15-0 **RXFUL<15:0>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

'1' = Bit is set

0 = Buffer is empty

-n = Value at POR

REGISTER 21-23: CIRXFUL2: ECAN™ RECEIVE BUFFER FULL REGISTER 2

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL31 | RXFUL30 | RXFUL29 | RXFUL28 | RXFUL27 | RXFUL26 | RXFUL25 | RXFUL24 |
| bit 15 | | | | | | | bit 8 |

| R/C-0 |
|---------|---------|---------|---------|---------|---------|---------|---------|
| RXFUL23 | RXFUL22 | RXFUL21 | RXFUL20 | RXFUL19 | RXFUL18 | RXFUL17 | RXFUL16 |
| bit 7 | | | | | | | bit 0 |

Legend:	C = Writable bit, but only '0' can be written to clear the bit				
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'		
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown		

bit 15-0 **RXFUL<31:16>:** Receive Buffer n Full bits

1 = Buffer is full (set by module)

0 = Buffer is empty

21.6 ECAN Message Buffers

ECAN Message Buffers are part of DMA RAM memory. They are not ECAN special function registers. The user application must directly write into the DMA RAM area that is configured for ECAN Message Buffers. The location and size of the buffer area is defined by the user application.

BUFFER 21-1: ECAN™ MESSAGE BUFFER WORD 0

U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	—	SID10	SID9	SID8	SID7	SID6
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| SID5 | SID4 | SID3 | SID2 | SID1 | SID0 | SRR | IDE |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12-2	SID<10:0>: Standard Identifier bits
bit 1	SRR: Substitute Remote Request bit
	1 = Message will request remote transmission
	0 = Normal message
bit 0	IDE: Extended Identifier bit
	1 = Message will transmit extended identifier
	0 = Message will transmit standard identifier

BUFFER 21-2: ECAN™ MESSAGE BUFFER WORD 1

U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x
—	—	_	—	EID17	EID16	EID15	EID14
bit 15							bit 8

| R/W-x |
|-------|-------|-------|-------|-------|-------|-------|-------|
| EID13 | EID12 | EID11 | EID10 | EID9 | EID8 | EID7 | EID6 |
| bit 7 | | | | | | | bit 0 |

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-12 Unimplemented: Read as '0'

bit 11-0 EID<17:6>: Extended Identifier bits

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NB		_			CH0SB<4:0>		
bit 15							bit 8
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	_	—			CH0SA<4:0>		
bit 7							bit 0
Legend:							
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 14-13 bit 12-8	1 = Channel (0 = Channel (Unimplemen CH0SB<4:0> dsPIC33FJ32 01000 = Cha	D negative input D negative input ted: Read as '0 : Channel 0 Pos 2MC304, dsPIC nnel 0 positive i nnel 0 positive i nnel 0 positive i	is AN1 is VREF- sitive Input Se 33FJ64MC20 nput is AN8 nput is AN2 nput is AN1 nput is AN0	elect for Sample 04/804 and dsF	e B bits PIC33FJ128MC	:204/804 devic	es only:
bit 7 bit 6-5	dsPIC33FJ32 00101 = Cha • • 00010 = Cha 00001 = Cha 00000 = Cha CH0NA: Cha 1 = Channel (0 = Channel (2MC302, dsPIC nnel 0 positive i nnel 0 positive i nnel 0 positive i nnel 0 positive i nnel 0 Negative 0 negative input 0 negative input 1 negative input	33FJ64MC20 nput is AN5 nput is AN2 nput is AN1 nput is AN0. Input Select is AN1 is VREF-)2/802 and dsF for Sample A b	PIC33FJ128MC	:202/802 devic	es only:
0-0	Unimplemen	iea: Read as 10					

REGISTER 22-6: AD1CHS0: ADC1 INPUT CHANNEL 0 SELECT REGISTER

24.0 COMPARATOR MODULE

- Note 1: This data sheet summarizes the features of dsPIC33FJ32MC302/304. the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer Section to 34. "Comparator" (DS70212) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Comparator module provides a set of dual input comparators. The inputs to the comparator can be configured to use any one of the four pin inputs (C1IN+, C1IN-, C2IN+ and C2IN-) as well as the Comparator Voltage Reference Input (CVREF).

Note: This peripheral contains output functions that may need to be configured by the peripheral pin select feature. For more information, see Section 11.6 "Peripheral Pin Select".

REGISTER 27-6:	PADCFG1: PAD CONFIGURATION CONTROL REGISTER
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
	—	—	_	_	—	RTSECSEL ⁽¹⁾	PMPTTL
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit			U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unknown			wn

bit 1	RTSECSEL: RTCC Seconds Clock Output Select bit ⁽¹⁾			
	 1 = RTCC seconds clock is selected for the RTCC pin 0 = RTCC alarm pulse is selected for the RTCC pin 			
bit 0	PMPTTL: PMP Module TTL Input Buffer Select bit			
	1 = PMP module uses TTL input buffers			
	0 = PMP module uses Schmitt Trigger input buffers			

Note 1: To enable the actual RTCC output, the RTCOE bit (RCFGCAL) needs to be set.

30.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows® programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 in-circuit debugging on most PIC® enables microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

30.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for guick programming of large memory devices and incorporates an MMC card for file storage and data applications.

30.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

FIGURE 31-13: QEI MODULE INDEX PULSE TIMING CHARACTERISTICS

TABLE 31-31: QEI INDEX PULSE TIMING REQUIREMENTS

			$\begin{array}{l} \mbox{Standard Operating Conditions: 3.0V to 3.6V} \\ \mbox{(unless otherwise stated)} \\ \mbox{Operating temperature} & -40^{\circ}C \leq TA \leq +85^{\circ}C \mbox{ for Industrial} \\ & -40^{\circ}C \leq TA \leq +125^{\circ}C \mbox{ for Extended} \end{array}$				
Param No.	Symbol	Characteristic ⁽¹⁾		Min	Max	Units	Conditions
TQ50	TqIL	Filter Time to Recognize Low, with Digital Filter		3 * N * Tcy	_	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ51	TqiH	Filter Time to Recognize High, with Digital Filter		3 * N * Tcy	—	ns	N = 1, 2, 4, 16, 32, 64, 128 and 256 (Note 2)
TQ55	Tqidxr	Index Pulse Recognized to Position Counter Reset (ungated index)		3 TCY	_	ns	_

Note 1: These parameters are characterized but not tested in manufacturing.

2: Alignment of index pulses to QEA and QEB is shown for position counter Reset timing only. Shown for forward direction only (QEA leads QEB). Same timing applies for reverse direction (QEA lags QEB) but index pulse recognition occurs on falling edge.

44-Lead Plastic Thin Quad Flatpack (PT) – 10x10x1 mm Body, 2.00 mm [TQFP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIN	1ETERS		
Dimensio	MIN	NOM	MAX	
Contact Pitch	E		0.80 BSC	
Contact Pad Spacing	C1		11.40	
Contact Pad Spacing	C2		11.40	
Contact Pad Width (X44)	X1			0.55
Contact Pad Length (X44)	Y1			1.50
Distance Between Pads	G	0.25		

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2076A

Section Name	Update Description
Section 31.0 "Electrical Characteristics"	Updated the maximum value for Extended Temperature Devices in the Thermal Operating Conditions (see Table 31-2).
	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 31-4).
	Updated all typical and maximum Operating Current (IDD) values (see Table 31-5).
	Updated all typical and maximum Idle Current (IIDLE) values (see Table 31-6).
	Updated the maximum Power-Down Current (IPD) values for parameters DC60d, DC60a, and DC60b (see Table 31-7).
	Updated all typical Doze Current (Idoze) values (see Table 31-8).
	Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 31-9).
	Added Note 2 to the PLL Clock Timing Specifications (see Table 31-17)
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 31-18).
	Updated the Internal RC Accuracy minimum and maximum values for parameter F21b (see Table 31-19).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 31-20).
	Updated <i>all</i> SPI specifications (see Table 31-32 through Table 31-39 and Figure 31-14 through Figure 31-21)
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 31-43).
	Updated the ADC Module Specifications (12-bit Mode) minimum and maximum values for parameter AD21a (see Table 31-44).
	Updated all ADC Module Specifications (10-bit Mode) values, with the exception of Dynamic Performance (see Table 31-45).
	Updated the minimum value for parameter PM6 and the maximum value for parameter PM7 in the Parallel Master Port Read Timing Requirements (see Table 31-54).
	Added DMA Read/Write Timing Requirements (see Table 31-56).

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)