

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFl

Details	
Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	40 MIPs
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b; D/A 6x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Surface Mount
Package / Case	44-VQFN Exposed Pad
Supplier Device Package	44-QFN (8x8)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc804-e-ml

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

TABLE 4-20: DMA REGISTER MAP

IABLE 4	+-20.		LOISI		F					-	-			-		-		
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
DMA0CON	0380	CHEN	SIZE	DIR	HALF	NULLW	_	—	—	—	—	AMOD	E<1:0>	_	_	MODE	=<1:0>	0000
DMA0REQ	0382	FORCE	_	—	_	—	—	_	_	—				RQSEL<6:0	>			0000
DMA0STA	0384								S	STA<15:0>								0000
DMA0STB	0386								S	TB<15:0>								0000
DMA0PAD	0388								P	AD<15:0>								0000
DMA0CNT	038A	_		_	_	—	_					CN	Г<9:0>					0000
DMA1CON	038C	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	—	—	AMOD	E<1:0>	—		MODE	=<1:0>	0000
DMA1REQ	038E	FORCE		—	_	—	_	_	_	—				RQSEL<6:0	>			0000
DMA1STA	0390												0000					
DMA1STB	0392												0000					
DMA1PAD	0394								P	AD<15:0>								0000
DMA1CNT	0396			—	_	—	_					CN	Г<9:0>					0000
DMA2CON	0398	CHEN	SIZE	DIR	HALF	NULLW	_	_	_	_	_	AMOD	E<1:0>	_	_	MODE	<1:0>	0000
DMA2REQ	039A	FORCE	_	_	_	_	_	_	_	_				RQSEL<6:0	>			0000
DMA2STA	039C								S	STA<15:0>								0000
DMA2STB	039E								S	TB<15:0>								0000
DMA2PAD	03A0								P	AD<15:0>								0000
DMA2CNT	03A2	_		_	_	—	_					CN	Г<9:0>					0000
DMA3CON	03A4	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	-	MODE	=<1:0>	0000
DMA3REQ	03A6	FORCE		—	_	—	_	_	_	—				RQSEL<6:0	>			0000
DMA3STA	03A8								S	STA<15:0>								0000
DMA3STB	03AA								S	TB<15:0>								0000
DMA3PAD	03AC								P	AD<15:0>								0000
DMA3CNT	03AE			—	_	—	_					CN	Г<9:0>					0000
DMA4CON	03B0	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	—	—	AMOD	E<1:0>	—	-	MODE	=<1:0>	0000
DMA4REQ	03B2	FORCE	—	—	—	—	—	—	—	—				RQSEL<6:0	>			0000
DMA4STA	03B4								S	STA<15:0>								0000
DMA4STB	03B6								S	TB<15:0>								0000
DMA4PAD	03B8								P	AD<15:0>								0000
DMA4CNT	03BA			—	_	—	_					CN	Г<9:0>					0000
DMA5CON	03BC	CHEN	SIZE	DIR	HALF	NULLW	—	—	—	_	—	AMOD	E<1:0>	—	—	MODE	<1:0>	0000
DMA5REQ	03BE	FORCE		—	_	—	—	—	—	_				RQSEL<6:0	>			0000
DMA5STA	03C0								S	STA<15:0>								0000
DMA5STB	03C2								S	TB<15:0>								0000
Legend:	= 11r	nimplement	ed read as	s 'O'														

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

Legend: — = unimplemented, read as '0'.

5.2 RTSP Operation

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions) at a time, and to program one row or one word at a time. Table 31-12 shows typical erase and programming times. The 8-row erase pages and single row write rows are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes and 192 bytes, respectively.

The program memory implements holding buffers that can contain 64 instructions of programming data. Prior to the actual programming operation, the write data must be loaded into the buffers sequentially. The instruction words loaded must always be from a group of 64 boundary.

The basic sequence for RTSP programming is to set up a Table Pointer, then do a series of TBLWT instructions to load the buffers. Programming is performed by setting the control bits in the NVMCON register. A total of 64 TBLWTL and TBLWTH instructions are required to load the instructions.


All of the table write operations are single-word writes (two instruction cycles) because only the buffers are written. A programming cycle is required for programming each row.

5.3 Programming Operations

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the programming operation is finished.

The programming time depends on the FRC accuracy (see Table 31-19) and the value of the FRC Oscillator Tuning register (see Register 9-4). Use the following formula to calculate the minimum and maximum values for the Row Write Time, Page Erase Time, and Word Write Cycle Time parameters (see Table 31-12).

EQUATION 5-1: PROGRAMMING TIME

For example, if the device is operating at +125°C, the FRC accuracy will be \pm 5%. If the TUN<5:0> bits (see Register 9-4) are set to `b111111, the minimum row write time is equal to Equation 5-2.

EQUATION 5-2: MINIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \ Cycles}{7.37 \ MHz \times (1 + 0.05) \times (1 - 0.00375)} = 1.435 ms$$

The maximum row write time is equal to Equation 5-3.

EQUATION 5-3: MAXIMUM ROW WRITE TIME

$$T_{RW} = \frac{11064 \text{ Cycles}}{7.37 \text{ MHz} \times (1 - 0.05) \times (1 - 0.00375)} = 1.586 \text{ms}$$

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory:

- NVMCON: The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed and the start of the programming cycle.
- NVMKEY: NVMKEY (Register 5-2) is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to Section 5.3 "Programming Operations" for further details.

5.5 Flash Programming Resources

Many useful resources related to Flash programming are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

5.5.1 KEY RESOURCES

- Section 5. "Flash Programming" (DS70191)
- · Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

Symbol	Parameter	Value		
VPOR	POR threshold	1.8V nominal		
TPOR	POR extension time	30 μs maximum		
VBOR	BOR threshold	2.5V nominal		
TBOR	BOR extension time	100 μs maximum		
TPWRT	Programmable power-up time delay	0-128 ms nominal		
TFSCM	Fail-Safe Clock Monitor Delay	900 μs maximum		

IABLE 6-2: USCILLATUR PARAMETERS	TABLE 6-2:	OSCILLATOR PARAMETERS
----------------------------------	------------	------------------------------

Note: When the device exits the Reset condition (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise, the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get operating parameters all within specification.

6.4 Power-on Reset (POR)

A Power-on Reset (POR) circuit ensures the device is reset from power-on. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to Section 31.0 "Electrical Characteristics" for details.

The POR status bit (POR) in the Reset Control register (RCON<0>) is set to indicate the Power-on Reset.

6.4.1 Brown-out Reset (BOR) and Power-up Timer (PWRT)

The on-chip regulator has a Brown-out Reset (BOR) circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status bit (BOR) in the Reset Control register (RCON<1>) is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

The power-up timer delay (TPWRT) is programmed by the Power-on Reset Timer Value Select bits (FPWRT<2:0>) in the POR Configuration register (FPOR<2:0>), which provides eight settings (from 0 ms to 128 ms). Refer to **Section 28.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point

U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0				
_	_	_		_		C1TXIP<2:0>(1)					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0				
_		DMA7IP<2:0>		—		DMA6IP<2:0>					
bit 7							bit (
Legend:											
R = Readab	alo hit	W = Writable	oit		nented bit, rea	nd as '0'					
			JIL	•			0.11/2				
-n = Value a	al POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	OWN				
bit 15 11	Unimplomo	nted: Read as '	`,								
bit 15-11	-				D · · · · · · (1)						
bit 10-8	C1TXIP<2:0>: ECAN1 Transmit Data Request Interrupt Priority bits ⁽¹⁾ 111 = Interrupt is priority 7 (highest priority interrupt)										
	111 = Intern • • • • •	upt is priority 7 (I upt is priority 1	nighest priori								
	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is dis	nighest priorii abled								
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '(nighest priori abled	ty interrupt)	-	rity hits					
	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '0 0>: DMA Channe	nighest priori abled o' el 7 Data Tra	ty interrupt) nsfer Complete	-	rity bits					
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '(nighest priori abled o' el 7 Data Tra	ty interrupt) nsfer Complete	-	rity bits					
bit 7	111 = Intern • • • • • • • • • • • • • • • • • • •	upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '0 0>: DMA Channe	nighest priori abled o' el 7 Data Tra	ty interrupt) nsfer Complete	-	rity bits					
bit 7	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Channe upt is priority 7 (I	nighest priori abled o' el 7 Data Tra	ty interrupt) nsfer Complete	-	rity bits					
bit 7	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern 001 = Intern	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Channe upt is priority 7 (I upt is priority 1	nighest priori abled o' el 7 Data Tra nighest priori	ty interrupt) nsfer Complete	-	rity bits					
bit 7 bit 6-4	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Channe upt is priority 7 (I upt is priority 1 upt source is dis	abled oʻ el 7 Data Tra nighest priorit	ty interrupt) nsfer Complete	-	rity bits					
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:(111 = Intern 001 = Intern 000 = Intern Unimpleme	upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '(0>: DMA Channe upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '(abled)' el 7 Data Tra highest priorit	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prio						
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:0	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Channe upt is priority 7 (I upt source is dis nted: Read as '(0>: DMA Channe	abled o' el 7 Data Tra highest priorit abled o' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prio						
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:0	upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '(0>: DMA Channe upt is priority 7 (I upt is priority 1 upt source is disa nted: Read as '(abled o' el 7 Data Tra highest priorit abled o' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prio						
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:0	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Channe upt is priority 7 (I upt source is dis nted: Read as '(0>: DMA Channe	abled o' el 7 Data Tra highest priorit abled o' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prio						
bit 7 bit 6-4 bit 3	111 = Intern 001 = Intern 000 = Intern Unimpleme DMA7IP<2:0 111 = Intern 001 = Intern 000 = Intern Unimpleme DMA6IP<2:0	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Channe upt is priority 7 (I upt source is dis nted: Read as '(0>: DMA Channe	abled o' el 7 Data Tra highest priorit abled o' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prio						
bit 7 bit 6-4	<pre>111 = Intern</pre>	upt is priority 7 (I upt is priority 1 upt source is dis nted: Read as '(0>: DMA Channe upt is priority 7 (I upt source is dis nted: Read as '(0>: DMA Channe	abled o' el 7 Data Tra highest priorit abled o' el 6 Data Tra	ty interrupt) nsfer Complete ty interrupt)	Interrupt Prio						

_ _ . _ _ _ _ _ _ _ _ ._ ...

Note 1: Interrupts are disabled on devices without an ECAN[™] module.

11.9 Peripheral Pin Select Registers

The dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/ X04 and dsPIC33FJ128MCX02/X04 family of devices implement 33 registers for remappable peripheral configuration:

- 20 Input Remappable Peripheral Registers:
 - RPINR0-RPINR1, RPINR3-RPINR4, RPINR7, RPINR10-RPINR21, PRINR23, and PRINR26
- 13 Output Remappable Peripheral Registers:
 - RPOR0-RPOR12

Note:	Input and output register values can only							
	be changed if			the	IOI	OCK	bit	
	(OSCCON<6>)			set	to	'0'.	See	
	Sec	tion 11.6.3.1	I	"Cont	rol	Reg	ister	
	Loc	k" for a spec	cific	comm	and	seque	ence.	

REGISTER 11-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	—			INT1R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—			—	—		—
bit 7							bit 0

Legend:						
R = Readable bit	W = Writable bit	U = Unimplemented bit	U = Unimplemented bit, read as '0'			
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

bit 12-8	INT1R<4:0>: Assign External Interrupt 1 (INTR1) to the corresponding RPn pin
	11111 = Input tied to Vss
	11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0
bit 7-0	Unimplemented: Read as '0'

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 11-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
	_	—	_	—	—	_	_	
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
—	_	—			INTR2R<4:0>	•		
bit 7							bit 0	
Legend:								
R = Readable bit W = Writable bit			bit	U = Unimplemented bit, read as '0'				
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 INTR2R<4:0>: Assign External Interrupt 2 (INTR2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25 •

00001 = Input tied to RP1 00000 = Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_				SCK1R<4:0	>				
bit 15							bit			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	-				SDI1R<4:0>					
bit 7							bit (
Legend:										
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'				
-n = Value a	t POR	'1' = Bit is se	t	'0' = Bit is cleared		x = Bit is unki	nown			
bit 15-13	Unimpleme	nted: Read as	0'							
	-									
bit 12-8	SCK1R<4:0>: Assign SPI1 Clock Input (SCK1) to the corresponding RPn pin 11111 = Input tied to Vss									
		11111 = Input tied to VSS 11001 = Input tied to RP25								
	•									
	•									
	•	•								
	00001 = Inp	00001 = Input tied to RP1								
	00000 = Inp	out tied to RP0								
	Unimpleme	nted: Read as	0'							
bit 7-5	•	SDI1R<4:0>: Assign SPI1 Data Input (SDI1) to the corresponding RPn pin								
bit 7-5 bit 4-0	-	: Assign SPI1	Data Input (SD	(in) to the cone	sponding RFT	i pili				
	SDI1R<4:0> 11111 = Inp	out tied to Vss				i piri				
	SDI1R<4:0> 11111 = Inp	•								
	SDI1R<4:0> 11111 = Inp	out tied to Vss				, bui				

40 ... DIN SELECT INDUT DECISTED 20

00001 = Input tied to RP1 00000 = Input tied to RP0

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 11-31: RPOR10: PERIPHERAL PIN SELECT OUTPUT REGISTER 10⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—			RP21R<4:0>	•	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	—	RP20R<4:0>				
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'			d as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown

bit 15-13	Unimplemented: Read as '0'
bit 12-8	RP21R<4:0>: Peripheral Output Function is Assigned to RP21 Output Pin bits (see Table 11-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 RP20R<4:0>: Peripheral Output Function is Assigned to RP20 Output Pin bits (see Table 11-2 for peripheral function numbers)

Note 1: This register is implemented in 44-pin devices only.

REGISTER 11-32: RPOR11: PERIPHERAL PIN SELECT OUTPUT REGISTER 11⁽¹⁾

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_		—			RP23R<4:0	>	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP22R<4:0	>	
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared		ared	x = Bit is unknown		
bit 15-13	Unimplemen	ted: Read as 'o)'				
bit 12-8	RP23R<4:0>	Peripheral Out	tput Functio	n is Assigned to	RP23 Output	Pin bits (see Tal	ole 11-2 for

peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

Note 1: This register is implemented in 44-pin devices only.

bit 4-0 RP22R<4:0>: Peripheral Output Function is Assigned to RP22 Output Pin bits (see Table 11-2 for peripheral function numbers)

		CONTINUE		•		
U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
—	—	_	—	PMOD3	PMOD2	PMOD1
						bit 8
R/W-1	R/W-1	R/W-1	U-0	R/W-1	R/W-1	R/W-1
PEN3H ⁽¹⁾	PEN2H ⁽¹⁾	PEN1H ⁽¹⁾	—	PEN3L ⁽¹⁾	PEN2L ⁽¹⁾	PEN1L ⁽¹⁾
						bit (
e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown
Unimplemen	ted: Read as '	0'				
PMOD3:PMC	DD1: PWM I/O	Pair Mode bits	5			
1 = PWM I/O	pin pair is in th	e Independer	nt PWM Output	mode		
0 = PWM I/O	pin pair is in th	e Complemer	ntary Output m	ode		
	U-0 — R/W-1 PEN3H ⁽¹⁾ e bit POR Unimplemen PMOD3:PMC 1 = PWM I/O	U-0 U-0 - - R/W-1 R/W-1 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ e bit W = Writable POR '1' = Bit is set Unimplemented: Read as 'n PMOD3:PMOD1: PWM I/O 1 PWM I/O pin pair is in th	U-0 U-0 U-0 - - - R/W-1 R/W-1 R/W-1 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ e bit W = Writable bit POR '1' = Bit is set Unimplemented: Read as '0' PMOD3:PMOD1: PWM I/O Pair Mode bits 1 = PWM I/O pin pair is in the Independent	U-0 U-0 U-0 U-0 - - - - R/W-1 R/W-1 R/W-1 U-0 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ - e bit W = Writable bit U = Unimplemented POR '1' = Bit is set '0' = Bit is clessed Unimplemented: Read as '0' PMOD3:PMOD1: PWM I/O Pair Mode bits 1 = PWM I/O pin pair is in the Independent PWM Output	- - - PMOD3 R/W-1 R/W-1 R/W-1 U-0 R/W-1 PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ - PEN3L ⁽¹⁾ e bit W = Writable bit U = Unimplemented bit, read POR '1' = Bit is set '0' = Bit is cleared	U-0U-0U-0U-0R/W-0R/W-0PMOD3PMOD2R/W-1R/W-1R/W-1U-0R/W-1R/W-1PEN3H ⁽¹⁾ PEN2H ⁽¹⁾ PEN1H ⁽¹⁾ -PEN3L ⁽¹⁾ PEN2L ⁽¹⁾ e bitW = Writable bitU = Unimplemented bit, read as '0'POR'1' = Bit is set'0' = Bit is clearedx = Bit is unkrUnimplemented:Read as '0'PMOD3:PMOD1:PWM I/O Pair Mode bits1 = PWM I/O pin pair is in the Independent PWM Output mode

REGISTER 16-5: PWMxCON1: PWM CONTROL REGISTER 1⁽²⁾

bit 7	Unimplemented: Read as '0'
bit 6-4	PEN3H:PEN1H: PWMxH I/O Enable bits ⁽¹⁾

 1 =	PWMxH	nin i	enabled	1 for	P\//M	output

- 0 = PWMxH pin disabled, I/O pin becomes general purpose I/O
- bit 3 Unimplemented: Read as '0'

- 1 = PWMxL pin is enabled for PWM output
 - 0 = PWMxL pin disabled, I/O pin becomes general purpose I/O
- **Note 1:** Reset condition of the PENxH and PENxL bits depends on the value of the PWMPIN Configuration bit in the FPOR Configuration register.
 - 2: PWM2 supports only one PWM I/O pin pair.

20.1 UART Helpful Tips

- 1. In multi-node direct-connect UART networks, UART receive inputs react the to complementary logic level defined by the URXINV bit (UxMODE<4>), which defines the idle state, the default of which is logic high, (i.e., URXINV = 0). Because remote devices do not initialize at the same time, it is likely that one of the devices, because the RX line is floating, will trigger a start bit detection and will cause the first byte received after the device has been initialized to be invalid. To avoid this situation, the user should use a pull-up or pull-down resistor on the RX pin depending on the value of the URXINV bit.
 - a) If URXINV = 0, use a pull-up resistor on the RX pin.
 - b) If URXINV = 1, use a pull-down resistor on the RX pin.
- 2. The first character received on a wake-up from Sleep mode caused by activity on the UxRX pin of the UART module will be invalid. In Sleep mode, peripheral clocks are disabled. By the time the oscillator system has restarted and stabilized from Sleep mode, the baud rate bit sampling clock relative to the incoming UxRX bit timing is no longer synchronized, resulting in the first character being invalid. This is to be expected.

20.2 UART Resources

Many useful resources related to UART are provided on the main product page of the Microchip web site for the devices listed in this data sheet. This product page, which can be accessed using this link, contains the latest updates and additional information.

Note:	In the event you are not able to access the
	product page using the link above, enter
	this URL in your browser:
	http://www.microchip.com/wwwproducts/
	Devices.aspx?dDocName=en532315

20.2.1 KEY RESOURCES

- Section 17. "UART" (DS70188)
- Code Samples
- Application Notes
- Software Libraries
- Webinars
- All related dsPIC33F/PIC24H Family Reference Manuals Sections
- Development Tools

REGISTER 23-2: DAC1STAT: DAC STATUS REGISTER									
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0		
LOEN		LMVOEN		_	LITYPE	LFULL	LEMPTY		
bit 15				•	•		bit 8		
R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R-0	R-0		
ROEN		RMVOEN			RITYPE	RFULL	REMPTY		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	l as '0'			
-n = Value at I	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	nown		
bit 15	LOEN: Left C	hannel DAC O	utput Enable	bit					
		and negative D puts are disable		re enabled					
bit 14		ted: Read as '							
bit 13	-	ft Channel Mid		utput Voltage E	nable bit				
		DAC output is output is disab							
bit 12-11	•	ted: Read as '							
bit 10	-	Channel Type		t					
	1 = Interrupt	if FIFO is EMP if FIFO is NOT	TY						
bit 9	LFULL: Statu	ıs, Left Channe	I Data Input F	FIFO is FULL b	it				
	1 = FIFO is F 0 = FIFO is r								
bit 8	1 = FIFO is E		nel Data Input	t FIFO is EMP	ΓY bit				
bit 7	0 = FIFO is r	Channel DAC		o hit					
	1 = Positive	and negative D puts are disable	AC outputs a						
bit 6		ited: Read as '							
bit 5	-	ght Channel M		Output Voltage	Enable bit				
	1 = Midpoint	DAC output is output is disab	enabled						
bit 4-3	-	ted: Read as '							
bit 2	RITYPE: Rigl	ht Channel Typ	e of Interrupt	bit					
		if FIFO is EMP if FIFO is NOT							
bit 1	-	us, Right Chanr		FIFO is FULL	bit				
	1 = FIFO is	Full			Sit				
h # 0	0 = FIFO is		nnal Data Isa						
bit 0	1 = FIFO is E	atus, Right Cha ⁻ moty	nnei Data Inp	ULTIFU IS EM	PIY DI				
	0 = FIFO is r								

~ ~ ~ - - -

REGISTER 24-1: CMCON: COMPARATOR CONTROL REGISTER (CONTINUED)

bit 6	C1OUT: Comparator 1 Output bit
	When C1INV = 0:
	1 = C1 VIN+ > C1 VIN-
	0 = C1 VIN + < C1 VIN -
	$\frac{\text{When C1INV} = 1}{2}$
	0 = C1 VIN + > C1 VIN - 1 = C1 VIN + < C1 VIN - 1
hit E	
bit 5	C2INV: Comparator 2 Output Inversion bit
	 1 = C2 output inverted 0 = C2 output not inverted
L:1 4	
bit 4	C1INV: Comparator 1 Output Inversion bit
	 1 = C1 output inverted 0 = C1 output not inverted
bit 3	
DIL 3	C2NEG: Comparator 2 Negative Input Configure bit
	 1 = Input is connected to VIN+ 0 = Input is connected to VIN-
	See Figure 24-1 for Comparator modes.
bit 2	C2POS: Comparator 2 Positive Input Configure bit
5112	1 = Input is connected to VIN+
	0 = Input is connected to CVREF
	See Figure 24-1 for Comparator modes.
bit 1	C1NEG: Comparator 1 Negative Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to VIN-
	See Figure 24-1 for Comparator modes.
bit 0	C1POS: Comparator 1 Positive Input Configure bit
	1 = Input is connected to VIN+
	0 = Input is connected to CVREF
	See Figure 24-1 for Comparator modes.

- **Note 1:** If C2OUTEN = 1, the C2OUT peripheral output must be configured to an available RPx pin. See **Section 11.6 "Peripheral Pin Select"** for more information.
 - 2: If C1OUTEN = 1, the C1OUT peripheral output must be configured to an available RPx pin. See Section 11.6 "Peripheral Pin Select" for more information.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 25-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	IE<3:0>	
bit 15							bit 8

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—	SECTEN<2:0>			SECONE<3:0>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

26.0 PROGRAMMABLE CYCLIC REDUNDANCY CHECK (CRC) GENERATOR

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304, of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer Section to 36. "Programmable Cyclic Redundancy Check (CRC)" (DS70298) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The programmable CRC generator offers the following features:

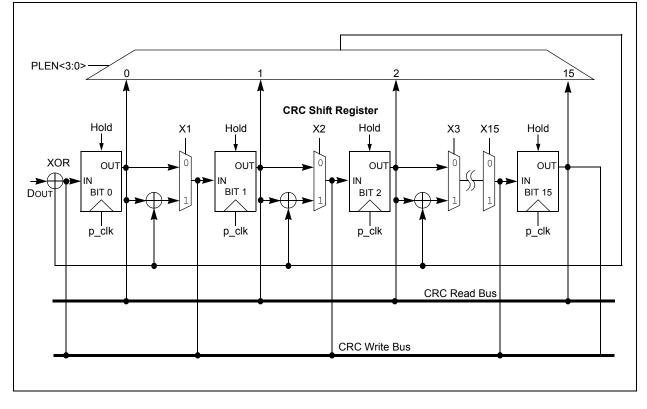
- User-programmable polynomial CRC equation
- Interrupt output
- Data FIFO

FIGURE 26-1: CRC SHIFTER DETAILS

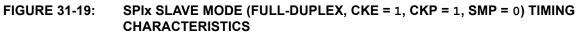
26.1 Overview

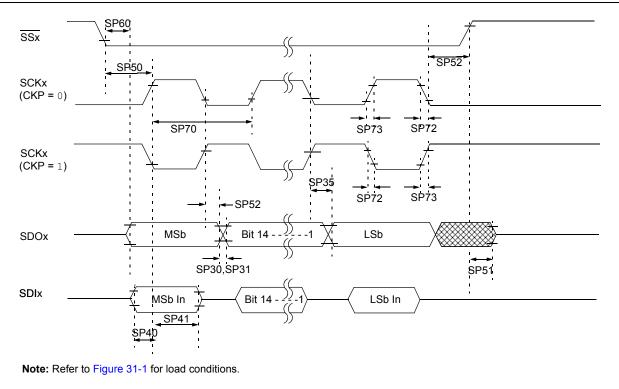
The module implements a software configurable CRC generator. The terms of the polynomial and its length can be programmed using the CRCXOR bits (X<15:1>) and the CRCCON bits (PLEN<3:0>), respectively.

EQUATION 26-1: CRC EQUATION


$$x^{16} + x^{12} + x^5 + 1$$

To program this polynomial into the CRC generator, the CRC register bits should be set as shown in Table 26-1.


Bit Name	Bit Value
PLEN<3:0>	1111
X<15:1>	00010000010000


For the value of X<15:1>, the 12th bit and the 5th bit are set to '1', as required by the CRC equation. The 0th bit required by the CRC equation is always XORed. For a 16-bit polynomial, the 16th bit is also always assumed to be XORed; therefore, the X<15:1> bits do not have the 0th bit or the 16th bit.

The topology of a standard CRC generator is shown in Figure 26-2.

© 2007-2012 Microchip Technology Inc.

AC CHARACTERISTICS				$\begin{tabular}{lllllllllllllllllllllllllllllllllll$				
Param.	Symbol	Charac	teristic	Min	Max	Units	Conditions	
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	-	μs	Device must operate at a minimum of 1.5 MHz	
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz	
			1 MHz mode ⁽¹⁾	0.5		μs	—	
IS20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be from	
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	_	100	ns		
IS21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be from	
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF	
			1 MHz mode ⁽¹⁾	—	300	ns		
IS25	25 TSU:DAT	Data Input	100 kHz mode	250		ns	_	
	Setup Time	400 kHz mode	100		ns			
		1 MHz mode ⁽¹⁾	100		ns			
IS26	IS26 THD:DAT	Data Input Hold Time	100 kHz mode	0		μs		
			400 kHz mode	0	0.9	μs		
			1 MHz mode ⁽¹⁾	0	0.3	μs		
IS30	TSU:STA	Start Condition	100 kHz mode	4.7		μs	Only relevant for Repeated	
		Setup Time	400 kHz mode	0.6		μs	Start condition	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS31	THD:STA	Start Condition	100 kHz mode	4.0		μs	After this period, the first	
		Hold Time	400 kHz mode	0.6		μs	clock pulse is generated	
			1 MHz mode ⁽¹⁾	0.25		μs		
IS33	Tsu:sto	Tsu:sto	Stop Condition	100 kHz mode	4.7		μs	_
		Setup Time	400 kHz mode	0.6		μs		
			1 MHz mode ⁽¹⁾	0.6		μs		
IS34	THD:ST	Stop Condition	100 kHz mode	4000		ns	_	
	0	Hold Time	400 kHz mode	600	_	ns		
			1 MHz mode ⁽¹⁾	250		ns		
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns	—	
			400 kHz mode	0	1000	ns		
			1 MHz mode ⁽¹⁾	0	350	ns	1	
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7		μs	Time bus must be free	
			400 kHz mode	1.3	_	μs	before a new transmission	
			1 MHz mode ⁽¹⁾	0.5	_	μs	can start	
IS50	Св	Bus Capacitive Lo	ading	_	400	pF	_	

TABLE 31-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

TABLE 32-12: SPIX MODULE SLAVE MODE (CKE = 0) TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge			35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25		—	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25		—	ns	_		
HSP51	TssH2doZ	SSx	15		55	ns	See Note 2		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

TABLE 32-13: SPIX MODULE SLAVE MODE (CKE = 1) TIMING REQUIREMENTS

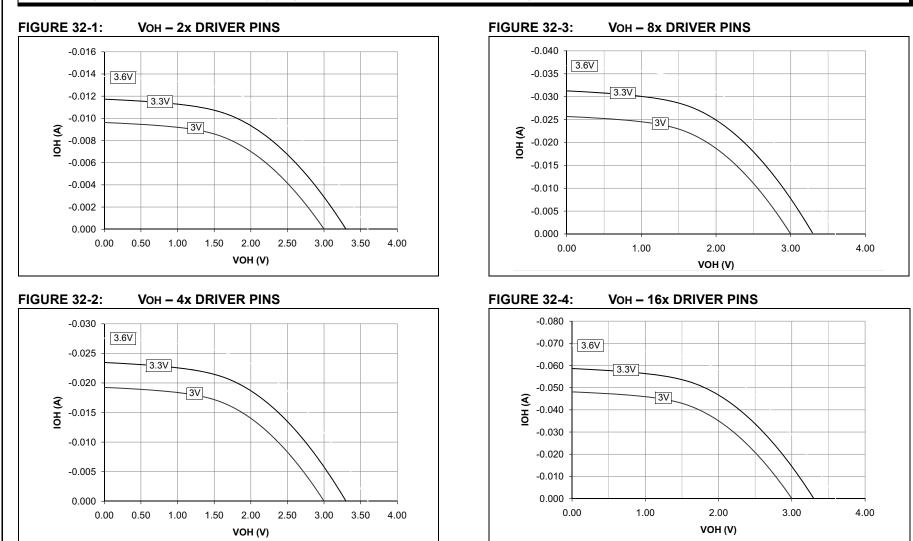
AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C <ta <+150°c="" for="" high="" td="" temperature<=""></ta>							
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
HSP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge		1	35	ns	_		
HSP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	25		_	ns	_		
HSP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	25		_	ns	_		
HSP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance	15	—	55	ns	See Note 2		
HSP60	TssL2doV	<u>SDO</u> x Data Output Valid after SSx Edge	_		55	ns	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Assumes 50 pF load on all SPIx pins.

AC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature-40°C ≤TA ≤+150°C for High Temperature						
Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions	
	AD	C Accuracy (10-bit Mode)	– Measu	rements	with Ex	ternal V	REF+/VREF- ⁽¹⁾	
HAD20b	Nr	Resolution ⁽³⁾	1	0 data bi	ts	bits	—	
HAD21b	INL	Integral Nonlinearity	-3	—	3	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1	—	< 1	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD23b	Gerr	Gain Error	-5	_	6	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
HAD24b	EOFF	Offset Error	-1	—	5	LSb	VINL = AVSS = VREFL = 0V, AVDD = VREFH = 3.6V	
	AD	C Accuracy (10-bit Mode)	– Measu	irements	s with Int	ernal V	REF+/VREF- ⁽¹⁾	
HAD20b	Nr	Resolution ⁽³⁾		0 data bi		bits		
HAD21b	INL	Integral Nonlinearity	-2		2	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD22b	DNL	Differential Nonlinearity	> -1	_	< 1	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD23b	Gerr	Gain Error	-5		15	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
HAD24b	EOFF	Offset Error	-1.5		7	LSb	VINL = AVSS = 0V, AVDD = 3.6V	
		Dynamic P	erformar	nce (10-b	oit Mode)	(2)		
HAD33b	Fnyq	Input Signal Bandwidth			400	kHz	_	

TABLE 32-16: ADC MODULE SPECIFICATIONS (10-BIT MODE)


Note 1: These parameters are characterized, but are tested at 20 ksps only.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: Injection currents > | 0 | can affect the ADC results by approximately 4-6 counts.

32.0 DC AND AC DEVICE CHARACTERISTICS GRAPHS

Note: The graphs provided following this note are a statistical summary based on a limited number of samples and are provided for design guidance purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore, outside the warranted range.

Section Name	Update Description
Section 31.0 "Electrical Characteristics"	Updated the maximum value for Extended Temperature Devices in the Thermal Operating Conditions (see Table 31-2).
	Removed Note 4 from the DC Temperature and Voltage Specifications (see Table 31-4).
	Updated all typical and maximum Operating Current (IDD) values (see Table 31-5).
	Updated all typical and maximum Idle Current (IIDLE) values (see Table 31-6).
	Updated the maximum Power-Down Current (IPD) values for parameters DC60d, DC60a, and DC60b (see Table 31-7).
	Updated all typical Doze Current (Idoze) values (see Table 31-8).
	Updated the maximum value for parameter DI19 and added parameters DI28, DI29, DI60a, DI60b, and DI60c to the I/O Pin Input Specifications (see Table 31-9).
	Added Note 2 to the PLL Clock Timing Specifications (see Table 31-17)
	Removed Note 2 from the AC Characteristics: Internal RC Accuracy (see Table 31-18).
	Updated the Internal RC Accuracy minimum and maximum values for parameter F21b (see Table 31-19).
	Updated the characteristic description for parameter DI35 in the I/O Timing Requirements (see Table 31-20).
	Updated <i>all</i> SPI specifications (see Table 31-32 through Table 31-39 and Figure 31-14 through Figure 31-21)
	Updated the ADC Module Specification minimum values for parameters AD05 and AD07, and updated the maximum value for parameter AD06 (see Table 31-43).
	Updated the ADC Module Specifications (12-bit Mode) minimum and maximum values for parameter AD21a (see Table 31-44).
	Updated all ADC Module Specifications (10-bit Mode) values, with the exception of Dynamic Performance (see Table 31-45).
	Updated the minimum value for parameter PM6 and the maximum value for parameter PM7 in the Parallel Master Port Read Timing Requirements (see Table 31-54).
	Added DMA Read/Write Timing Requirements (see Table 31-56).

TABLE A-4: MAJOR SECTION UPDATES (CONTINUED)