
E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Detuns	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 125°C (TA)
Mounting Type	Through Hole
Package / Case	8-DIP (0.300", 7.62mm)
Supplier Device Package	8-PDIP
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18313-e-p

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

2.3 Master Clear (MCLR) Pin

The MCLR pin provides three specific device functions:

- Device Reset (when MCLRE = 1)
- Digital input pin (when MCLRE = 0)
- Device Programming and Debugging

If programming and debugging are not required in the end application then either set the MCLRE Configuration bit to '1' and use the pin as a digital input or clear the MCLRE Configuration bit and leave the pin open to use the internal weak pull-up. The addition of other components, to help increase the application's resistance to spurious Resets from voltage sags, may be beneficial. A typical configuration is shown in Figure 2-1. Other circuit designs may be implemented, depending on the application's requirements.

During programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the \overline{MCLR} pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, the programmer \overline{MCLR}/VPP output should be connected directly to the pin so that R1 isolates the capacitor, C1 from the \overline{MCLR} pin during programming and debugging operations.

Any components associated with the $\overline{\text{MCLR}}$ pin should be placed within 0.25 inch (6 mm) of the pin.

2.4 ICSP[™] Pins

The ICSPCLK and ICSPDAT pins are used for In-Circuit Serial ProgrammingTM (ICSPTM) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of ohms, not to exceed 100 Ω .

Pull-up resistors, series diodes and capacitors on the ICSPCLK and ICSPDAT pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be isolated from the programmer by resistors between the application and the device pins or removed from the circuit during programming. Alternatively, refer to the AC/DC characteristics and timing requirements information in the respective device Flash programming specification for information on capacitive loading limits, and pin input voltage high (VIH) and input low (VIL) requirements.

For device emulation, ensure that the "Communication Channel Select" (i.e., ICSPCLK/ICSPDAT pins), programmed into the device, matches the physical connections for the ICSP to the Microchip debugger/ emulator tool.

For more information on available Microchip development tools connection requirements, refer to **Section 37.0 "Development Support**".

4.0 MEMORY ORGANIZATION

These devices contain the following types of memory:

- Program Memory
 - Configuration Words
 - Device ID
 - Revision ID
 - User ID
 - Program Flash Memory
- Data Memory
 - Core Registers
 - Special Function Registers
 - General Purpose RAM
 - Common RAM
- Data EEPROM

4.1 Program Memory Organization

The enhanced mid-range core has a 15-bit program counter capable of addressing 32K x 14 program memory space. Table 4-1 shows the memory sizes implemented. Accessing a location above these boundaries will cause a wrap-around within the implemented memory space. The Reset vector is at 0000h and the interrupt vector is at 0004h (see Figure 4-1).

TABLE 4-1: DEVICE SIZES AND ADDRESSES

Device	Program Memory Size (Words)	Last Program Memory Address
PIC16(L)F18313/18323	2048	07FFh

TABLE 4	-4: SPEC		FUN	CTION RE	GISTER SU	JMMARY B	ANKS 0-31	(CONTINU	ED)				
Address	Name	PIC16(L)F18313	PIC16(L)F18323	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 1													
						CPU CORE RI	EGISTERS; see	Table 4-2 for sp	pecifics				
08Ch	TRISA			_	_	TRISA5	TRISA4	_	TRISA2	TRISA1	TRISA0	11 -111	11 -111
08Dh	_	-	_		Unimplemented						_	_	
08Eh	TRISC	Х	—		Unimplemented					—	—		
		_	х	_	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	11 1111	11 1111
08Fh	—	-	-		Unimplemented					—	_		
090h	PIE0			_	_	TMR0IE	IOCIE	_	_	_	INTE	000	000
091h	PIE1			TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	0000 0000	0000 0000
092h	PIE2	Х	—			C1IE	NVMIE	_	_		NCO1IE	0000 0000	0000 0000
		—	Х		C2IE	C1IE	NVMIE	_	_		NCO1IE	0000 0000	0000 0000
093h	PIE3			OSFIE	CSWIE	_	_	_	—	CLC2IE	CLC1IE	0000 0000	0000 0000
094h	PIE4				CWG1IE	_		_	_	CCP2IE	CCP1IE	0000 0000	0000 0000
095h	_	-	_				Unimp	lemented				_	—
096h	—	-	-				Unimp	lemented				—	—
097h	WDTCON			_	—			WDTPS<4:0>			SWDTEN	01 0110	01 0110
098h	—	-	_				Unimp	lemented				—	_
099h	—		_		Unimplemented							—	_
09Ah	—	-	-				Unimp	lemented				—	_
09Bh	ADRESL						ADRE	SL<7:0>				xxxx xxxx	uuuu uuuu
09Ch	ADRESH						ADRE	SH<7:0>				xxxx xxxx	uuuu uuuu
09Dh	ADCON0					CHS	<5:0>		1	GO/DONE	ADON	0000 0000	0000 0000

_

ADNREF

ADACT<3:0>

_

ADPREF<1:0>

ADCS<2:0>

_

x = unknown, u = unchanged, q =depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'.

OLIMANA A DV AA (OONTINUUED)

09Eh

09Fh

Legend:

Note 1:

ADCON1

Only on PIC16F18313/18323.

ADACT

ADFM

_

_

© 2015-2016 Microchip Technology Inc.

0000 -000

---- 0000

0000 -000

---- 0000

PIC16(L)F18313/18323

RE 4-5: ACCESSING	THE STA		2
		[_
	0x0F		
	0x0E		
	0x0D		
	0x0C		
	0x0B		
	0x0A		
	0x09		This figure shows the stack configuration
	0x08		after the first CALL or a single interrupt. If a RETURN instruction is executed, the
	0x07		return address will be placed in the Program Counter and the Stack Pointer
	0x06		decremented to the empty state (0x1F).
	0x05		_
	0x04		_
	0x03		_
	0x02		_
	0x01		
TOSH:TOSL	0x00	Return Address	STKPTR = 0x00
	THE STA	CK EXAMPLE	3
	ſ	CK EXAMPLE	<u>3</u>
	0x0F	CK EXAMPLE	<u>3</u>
	0x0F 0x0E	ACK EXAMPLE	
	0x0F 0x0E 0x0D	CK EXAMPLE	<u>3</u>
	0x0F 0x0E 0x0D 0x0C	CK EXAMPLE	After seven CALLS or six CALLS and an
	0x0F 0x0E 0x0D 0x0C 0x0B	ACK EXAMPLE	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions
	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure
	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x0A 0x09		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses
	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses
RE 4-6: ACCESSING	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07		After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06	Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses
RE 4-6: ACCESSING	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05	Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-6: ACCESSING	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x06 0x05 0x04	Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-6: ACCESSING	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x08 0x07 0x08 0x07 0x06 0x05 0x04 0x03	Return Address Return Address Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-6: ACCESSING	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x09 0x08 0x07 0x08 0x07 0x06 0x05 0x04 0x03 0x02	Return Address Return Address Return Address Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.
RE 4-6: ACCESSING	0x0F 0x0E 0x0D 0x0C 0x0B 0x0A 0x08 0x07 0x08 0x07 0x06 0x05 0x04 0x03	Return Address Return Address Return Address Return Address Return Address	After seven CALLS or six CALLS and an interrupt, the stack looks like the figure on the left. A series of RETURN instructions will repeatedly place the return addresses into the Program Counter and pop the stack.

PIC16(L)F18313/18323

REGISTER	5-3: CC	ONFIGURATIO	ON WORD 3:	MEMORY			
		R/P-1	U-1	U-1	U-1	U-1	U-1
		LVP ⁽¹⁾		_			
		bit 13					bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
_	—	_	—	_	—	WRT1	WRT0
bit 7	1		l .	1	I		bit 0
Legend:							
R = Readable	e bit	P = Programma	able bit	U = Unimpleme	nted bit, read as	'1'	
'0' = Bit is clea	ared	'1' = Bit is set		n = Value when	blank or after Bu	ulk Erase	
bit 13	1 = ON L	age Programming ow-Voltage Progr pnored.		led. MCLR/VPP p	in function is \overline{M}	CLR. MCLRE Co	nfiguration bit is
		IV on MCLR/VPP I	must be used fo	r programming.			
bit 12-2	Unimplement	ed: Read as '1'					
bit 1-0	WRT<1:0>: Us 11 = OFF 10 = BOOT 01 = HALF 00 = ALL	0000h to 03FFh	off write-protected, write-protected,	0200h to 07FFh i 0400h to 07FFh i no addresses ma	may be modified		

Note 1: The LVP bit cannot be programmed to '0' when Programming mode is entered via LVP.

7.2.2.3 Internal Oscillator Frequency Adjustment

The HFINTOSC and LFINTOSC internal oscillators are both factory-calibrated. This HFINTOSC oscillator can be adjusted in software by writing to the OSCTUNE register (Register 7-3). OSCTUNE does not affect the LFINTOSC frequency.

The default value of the OSCTUNE register is 00h. The value is a 6-bit two's complement number. A value of 1Fh will provide an adjustment to the maximum frequency. A value of 20h will provide an adjustment to the minimum frequency.

When the OSCTUNE register is modified, the HFINTOSC oscillator frequency will begin shifting to the new frequency. Code execution continues during this shift. There is no indication that the shift has occurred.

7.2.2.4 LFINTOSC

The Low-Frequency Internal Oscillator (LFINTOSC) is a factory calibrated 31 kHz internal clock source.

The LFINTOSC is the clock source for the Power-up Timer (PWRT), Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM). The LFINTOSC can also be used as the system clock, or as a clock or input source to certain peripherals.

The LFINTOSC is selected as the clock source through one of the following methods:

- Programming the RSTOSC<2:0> bits of Configuration Word 1 to enable LFINTOSC.
- Write to the NOSC<2:0> bits of the OSCCON1 register.

7.2.2.5 Oscillator Status and Manual Enable

The 'ready' status of each oscillator is displayed in the OSCSTAT1 register (Register 7-4). The oscillators can also be manually enabled through the OSCEN register (Register 7-6). Manual enables make it possible to verify the operation of the EXTOSC or SOSC crystal oscillators. This can be achieved by enabling the selected oscillator, then watching the corresponding 'ready' state of the oscillator in the OSCSTAT1 register.

7.3 Clock Switching

The system clock source can be switched between external and internal clock sources via software using the New Oscillator Source (NOSC) and New Divider selection request (NDIV) bits of the OSCCON1 register. The following clock sources can be selected using the following:

- External Oscillator (EXTOSC)
- High-Frequency Internal Oscillator (HFINTOSC)
- Low-Frequency Internal Oscillator (LFINTOSC)
- Secondary Oscillator (SOSC)
- · EXTOSC with 4x PLL
- HFINTOSC with 2x PLL

7.3.1 NEW OSCILLATOR SOURCE (NOSC) AND NEW DIVIDER SELECTION REQUEST (NDIV) BITS

The New Oscillator Source (NOSC) and New Divider selection request (NDIV) bits of the OSCCON1 register select the system clock source and frequencies that are used for the CPU and peripherals.

When new values of NOSC and NDIV are written to OSCCON1, the current oscillator selection will continue to operate while waiting for the new clock source to indicate that it is stable and ready. In some cases, the newly requested source may already be in use, and is ready immediately. In the case of a divider-only change, the new and old sources are the same and are ready immediately. The device may enter Sleep while waiting for the switch as described in **Section 7.3.3 "Clock Switch and Sleep"**.

When the new oscillator is ready, the New Oscillator is Ready (NOSCR) bit of OSCCON3 and the Clock Switch Interrupt Flag (CSWIF) bit of PIR3 become set (CSWIF = 1). If Clock Switch Interrupts are enabled (CSWIE = 1), an interrupt will be generated at that time. The Oscillator Ready (ORDY) bit of OSCCON3 can also be polled to determine when the oscillator is ready in lieu of an interrupt.

If the Clock Switch Hold (CSWHOLD) bit of OSCCON3 is clear, the oscillator switch will occur when the New Oscillator is Ready bit (NOSCR) is set, and the interrupt (if enabled) will be serviced at the new oscillator setting.

If CSWHOLD is set, the oscillator switch is suspended, while execution continues using the current (old) clock source. When the NOSCR bit is set, software should:

- set CSWHOLD = 0 so the switch can complete, or
- copy COSC into NOSC to abandon the switch.

If DOZE is in effect, the switch occurs on the next clock cycle, whether or not the CPU is operating during that cycle.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
STATUS				TO	PD	Z	DC	С	24
WDTCON	—	_		١	WDTPS<4:0	>		SWDTEN	110

TABLE 10-3: SUMMARY OF REGISTERS ASSOCIATED WITH WATCHDOG TIMER

Legend: x = unknown, u = unchanged, – = unimplemented locations read as '0'. Shaded cells are not used by Watchdog Timer.

TABLE 10-4: SUMMARY OF CONFIGURATION WORD WITH WATCHDOG TIMER

Name	Bits	Bit -/7	Bit -/6	Bit 13/5	Bit 12/4	Bit 11/3	Bit 10/2	Bit 9/1	Bit 8/0	Register on Page
CONFIG2	13:8		—	DEBUG	STVREN	PPS1WAY	—	BORV		66
CONFIGZ	7:0	BOREN1	BOREN0	LPBOREN	-	WDTE1	WDTE0	PWRTE	MCLRE	55

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by Watchdog Timer.

W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0	W-0/0
			NVMC	ON2<7:0>			
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable b	oit	U = Unimpler	mented bit, read	d as '0'	
S = Bit can onl	y be set	x = Bit is unkno	own	-n/n = Value	at POR and BO	R/Value at all c	ther Resets
'1' = Bit is set		'0' = Bit is clea	red				

REGISTER 11-6: NVMCON2: NONVOLATILE MEMORY CONTROL 2 REGISTER

bit 7-0 **NVMCON2<7:0>:** Flash Memory Unlock Pattern bits To unlock writes, a 55h must be written first, followed by an AAh, before setting the WR bit of the NVMCON1 register. The value written to this register is used to unlock the writes.

TABLE 11-5: SUMMARY OF REGISTERS ASSOCIATED WITH NONVOLATILE MEMORY (NVM)

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
INTCON	GIE	PEIE	—	—	—	_	—	INTEDG	90
PIR2	_	C2IF ⁽¹⁾	C1IF	NVMIF	_	_	—	NCO1IF	98
PIE2	_	C2IE ⁽¹⁾	C1IE	NVMIE	_	_	—	NCO1IE	93
NVMCON1	_	NVMREGS	IVMREGS LWLO FREE WRERR WREN WR RD						127
NVMCON2		NVMCON2<7:0>							128
NVMADRL				NVMAD)R<7:0>				126
NVMADRH	(2)		NVMADR<14:8>						126
NVMDATL		NVMDAT<7:0>						126	
NVMDATH	_	_			NVMDA	T<13:8>			126

Legend: — = unimplemented location, read as '0'. Shaded cells are not used by NVM.

Note 1: PIC16(L)F18323 only.

2: Unimplemented, read as '1'.

PIC16(L)F18313/18323

U-0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0	U-0
_	DACMD	ADCMD	_	_	CMP2MD ⁽¹⁾	CMP1MD	_
bit 7							bit (
Legend:							
R = Readable	bit	W = Writable bit		U = Unimplem	ented bit, read as	ʻ0'	
u = Bit is unch	anged	x = Bit is unknow	vn	-n/n = Value at	POR and BOR/Va	alue at all other R	esets
(1' = Bit is set (0' = Bit is cleared				q = Value depe	ends on condition		
bit 5	0 = DAC more ADCMD : Disa 1 = ADC more 0 = ADC more	able ADC bit dule disabled dule enabled					
bit 4-3	•	ted: Read as '0'	(1)				
bit 2	CMP2MD: Dis 1 = C2 modu 0 = C2 modu		C2 bit ⁽¹⁾				
bit 1	1 = C1 modu	sable Comparator (ile disabled	C1 bit				
	0 = C1 modu	lle enabled					

Note 1: PIC16(L)F18323 only.

REGISTER 14-4: PMD3: PMD CONTROL REGISTER 3

U-0	R/W-0/0	R/W-0/0	R/W-0/0	U-0	U-0	R/W-0/0	R/W-0/0
_	CWG1MD	PWM6MD	PWM5MD	—		CCP2MD	CCP1MD
bit 7							bit 0

Legend:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets
'1' = Bit is set	'0' = Bit is cleared	q = Value depends on condition

bit 7	Unimplemented: Read as '0'
bit 6	CWG1MD: Disable CWG1 bit 1 = CWG1 module disabled 0 = CWG1 module enabled
bit 5	PWM6MD: Disable PWM6 bit 1 = PWM6 module disabled 0 = PWM6 module enabled
bit 4	PWM5MD: Disable PWM5 bit 1 = PWM5 module disabled 0 = PWM5 module enabled
bit 3-2	Unimplemented: Read as '0'
bit 1	CCP2MD: Disable CCP2 bit 1 = CCP2 module disabled 0 = CCP2 module enabled
bit 0	CCP1MD: Disable CCP1bit 1 = CCP1 module disabled 0 = CCP1 module enabled

16.3 Register Definitions: FVR Control

REGISTER 16-1: FVRCON: FIXED VOLTAGE REFERENCE CONTROL REGISTER

R/W-0/0	R-q/q	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
FVREN	FVRRDY ⁽¹⁾	TSEN ⁽³⁾	TSRNG ⁽³⁾	CDAFVR<1:0>		ADFV	R<1:0>
bit 7							bit 0

R = Reada	able bit	W = Writable bit	U = Unimplemented bit, read as '0'					
u = Bit is u	inchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Resets					
'1' = Bit is	set	'0' = Bit is cleared	q = Value depends on condition					
bit 7	1 = Fixed	Fixed Voltage Reference Ena I Voltage Reference is enable I Voltage Reference is disabl	ed					
bit 6	1 = Fixed	Fixed Voltage Reference Re Voltage Reference output is Voltage Reference output is	s ready for use					
bit 5	1 = Temp	TSEN: Temperature Indicator Enable bit ⁽³⁾ 1 = Temperature Indicator is enabled 0 = Temperature Indicator is disabled						
bit 4	1 = VOUT	Femperature Indicator Range = VDD - 4V⊤ (High Range) = VDD - 2V⊤ (Low Range)	e Selection bit ⁽³⁾					
bit 3-2	11 = Com 10 = Com 01 = Com	<1:0>: Comparator FVR Buff parator FVR Buffer Gain is 4 parator FVR Buffer Gain is 2 parator FVR Buffer Gain is 1 parator FVR Buffer is off	lx, (4.096V) ⁽²⁾ 2x, (2.048V) ⁽²⁾					
bit 1-0	11 = ADC 10 = ADC 01 = ADC	:0>: ADC FVR Buffer Gain S FVR Buffer Gain is 4x, (4.09 FVR Buffer Gain is 2x, (2.04 FVR Buffer Gain is 1x, (1.02 FVR Buffer is off	96V) ⁽²⁾ 48V) ⁽²⁾					

- 2: Fixed Voltage Reference output cannot exceed VDD.
- 3: See Section 17.0 "Temperature Indicator Module" for additional information.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
FVRCON	FVREN	FVRRDY	TSEN	TSRNG	CDAFV	/R<1:0>	ADFV	157	
ADCON0			CHS<	<5:0>			GO/DONE	ADON	220
ADCON1	ADFM		ADCS<2:0>		_	ADNREF	ADPRE	221	
CM1CON1	C1INTP	C1INTN	(C1PCH<2:0>	>		C1NCH<2:0>		167
CM2CON1 ⁽¹⁾	C2INTP	C2INTN	(C2PCH<2:0>					167
DACCON0	DAC1EN	_	DAC10E	_	DAC1PS	SS<1:0>	_	DAC1NSS	239

TABLE 16-1: SUMMARY OF REGISTERS ASSOCIATED WITH FIXED VOLTAGE REFERENCE

Legend: Shaded cells are not used with the Fixed Voltage Reference.

Note 1: PIC16(L)F18323 only.

^{© 2015-2016} Microchip Technology Inc.

22.4 Register Definitions: ADC Control

REGISTER 22-1: ADCON0: ADC CONTROL REGISTER 0

R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
		CHS<	:5:0>			GO/DONE	ADON
bit 7							bit
Legend:							
R = Readable		W = Writable		U = Unimplen			
u = Bit is unch	•	x = Bit is unkr		-n/n = Value a	at POR and BO	OR/Value at all o	other Resets
'1' = Bit is set		'0' = Bit is cle	ared				
bit 7-2	CHS<5:0>:	Analog Channel	Select bits				
		FVR (Fixed Volta		e)(2)			
	111110 =	DAC1 output ⁽¹⁾		,			
		Temperature Ind	icator ⁽³⁾				
	111100 =						
	111011 =	Reserved. No ch	iannel connec	ted.			
	•						
	•						
	010101 =	ANC5 ⁽⁴⁾					
	010100 =	ANC4 ⁽⁴⁾					
	010011 =	ANC3 ⁽⁴⁾					
	010010 =	ANC2 ⁽⁴⁾					
	010001 = 010000 =	ANC1 ⁽⁴⁾					
		Reserved. No c	hannel conne	rted			
	•						
	•						
	•						
	000101 =	ANA5					
		ANA4					
		Reserved. No c ANA2	nannei conne	cted.			
	000010 = 000001 =	ANA2 ANA1					
	000000 =	ANA0					
bit 1	GO/DONE:	ADC Conversion	n Status bit				
		nversion cycle ir					
		is automatically			e ADC convers	sion has comple	eted.
		nversion comple	ted/not in proo	gress			
bit 0	ADON: ADO						
	1 = ADC is						
	0 = ADC IS	disabled and cor	isumes no op	erating current			
Note 1: Se	e Section 24.	0 "5-Bit Digital-	To-Analog Co	onverter (DAC ²	I) Module" fo	r more informati	on.
		0 "Fixed Voltag	-	•	•		
3 : Se	e Section 17.	0 "Temperature	Indicator Mo	dule" for more	information.		

4: PIC16(L)F18323 only.

24.0 5-BIT DIGITAL-TO-ANALOG CONVERTER (DAC1) MODULE

The Digital-to-Analog Converter supplies a variable voltage reference, ratiometric with the input source, with 32 selectable output levels.

The input of the DAC can be connected to:

- External VREF pins
- VDD supply voltage
- FVR (Fixed Voltage Reference)

The output of the DAC can be configured to supply a reference voltage to the following:

- Comparator positive input
- ADC input channel
- DAC1OUT pin

The Digital-to-Analog Converter (DAC) is enabled by setting the DAC1EN bit of the DACCON0 register.

EQUATION 24-1: DAC OUTPUT VOLTAGE

24.1 Output Voltage Selection

The DAC has 32 voltage level ranges. The 32 levels are set with the DAC1R<4:0> bits of the DACCON1 register.

The DAC output voltage is determined by Equation 24-1:

$V_{OUT} = \left((V_{SOURCE+} - V_{SOURCE-}) - \frac{DAC1R\langle 4:0 \rangle}{2^5} \right) + (V_{SOURCE-})$ $V_{SOURCE+} = V_{DD} \quad or \quad V_{REF+} \quad or \quad FVR$ $V_{SOURCE-} = V_{SS} \quad or \quad V_{REF-}$

24.2 Ratiometric Output Level

The DAC output value is derived using a resistor ladder with each end of the ladder tied to a positive and negative voltage reference input source. If the voltage of either input source fluctuates, a similar fluctuation will result in the DAC output value.

The value of the individual resistors within the ladder can be found in Table 35-15.

24.3 DAC Voltage Reference Output

The DAC voltage can be output to the DAC1OUT pin by setting the DAC1OE bit of the DACCON0 register. Selecting the DAC reference voltage for output on the DAC1OUT pin automatically overrides the digital output buffer and digital input threshold detector functions, disables the weak pull-up, and disables the constant-current drive function of that pin. Reading the DAC1OUT pin when it has been configured for DAC reference voltage output will always return a '0'.

Due to the limited current drive capability, a buffer must be used on the DAC voltage reference output for external connections to the DAC1OUT pin. Figure 24-2 shows an example buffering technique.

25.5 Carrier Source Polarity Select

The signal provided from any selected input source for the carrier high and carrier low signals can be inverted. Inverting the signal for the carrier high source is enabled by setting the MDCHPOL bit of the MDCARH register. Inverting the signal for the carrier low source is enabled by setting the MDCLPOL bit of the MDCARL register.

25.6 Programmable Modulator Data

The MDBIT of the MDCON register can be selected as the source for the modulator signal. This gives the user the ability to program the value used for modulation.

25.7 Modulated Output Polarity

The modulated output signal provided on the DSM pin can also be inverted. Inverting the modulated output signal is enabled by setting the MDOPOL bit of the MDCON register.

25.8 Slew Rate Control

The slew rate limitation on the output port pin can be disabled. The slew rate limitation can be removed by clearing the SLR bit of the SLRCON register associated with that pin. For example, clearing the slew rate limitation for pin RA5 would require clearing the SLRA5 bit of the SLRCONA register.

25.9 Operation in Sleep Mode

The DSM module is not affected by Sleep mode. The DSM can still operate during Sleep, if the Carrier and Modulator input sources are also still operable during Sleep.

25.10 Effects of a Reset

Upon any device Reset, the DSM module is disabled. The user's firmware is responsible for initializing the module before enabling the output. The registers are reset to their default values.

28.1 Timer2 Operation

The clock input to the Timer2 modules is the system instruction clock (Fosc/4).

A 4-bit counter/prescaler on the clock input allows direct input, divide-by-4 and divide-by-16 prescale options. These options are selected by the prescaler control bits, T2CKPS<1:0> of the T2CON register. The value of TMR2 is compared to that of the Period register, PR2, on each clock cycle. When the two values match, the comparator generates a match signal as the timer output. This signal also resets the value of TMR2 to 00h on the next cycle and drives the output "Timer2 counter/postscaler (see Section 28.2 Interrupt").

The TMR2 and PR2 registers are both directly readable and writable. The TMR2 register is cleared on any device Reset, whereas the PR2 register initializes to FFh. Both the prescaler and postscaler counters are cleared on the following events:

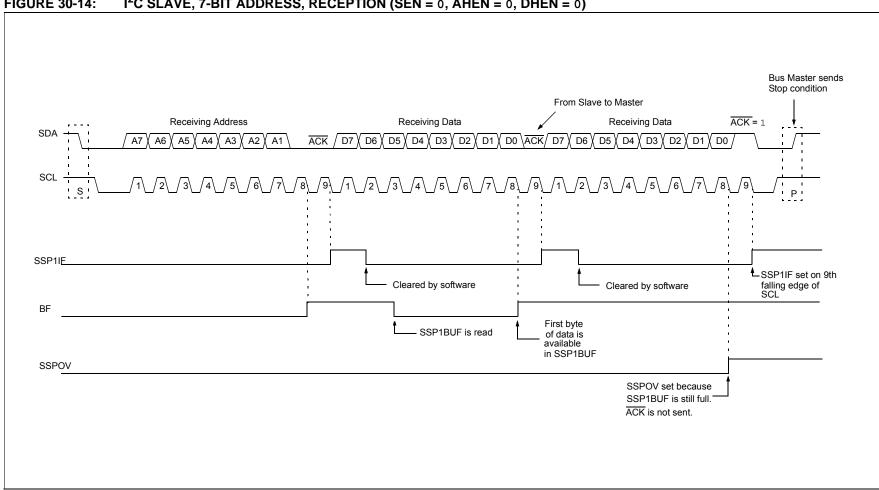
- a write to the TMR2 register
- a write to the T2CON register
- Power-on Reset (POR)
- Brown-out Reset (BOR)
- MCLR Reset
- Watchdog Timer (WDT) Reset
- Stack Overflow Reset
- Stack Underflow Reset
- RESET Instruction

Note: TMR2 is not cleared when T2CON is written.

28.2 Timer2 Interrupt

Timer2 can also generate an optional device interrupt. The Timer2 output signal (TMR2-to-PR2 match) provides the input for the 4-bit counter/postscaler. This counter generates the TMR2 match interrupt flag which is latched in TMR2IF of the PIR1 register. The interrupt is enabled by setting the TMR2 Match Interrupt Enable bit, TMR2IE, of the PIE1 register.

A range of 16 postscale options (from 1:1 through 1:16 inclusive) can be selected with the postscaler control bits, T2OUTPS<3:0>, of the T2CON register.

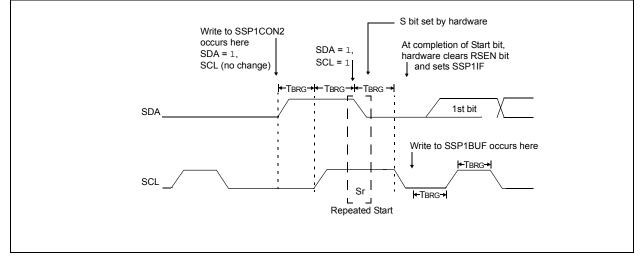

28.3 Timer2 Output

The unscaled output of TMR2 is available primarily to the CCP modules, where it is used as a time base for operations in PWM mode.

Timer2 can be optionally used as the shift clock source for the MSSP module operating in SPI mode. Additional information is provided in Section 30.0 "Master Synchronous Serial Port (MSSP) Module".

28.4 Timer2 Operation During Sleep

The Timer2 timers cannot be operated while the processor is in Sleep mode. The contents of the TMR2 and PR2 registers will remain unchanged while the processor is in Sleep mode.


I²C SLAVE, 7-BIT ADDRESS, RECEPTION (SEN = 0, AHEN = 0, DHEN = 0) FIGURE 30-14:

30.6.5 I²C MASTER MODE REPEATED START CONDITION TIMING

A Repeated Start condition (Figure 30-27) occurs when the RSEN bit of the SSP1CON2 register is programmed high and the master state machine is no longer active. When the RSEN bit is set, the SCL pin is asserted low. When the SCL pin is sampled low, the Baud Rate Generator is loaded and begins counting. The SDA pin is released (brought high) for one Baud Rate Generator count (TBRG). When the Baud Rate Generator times out, if SDA is sampled high, the SCL pin will be deasserted (brought high). When SCL is sampled high, the Baud Rate Generator is reloaded and begins counting. SDA and SCL must be sampled high for one TBRG. This action is then followed by assertion of the SDA pin (SDA = 0) for one TBRG while SCL is high. SCL is asserted low. Following this, the RSEN bit of the SSP1CON2 register will be automatically cleared and the Baud Rate Generator will not be reloaded, leaving the SDA pin held low. As soon as a Start condition is detected on the SDA and SCL pins, the S bit of the SSP1STAT register will be set. The SSP1IF bit will not be set until the Baud Rate Generator has timed out.

- Note 1: If RSEN is programmed while any other event is in progress, it will not take effect.
 - **2:** A bus collision during the Repeated Start condition occurs if:
 - SDA is sampled low when SCL goes from low-to-high.
 - SCL goes low before SDA is asserted low. This may indicate that another master is attempting to transmit a data '1'.

FIGURE 30-27: REPEATED START CONDITION WAVEFORM

R-0/0	R-1/1	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0	R/W-0/0
ABDOVF	RCIDL	—	SCKP	BRG16	_	WUE	ABDEN
bit 7							bit 0
Legend:							
R = Readable		W = Writable		•	mented bit, rea		
u = Bit is und	•	x = Bit is unk		-n/n = Value	at POR and BC	OR/Value at all o	other Resets
'1' = Bit is se	t	'0' = Bit is cle	eared				
bit 7	ABDOVF: A	uto-Baud Dete	ct Overflow bit				
	Asynchronou						
	-	d timer overflo	wed				
		id timer did not	overflow				
	Synchronous	<u>s mode</u> :					
h # 0	Don't care	sive Idle Flee b					
bit 6	Asynchronou	eive Idle Flag b is mode:	л				
	1 = Receiver						
			ved and the re	ceiver is receiv	/ing		
	Synchronous	<u>s mode</u> :					
	Don't care						
bit 5	-	nted: Read as					
bit 4		<pre></pre>	arity Select bit				
	Asynchronou						
			「X) is a low lev 「X) is a high le				
	Synchronous	-	, 0				
	1 = Idle state	e for clock (CK)	is a high level				
	0 = Idle state	e for clock (CK)	is a low level				
bit 3		oit Baud Rate (
		aud Rate Gene ud Rate Gener					
bit 2	Unimpleme	nted: Read as	ʻ0'				
bit 1	WUE: Wake-	-up Enable bit					
	<u>Asynchronou</u>	<u>us mode</u> :					
				Rx pin – interru	pt generated o	n falling edge; b	it cleared in
		e on following r		-1 - 441			
	0 = RX pin n Synchronous		or rising edge	Delected			
	-	is mode – valu	e ianored				
bit 0		o-Baud Detect					
	Asynchronou	us mode:					
	-		asurement on t	the next chara	acter – requires	s reception of a	SYNCH field
	(55h); cl	eared in hardw	are upon com	pletion	•	·	
			nt disabled or o	completed			
	Synchronous		aignered				
	Unused in th	is mode – valu	e ignorea				

REGISTER 31-3: BAUD1CON: BAUD RATE CONTROL REGISTER

					ENEORIEN				
R/W-0/0	U-0	U-0	R/W-1/1	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0		
CLKREN		— CLKRDC<1:0>			CLKRDIV<2:0>				
bit 7							bit C		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimpler	nented bit, read	1 as '0'			
u = Bit is unch	anged	x = Bit is unkn	iown	-n/n = Value a	at POR and BO	R/Value at all c	ther Resets		
'1' = Bit is set		'0' = Bit is clea	ared						
bit 7 bit 6-5 bit 4-3 bit 2-0	1 = Referen 0 = Referen Unimplemen CLKRDC<1:0 11 = Clock of 01 = Clock of 01 = Clock of 00 = Clock of	ference Clock I ce Clock modu ce Clock modu ted: Read as '()>: Reference (utputs duty cyc utputs duty cyc utputs duty cyc utputs duty cyc utputs duty cyc 0>: Reference	le enabled le is disabled o' Clock Duty Cy le of 75% le of 50% le of 25% le of 0%	cle bits (1)					
μι 2-υ		divided by 128 divided by 64 divided by 32 divided by 16 divided by 8 divided by 4	Clock Divider	DIES					

REGISTER 32-1: CLKRCON: REFERENCE CLOCK CONTROL REGISTER

Note 1: Bits are valid for Reference Clock divider values of two or larger, the base clock cannot be further divided.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
TRISA	—	—	TRISA5	TRISA4	(2)	TRISA2	TRISA1	TRISA0	132
TRISC ⁽¹⁾	_	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	138
CLKRCON	CLKREN	_	_	CLKRD	CLKRDC<1:0> CLKRDIV<2:0>				365
CLCxSELy	_	—	_			LCxDyS<4	4:0>		205
MDCARH	_	MDCHPOL	MDCHSYNC	MDCH<3:0>					248
MDCARL		MDCLPOL	MDCLSYNC	MDCL<3:0>			249		

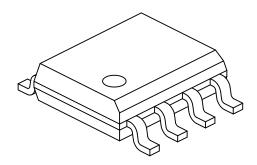
Legend: — = unimplemented, read as '0'. Shaded cells are not used by the CLKR module.

Note 1: PIC16(L)F18323 only.

2: Unimplemented, read as '1'.

Standard (Standard Operating Conditions (unless otherwise stated)								
Param. No.	Symbol	Characte	Characteristic		Max.	Units	Conditions		
SP100*	Тнідн	Clock high time	100 kHz mode	4.0	_	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	0.6		us <	Device/must operate at a minimum of 10/MHz		
			SSP module	1.5Tcy	_				
SP101*	TLOW	Clock low time	100 kHz mode	4.7	$\overline{\langle}$	μs	Device must operate at a minimum of 1.5 MHz		
			400 kHz mode	1.3	Ψſ	Jus /	Device must operate at a minimum of 10 MHz		
			SSP module	1.5Tex	— /				
SP102*	TR	SDA and SCL rise	100 kHz mode	_/ /	1000	ns			
		time	400 kHz mode	20+0.1CB	300	ns	CB is specified to be from 10-400 pF		
SP103*	TF	SDA and SCL fall time	100 kHz mode 🔨	/-/	250	ns			
			400 kHz mode	20 + 0.1Св	> ²⁵⁰	ns	CB is specified to be from 10-400 pF		
SP106*	THD:DAT	Data input hold time	100 kHz mode	0	_	ns			
			400 kHz mode		0.9	μS			
SP107*	TSU:DAT	Data input setup time	100 kHz mode	250		ns	(Note 2)		
			400 kHz mode	¥ 100		ns			
SP109*	ΤΑΑ	Output valid from	100 kHz mode	—	3500	ns	(Note 1)		
		clock	400 kHz mode	_		ns			
SP110*	TBUF	Bus free time	100 kHz mode	4.7	_	μS	Time the bus must be free		
			400 kHz mode	1.3		μS	before a new transmission can start		
SP111	Св	Bus capacitive loading	\wedge	_	400	pF			

TABLE 35-24: I²C BUS DATA CHARACTERISTICS


* These parameters are characterized but not tested.

Note 1: As a transmitter, the device must provide this internal minimum delay time to bridge the undefined region (min. 300 ns) of the falling edge of SCL to avoid unintended generation of Start or Stop conditions.

2: A Fast mode (400 kHz) I²C bus device can be used in a Standard mode (100 kHz) I²C bus system, but the requirement Tsu:DAT ≥ 250 ns must then be met. This will automatically be the case if the device does not stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal. If such a device does stretch the low period of the SCL signal. If nax. + Tsu:DAT = 1000 + 250 = 1250 ns (according to the Standard mode I²C bus specification), before the SCL line is released.

8-Lead Plastic Small Outline (SN) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	MILLIMETERS					
Dimensior	MIN	NOM	MAX			
Number of Pins	N		8			
Pitch	е		1.27 BSC			
Overall Height	A	-	-	1.75		
Molded Package Thickness	A2	1.25	-	-		
Standoff §	A1	0.10	-	0.25		
Overall Width	E	6.00 BSC				
Molded Package Width	E1	3.90 BSC				
Overall Length	D		4.90 BSC			
Chamfer (Optional)	h	0.25	-	0.50		
Foot Length	L	0.40	-	1.27		
Footprint	L1	1.04 REF				
Foot Angle	φ	0°	-	8°		
Lead Thickness	С	0.17	-	0.25		
Lead Width	b	0.31	-	0.51		
Mold Draft Angle Top	α	5°	-	15°		
Mold Draft Angle Bottom	β	5°	-	15°		

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2