

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XFI

Product Status	Active
Core Processor	dsPIC
Core Size	16-Bit
Speed	20 MIPS
Connectivity	CANbus, I ² C, IrDA, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, Motor Control PWM, POR, PWM, QEI, WDT
Number of I/O	35
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16К х 8
Voltage - Supply (Vcc/Vdd)	3V ~ 3.6V
Data Converters	A/D 9x10b/12b; D/A 6x16b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 150°C (TA)
Mounting Type	Surface Mount
Package / Case	44-TQFP
Supplier Device Package	44-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/dspic33fj64mc804-h-pt

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Name	Pin Type	Buffer Type	PPS	Description			
TMS	Ι	ST	No	JTAG Test mode select pin.			
TCK	I	ST	No	JTAG test clock input pin.			
TDI	I	ST	No	JTAG test data input pin.			
TDO	0		No	JTAG test data output pin.			
INDX1	I	ST	Yes	Quadrature Encoder Index1 Pulse input.			
QEA1	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer			
QEB1	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI1 mode. Auxiliary Timer External Clock/Gate input in Timer mode.			
UPDN1	0	CMOS	Yes	Position Up/Down Counter Direction State.			
INDX2	Ι	ST	Yes	Quadrature Encoder Index2 Pulse input.			
QEA2	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer			
QEB2	Ι	ST	Yes	Quadrature Encoder Phase A input in QEI2 mode. Auxiliary Timer External Clock/Gate input in Timer mode.			
UPDN2	0	CMOS	Yes	Position Up/Down Counter Direction State.			
C1RX	Ι	ST	Yes	ECAN1 bus receive pin.			
C1TX	0	—	Yes	ECAN1 bus transmit pin.			
RTCC	0		No	Real-Time Clock Alarm Output.			
CVREF	0	ANA	No	Comparator Voltage Reference Output.			
C1IN-	I	ANA	No	Comparator 1 Negative Input.			
C1IN+	I	ANA	No	Comparator 1 Positive Input.			
C1OUT	0	—	Yes	Comparator 1 Output.			
C2IN-	Ι	ANA	No	Comparator 2 Negative Input.			
C2IN+	I	ANA	No	Comparator 2 Positive Input.			
C2OUT	0		Yes	Comparator 2 Output.			
PMA0	I/O	TTL/ST	No	Parallel Master Port Address Bit 0 Input (Buffered Slave modes) and Output (Master modes)			
PMA1	I/O	TTL/ST	No	Parallel Master Port Address Bit 1 Input (Buffered Slave modes) and Output (Master modes).			
PMA2 -PMPA10	0	—	No	Parallel Master Port Address (Demultiplexed Master modes).			
PMBE	0	—	No	Parallel Master Port Byte Enable Strobe.			
PMCS1	0	—	No	Parallel Master Port Chip Select 1 Strobe.			
PMD0-PMPD7	I/O	TTL/ST	No	Parallel Master Port Data (Demultiplexed Master mode) or Address/ Data (Multiplexed Master modes).			
PMRD	0	_	No	Parallel Master Port Read Strobe.			
PMWR	0	—	No	Parallel Master Port Write Strobe.			
DAC1RN	0	_	No	DAC1 Negative Output.			
DAC1RP	0	—	No	DAC1 Positive Output.			
DAC1RM	0	—	No	DAC1 Output indicating middle point value (typically 1.65V).			
DAC2RN	0	_	No	DAC2 Negative Output.			
DAC2RP	0	—	No	DAC2 Positive Output.			
DAC2RM	0	_	No	DAC2 Output indicating middle point value (typically 1.65V).			
Legend: CMOS = CMOS compatible input or output Analog = Analog input P = Power							

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Legend: CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels PPS = Peripheral Pin Select Analog = Analog inputP = PoweO = OutputI = InputTTL = TTL input buffer

2.2.1 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, preferably surface mount connected within one-eights inch of the VCAP pin connected to ground. The type can be ceramic or tantalum. Refer to **Section 31.0** "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 28.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin

The MCLR pin provides for two specific device functions:

- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the MCLR pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

EXAMPLE OF MCLR PIN CONNECTIONS

2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ32MC302/304 DEVICES WITH 4 KB RAM

6.0 RESETS

- **Note 1:** This data sheet summarizes the features the dsPIC33FJ32MC302/304, of dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all reset <u>sources</u> and controls the device Master Reset Signal, <u>SYSRST</u>. The following is a list of device Reset sources:

- POR: Power-on Reset
- · BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
- Security Reset

FIGURE 6-1: RESET SYSTEM BLOCK DIAGRAM

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state and some are unaffected.

Note: Refer to the specific peripheral section or Section 3.0 "CPU" in this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

A POR clears all the bits, except for the POR bit (RCON<0>), that are set. The user application can set or clear any bit at any time during the code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this manual.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

			••••••••••				
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0
ALTIVT	DISI		_	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_	_		—	—	INT2EP	INT1EP	INT0EP
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown	
bit 15	ALTIVT: Enat	ole Alternate In	terrupt Vector	Table bit			
	1 = Use alterr	nate vector tabl	е				
	0 = Use stand	dard (default) v	ector table				
bit 14	DISI: DISI In	struction Statu	s bit				
	1 = DISI inst	ruction is active	e				
	0 = DISI inst	ruction is not a	ctive				
bit 13-3	Unimplemen	ted: Read as '	0'				
bit 2	INT2EP: External Interrupt 2 Edge Detect Polarity Select bit						
	1 = Interrupt of	on negative edg	ge				
	0 = Interrupt o	on positive edg	е				
bit 1	INT1EP: Exte	ernal Interrupt 1	Edge Detect	Polarity Selec	t bit		
	1 = Interrupt of	on negative edg	ge				

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

0 = Interrupt on positive edge

1 = Interrupt on negative edge 0 = Interrupt on positive edge

INTOEP: External Interrupt 0 Edge Detect Polarity Select bit

bit 0

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1 (CONTINUED)

bit 2	CMIF: Comparator Interrupt Flag Status bit
	1 = Interrupt request has occurred0 = Interrupt request has not occurred
bit 1	MI2C1IF: I2C1 Master Events Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 0	SI2C1IF: I2C1 Slave Events Interrupt Flag Status bit
	 I = Interrupt request has occurred

0 = Interrupt request has not occurred

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		T2IP<2:0>		_		OC2IP<2:0>				
bit 15							bit 8			
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
_		IC2IP<2:0>				DMA0IP<2:0>				
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable I	oit	U = Unimple	mented bit, re	ad as '0'				
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	own			
bit 15	Unimpleme	nted: Read as '0)'							
bit 14-12	T2IP<2:0>:	Timer2 Interrupt	Priority bits							
	111 = Interru	upt is priority 7 (ł	nighest priori	ity interrupt)						
	•									
	•									
	001 = Interru	upt is priority 1								
	000 = Interru	upt source is disa	abled							
bit 11	Unimpleme	nted: Read as '0)'							
bit 10-8	OC2IP<2:0>	•: Output Compa	re Channel	2 Interrupt Prior	rity bits					
	111 = Interru	upt is priority 7 (r	nignest priori	ity interrupt)						
	•									
	•									
	001 = Interru	upt is priority 1	ablad							
b# 7		upt source is usa	,							
		Ineu. Reau as () Shannal O Int	orrupt Drigrity h	ito					
DIL 0-4	1111 = Interr	input Capture C	nannei 2 mi nighest priori	ity interrupt)	JIIS					
	•		ingricot priori	ity interrupt)						
	•									
	•	unt in uniquity d								
	001 = Interru	upt is priority 1 upt source is disa	abled							
bit 3	Unimpleme	nted: Read as '()'							
bit 2-0	DMA0IP<2:(DMA0IP<2:0>: DMA Channel 0 Data Transfer Complete Interrupt Priority bits								
	111 = Interru	upt is priority 7 (I	nighest priori	ity interrupt)	· · · · · · · ·					
	•		•	• • •						
	•									
	- 001 = Interri	upt is priority 1								
	000 = Interru	upt source is disa	abled							

REGISTER	7-18: IPC3:	INTERRUPT	PRIORITY	CONTROL R	EGISTER 3			
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0	
			—			DMA1IP<2:0>		
bit 15							bit	
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0	
_		AD1IP<2:0>		_		U1TXIP<2:0>		
bit 7				• 			bit	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'		
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkr	nown	
	• • 001 = Intern 000 = Intern	upt is priority 1	abled					
bit 7	Unimpleme	nted: Read as '	0'					
bit 6-4	AD1IP<2:0> 111 = Intern	ADC1 Conver- upt is priority 7 (upt is priority 1	sion Complete highest priorit	e Interrupt Prio y interrupt)	ority bits			
bit 3	Unimpleme	nted: Read as '	0'					
bit 2-0	U1TXIP<2:0	 >: UART1 Trans upt is priority 7 (smitter Interru highest priorit	pt Priority bits y interrupt)				

001 = Interrupt is priority 1 000 = Interrupt source is disabled

•

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
—		U2TXIP<2:0>		_		U2RXIP<2:0>	
bit 15	·			·			bit
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0
_		INT2IP<2:0>		_		T5IP<2:0>	
bit 7							bit
Legend:							
R = Readab	ole bit	W = Writable	bit	U = Unimple	mented bit, rea	ad as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown
hit 15	Unimpleme	nted: Read as '	n'				
bit 14-12 bit 11 bit 10-8 bit 7	U2TXIP<2:0 111 = Intern 001 = Intern 000 = Intern Unimpleme U2RXIP<2:0 111 = Intern 001 = Intern 001 = Intern 001 = Intern U00 = Intern	>: UART2 Trans upt is priority 1 upt is priority 1 upt source is dis nted: Read as ')>: UART2 Rece upt is priority 7 (upt is priority 1 upt source is dis nted: Read as '	abled D' eiver Interrup highest priori abled	upt Priority bits ty interrupt) t Priority bits ty interrupt)			
bit 6_4		Fyternal Inter	Unt 2 Priority	, hite			
bit 0 4	111 = Interro •	upt is priority 7 (highest priori	ty interrupt)			
	• 001 = Interru 000 = Interru	upt is priority 1 upt source is dis	abled				
bit 3	Unimpleme	nted: Read as '	0'				
bit 2-0	T5IP<2:0>:	Timer5 Interrupt	Priority bits				
	111 = Interru	upt is priority 7 (highest priori	ty interrupt)			

• • 001 = Interrupt is priority 1

000 = Interrupt source is disabled

© 2007-2012 Microchip Technology Inc.

REGISTER	11-14: RPINE	R18: PERIPHE	ERAL PIN S	SELECT INPU	T REGISTER	R 18	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
	_				U1CTSR<4:0	>	
bit 15							b
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_	_	_			U1RXR<4:0	>	
bit 7							b
Legend:							
R = Readab	le bit	W = Writable bit		U = Unimpler	mented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	างพท
bit 15-13	Unimplemen	ted: Read as '	0'				
bit 12-8	U1CTSR<4:0	>: Assign UAR	T1 Clear to	Send (U1CTS) t	o the correspo	nding RPn pin	
		1.1					

bit 12-8	U1CTSR<4:0>: Assign UART1 Clear to Send (U1CTS) to the corresponding RP
	11111 = Input tied to Vss
	11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0
bit 7-5	Unimplemented: Read as '0'
bit 4-0	U1RXR<4:0>: Assign UART1 Receive (U1RX) to the corresponding RPn pin
	11111 = Input tied to Vss
	11001 = Input tied to RP25
	•
	•
	•
	00001 = Input tied to RP1
	00000 = Input tied to RP0

bit 8

bit 0

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

REGISTER 11-19: RPINR23: PERIPHERAL PIN SELECT INPUT REGISTER 23

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—			—	—		—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
—	—	_	SS2R<4:0>				
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable I	bit	U = Unimplemented bit, read as '0'			
-n = Value at P	OR	'1' = Bit is set	'0' = Bit is cleared x = Bit is unknown			nown	

bit 15-5 Unimplemented: Read as '0'

bit 4-0 SS2R<4:0>: Assign SPI2 Slave Select Input (SS2) to the corresponding RPn pin

11111 = Input tied to Vss 11001 = Input tied to RP25 • • • • • • • • • •

00000 = Input tied to RP0

U-0 U-0 U-0 U-0 U-0 U-0 U-0 U-0 ____ ____ ____ ____ _ ___ ____ ____ bit 15 bit 8 U-0 U-0 U-0 R/W-1 R/W-1 R/W-1 R/W-1 R/W-1 C1RXR<4:0> bit 7 bit 0 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' '1' = Bit is set -n = Value at POR '0' = Bit is cleared x = Bit is unknown

REGISTER 11-20: RPINR26: PERIPHERAL PIN SELECT INPUT REGISTER 26⁽¹⁾

bit 15-5 Unimplemented: Read as '0'

Note 1: This register is disabled on devices without an ECAN[™] module.

17.0 QUADRATURE ENCODER INTERFACE (QEI) MODULE

- **Note 1:** This data sheet summarizes the features dsPIC33FJ32MC302/304. of the dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 15. "Quadrature Encoder Interface (QEI)" (DS70208) of "dsPIC33F/PIC24H the Family Reference Manual", which is available the Microchip from web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter describes the Quadrature Encoder Interface (QEI) module and associated operational modes. The QEI module provides the interface to incremental encoders for obtaining mechanical position data.

The operational features of the QEI include:

- Three input channels for two phase signals and index pulse
- 16-bit up/down position counter
- · Count direction status
- Position Measurement (x2 and x4) mode
- · Programmable digital noise filters on inputs
- Alternate 16-bit Timer/Counter mode
- Quadrature Encoder Interface interrupts

These operating modes are determined by setting the appropriate bits, QEIM<2:0> bits (QEIxCON<10:8>). Figure 17-1 depicts the Quadrature Encoder Interface block diagram.

Note: An 'x' used in the names of pins, control/ status bits and registers denotes a particular Quadrature Encoder Interface (QEI) module number (x = 1 or 2).

REGISTER 18-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- Note 1: This bit is not used in Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: Do not set both Primary and Secondary prescalers to a value of 1:1.
 - **3:** This bit must be cleared when FRMEN = 1.

19.0 INTER-INTEGRATED CIRCUIT™ (I²C™)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ32MC302/304. dsPIC33FJ64MCX02/X04 and dsPIC33FJ128MCX02/X04 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet. refer to Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195) of the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated Circuit (I^2C) module provides complete hardware support for both Slave and Multi-Master modes of the I^2C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation
- I²C Slave mode supports 7-bit and 10-bit addressing
- I²C Master mode supports 7-bit and 10-bit addressing
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

19.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7 and 10-bit addressing.

The l^2C module can operate either as a slave or a master on an l^2C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit addressing
- I²C slave operation with 10-bit addressing
- I²C master operation with 7-bit or 10-bit addressing

For details about the communication sequence in each of these modes, refer to the "*dsPIC33F/PIC24H Family Reference Manual*". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual chapters.

24.3 Comparator Voltage Reference

24.3.1 CONFIGURING THE COMPARATOR VOLTAGE REFERENCE

The voltage reference module is controlled through the CVRCON register (Register 24-2). The comparator voltage reference provides two ranges of output voltage, each with 16 distinct levels. The range to be used is selected by the CVRR bit (CVRCON<5>). The primary difference between the ranges is the size of the steps selected by the CVREF Selection bits (CVR3:CVR0), with one range offering finer resolution.

The comparator reference supply voltage can come from either VDD and VSS, or the external VREF+ and VREF-. The voltage source is selected by the CVRSS bit (CVRCON<4>).

The settling time of the comparator voltage reference must be considered when changing the CVREF output.

FIGURE 24-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 29-1: \$	SYMBOLS USED IN OPCODE DESCRIPTIONS ((CONTINUED)
----------------	---------------------------------------	-------------

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param.	Symbol	Charac	teristic	Min	Мах	Units	Conditions		
IS10	TLO:SCL	Clock Low Time	100 kHz mode	4.7	—	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	—	μs	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	_	μs	—		
IS11	THI:SCL	Clock High Time	100 kHz mode	4.0	—	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6	—	μs	Device must operate at a minimum of 10 MHz		
			1 MHz mode ⁽¹⁾	0.5	_	μs	—		
IS20	TF:SCL	SDAx and SCLx Fall Time	100 kHz mode	—	300	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	100	ns			
IS21	TR:SCL	SDAx and SCLx Rise Time	100 kHz mode	—	1000	ns	CB is specified to be from		
			400 kHz mode	20 + 0.1 Св	300	ns	10 to 400 pF		
			1 MHz mode ⁽¹⁾	—	300	ns			
IS25	TSU:DAT	Data Input Setup Time	100 kHz mode	250	—	ns	—		
			400 kHz mode	100	—	ns			
			1 MHz mode ⁽¹⁾	100	—	ns			
IS26	THD:DAT	Data Input Hold Time	100 kHz mode	0	—	μs	—		
			400 kHz mode	0	0.9	μs			
			1 MHz mode ⁽¹⁾	0	0.3	μs			
IS30	Tsu:sta	Start Condition Setup Time	100 kHz mode	4.7	—	μs	Only relevant for Repeated		
			400 kHz mode	0.6	_	μs	Start condition		
			1 MHz mode ⁽¹⁾	0.25	—	μs			
IS31	THD:STA	Start Condition Hold Time	100 kHz mode	4.0	—	μs	After this period, the first		
			400 kHz mode	0.6	—	μs	clock pulse is generated		
			1 MHz mode ⁽¹⁾	0.25	—	μs			
IS33	Tsu:sto	Stop Condition Setup Time	100 kHz mode	4.7	—	μs			
			400 kHz mode	0.6	—	μs			
			1 MHz mode ⁽¹⁾	0.6	—	μs			
IS34	Thd:st O	Stop Condition Hold Time	100 kHz mode	4000	—	ns	_		
			400 kHz mode	600	—	ns			
			1 MHz mode ⁽¹⁾	250		ns			
IS40	TAA:SCL	Output Valid From Clock	100 kHz mode	0	3500	ns			
			400 kHz mode	0	1000	ns			
			1 MHz mode ⁽¹⁾	0	350	ns			
IS45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	_	μs	Time bus must be free		
			400 kHz mode	1.3	—	μs	before a new transmission		
			1 MHz mode ⁽¹⁾	0.5	—	μs	Can Start		
IS50	Св	Bus Capacitive Lo	ading		400	٥F			

TABLE 31-41: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

dsPIC33FJ32MC302/304, dsPIC33FJ64MCX02/X04 AND dsPIC33FJ128MCX02/X04

FIGURE 31-29:ADC CONVERSION (10-BIT MODE) TIMING CHARACTERISTICS (CHPS<1:0> = 01,
SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

		Standard Operating Conditions: $3.0V$ to $3.6V$ (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial					
Param No.	Characteristic	Min	Тур	-40°C ≤IA Max	usies Units	C for Extended	
PM11	PMWR Pulse Width	_	0.5 TCY		ns		
PM12	Data Out Valid before PMWR or PMENB goes Inactive (data setup time)	—	—	—	ns	—	
PM13	PMWR or PMEMB Invalid to Data Out Invalid (data hold time)	—	—	—	ns	—	
PM16	PMCSx Pulse Width	TCY - 5	—	_	ns	—	

TABLE 31-55: PARALLEL MASTER PORT WRITE TIMING REQUIREMENTS

TABLE 31-56: DMA READ/WRITE TIMING REQUIREMENTS

AC CHARACTERISTICS		Standard O (unless oth Operating te	perating C erwise stat emperature	onditions: ted) -40°C ≤ T -40°C ≤TA	s: 3.0V to 3.6V ≤ TA ≤ +85°C for Industrial ≤TA ≤+125°C for Extended		
Param No.	Characteristic	Min	Тур	Max	Units	Conditions	
DM1	DMA Read/Write Cycle Time			1 Tcy	ns	—	