

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Details	
Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18313-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0+/	RA0	TTL/ST	CMOS	General purpose I/O.
DAC1OUT/CLCIN3 ⁽¹⁾ /MDCIN1 ⁽¹⁾ / ICSPDAT/ICDDAT	ANA0	AN		ADC Channel A0 input.
ICSPDAT/ICDDAT	C1IN0+	AN	_	Comparator C1 positive input.
	DAC10UT	_	AN	Digital-to-Analog Converter output.
	CLCIN3	TTL/ST	_	Configurable Logic Cell source input.
	MDCIN1	TTL/ST	_	Modular Carrier input 1.
	ICSPDAT	TTL/ST	CMOS	ICSP™ Data I/O.
	ICDDAT	TTL/ST	CMOS	In-Circuit Debug Data I/O.
RA1/ANA1/VREF+/C1IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
MDMIN ⁽¹⁾ /CLCIN2 ⁽¹⁾ /SCK ⁽³⁾ / SCL ⁽³⁾ /RX ⁽¹⁾ /DAC1 _{REF} +/	ANA1	AN	_	ADC Channel A1 input.
ICSPCLK/ICDCLK	VREF+	AN	_	ADC Voltage Reference Positive input.
	C1IN0-	AN	_	Comparator C1 negative input.
	MDMIN	TTL/ST	_	Modulator Source Input.
	CLCIN2	TTL/ST	_	Configurable Logic Cell source input.
	SCK	TTL/ST	_	SPI clock.
	SCL	l ² C	OD	I ² C clock input/output.
	RX	TTL/ST	_	EUSART asynchronous input.
	DAC1REF+	AN	—	Digital-to-Analog Converter positive reference voltage input.
	ICSPCLK	TTL/ST	CMOS	Serial Programming Clock.
	ICDCLK	TTL/ST	CMOS	In-Circuit Debug Clock.
RA2/ANA2/VREF-/DAC1REF-/	RA2	TTL/ST	CMOS	General purpose I/O.
SDI ^(1,3) /SDA ^(1,3) /T0CKI ⁽¹⁾ / CWG1IN ⁽¹⁾ /INT ⁽¹⁾	ANA2	AN	_	ADC Channel A3 input.
	VREF-	AN		ADC Voltage Reference Negative input.
	DAC1REF-	AN		Digital-to-Analog Converter negative reference voltage input.
	SDI	TTL/ST	CMOS	SPI Data Input.
	SDA	l ² C	OD	I ² C clock input/output.
	TOCKI	TTL/ST	_	TMR0 clock input.
	CWG1IN	TTL/ST	-	Complementary Waveform Generator input.
	INT	TTL/ST	_	External interrupt.
RA3/MCLR/VPP/SS ⁽¹⁾ /CLCIN0 ⁽¹⁾	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	TTL/ST	_	Master Clear with internal pull-up.
	Vpp	HV		Programming voltage.
	SS	TTL/ST	_	Slave Select input.
	CLCIN0	TTL/ST	_	Configurable Logic Cell source input.

TABLE 1-2:	PIC16(L)F18313 PINOUT DESCRIPTION
-------------------	-----------------------------------

 Legend: AN = Analog input or output TTL = TTL compatible input HV = High Voltage
 CMOS = CMOS compatible input or output ST = Schmitt Trigger input with CMOS levels
 OD = Open-Drain

 HV = High Voltage
 XTAL = Crystal levels
 I²C = Schmitt Trigger input with I²C

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-1.

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

Name	Function	Input Type	Output Type	Description
RA0/ANA0/C1IN0+/	RA0	TTL/ST	CMOS	General purpose I/O.
DAC1OUT/ICSPDAT/ICDDAT	ANA0	AN	_	ADC Channel A0 input.
	C1IN0+	AN		Comparator C1 positive input.
	DAC1OUT	_	AN	Digital-to-Analog Converter output.
	ICSPDAT	TTL/ST	CMOS	ICSP™ Data I/O.
	ICDDAT	TTL/ST	CMOS	In-Circuit Debug Data I/O.
RA1/ANA1/VREF+/C1IN0-/	RA1	TTL/ST	CMOS	General purpose I/O.
C2IN0-/DAC1REF+/ICSPCLK/	ANA1	AN	_	ADC Channel A1 input.
ICDCLK	VREF+	AN	_	ADC Voltage Reference input.
	C1IN0-	AN	_	Comparator C1 negative input.
	C2IN0-	AN		Comparator C2 negative input.
	DAC1REF+	AN	_	Digital-to-Analog Converter positive reference voltage input.
	ICSPCLK	TTL/ST	CMOS	Serial Programming Clock.
	ICDCLK	TTL/ST	CMOS	In-Circuit Debug Clock.
RA2/ANA2/VREF-/DAC1REF-/	RA2	TTL/ST	CMOS	General purpose I/O.
0CKI ⁽¹⁾ /CWG1IN ⁽¹⁾ /INT ⁽¹⁾	ANA2	AN		ADC Channel A2 input.
	VREF-	AN		ADC Negative Voltage Reference input.
	DAC1REF-	AN		Digital-to-Analog Converter negative reference voltage input.
	T0CKI	TTL/ST	_	TMR0 clock input.
	CWG1IN	TTL/ST		Complementary Waveform Generator input.
	INT	TTL/ST	_	External interrupt.
RA3/MCLR/Vpp	RA3	TTL/ST	CMOS	General purpose I/O.
	MCLR	TTL/ST		Master Clear with internal pull-up.
	Vpp	HV	_	Programming voltage.
RA4/ANA4/T1G ⁽¹⁾ /SOSCO/	RA4	TTL/ST	CMOS	General purpose I/O.
OSC2/CLKOUT	ANA4	AN		ADC Channel A4 input.
	T1G	TTL/ST	_	TMR1 gate input.
	SOSCO	—	XTAL	Secondary Oscillator Connection.
	OSC2	—	XTAL	Crystal/Resonator (LP, XT, HS modes).
	CLKOUT	—	CMOS	Fosc/4 output.
RA5/ANA5/T1CKI ⁽¹⁾ /CLCIN3 ⁽¹⁾ /	RA5	TTL/ST	CMOS	General purpose I/O.
SOSCI/SOSCIN/OSC1/CLKIN	ANA5	AN		ADC Channel A5 input.
	T1CKI	TTL/ST	_	TMR1 clock input.
	CLCIN3	TTL/ST	—	Configurable Logic Cell source input.
	SOSCI	XTAL	_	Secondary Oscillator Connection.
	SOSCIN	TTL/ST	_	Secondary Oscillator Input Connection.
	OSC1	XTAL	_	Crystal/Resonator (LP, XT, HS modes).
	CLKIN	TTL/ST	_	External clock input.

TABLE 1-3: PIC16(L)F18323 PINOUT DESCRIPTION

 Legend:
 AN = Analog input or output
 CMOS = CMOS compatible input or output
 OD = Open-Drain

 TTL = TTL compatible input
 ST = Schmitt Trigger input with CMOS levels
 I²C = Schmitt Trigger input with I²C

 HV = High Voltage
 XTAL = Crystal levels
 XTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.
 2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output

2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

Name	Function	Input Type	Output Type	Description
OUT ⁽²⁾	C1OUT	—	CMOS	Comparator output.
	C2OUT	—	CMOS	Comparator output.
	CCP1	—	CMOS	Capture/Compare/PWM1 output.
	CCP2	—	CMOS	Capture/Compare/PWM2 output.
	PWM5	_	CMOS	PWM5 output.
	PWM6	_	CMOS	PWM6 output.
	CWG1A	—	CMOS	Complementary Waveform Generator Output A.
	CWG1B	—	CMOS	Complementary Waveform Generator Output B.
	CWG1C	—	CMOS	Complementary Waveform Generator Output C.
	CWG1D	—	CMOS	Complementary Waveform Generator Output D.
	SDA ⁽³⁾	_	OD	I ² C data input/output.
	SDO	_	CMOS	SPI data output.
	SCK	—	CMOS	SPI clock output.
	SCL ⁽³⁾	_	OD	I ² C clock output.
	TX/CK	—	CMOS	EUSART asynchronous TX data/synchronous clock output.
	DT	_	CMOS	EUSART synchronous data output.
	CLC10UT	—	CMOS	Configurable Logic Cell 1 source output.
	CLC2OUT		CMOS	Configurable Logic Cell 2 source output.
	NCO1		CMOS	Numerically controlled oscillator output.
	DSM		CMOS	Data Signal Modulator output.
	TMR0	—	CMOS	TMR0 clock output.

TABLE 1-3: PIC16(L)F18323 PINOUT DESCRIPTION (CONTINUED)

Legend: AN = Analog input or output CMOS = CMOS compatible input or output OD = Open-Drain

TTL = TTL compatible inputST = Schmitt Trigger input with CMOS levels I^2C = Schmitt Trigger input with I^2C HV = High VoltageXTAL = Crystal levels

Note 1: Default peripheral input. Input can be moved to any other pin with the PPS input selection registers. See Register 13-2.

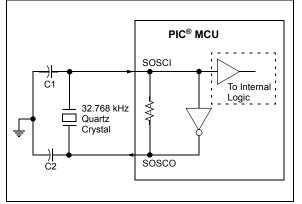
2: All pin outputs default to PORT latch data. Any pin can be selected as a digital peripheral output with the PPS output selection registers. See Register 13-2.

3: These I²C functions are bidirectional. The output pin selections must be the same as the input pin selections.

PIC16(L)F18313/18323

7.2.1.4 4x PLL

The oscillator module contains a PLL that can be used with external clock sources to provide a system clock source. The input frequency for the PLL must fall within specifications. See the PLL Clock Timing Specifications in Table 35-9.


The PLL may be enabled for use by one of two methods:

- 1. Program the RSTOSC bits in the Configuration Word 1 to enable the EXTOSC with 4x PLL.
- 2. Write the NOSC bits in the OSCCON1 register to enable the EXTOSC with 4x PLL.

7.2.1.5 Secondary Oscillator

The secondary oscillator is a separate oscillator block that can be used as an alternate system clock source. The secondary oscillator is optimized for 32.768 kHz, and can be used with an external crystal oscillator connected to the SOSCI and SOSCO device pins, or an external clock source connected to the SOSCIN pin. The secondary oscillator can be selected during run-time using clock switching. Refer to **Section 7.3** "**Clock Switching**" for more information.

FIGURE 7-5: QUARTZ CRYSTAL OPERATION (SECONDARY OSCILLATOR)

- Note 1: Quartz crystal characteristics vary according to type, package and manufacturer. The user should consult the manufacturer data sheets for specifications and recommended application.
 - **2:** Always verify oscillator performance over the VDD and temperature range that is expected for the application.
 - **3:** For oscillator design assistance, reference the following Microchip Application Notes:
 - AN826, Crystal Oscillator Basics and Crystal Selection for rfPIC[®] and PIC[®] Devices (DS00826)
 - AN849, *Basic PIC*[®] Oscillator Design (DS00849)
 - AN943, Practical PIC[®] Oscillator Analysis and Design (DS00943)
 - AN949, *Making Your Oscillator Work* (DS00949)
 - TB097, Interfacing a Micro Crystal MS1V-T1K 32.768 kHz Tuning Fork Crystal to a PIC16F690/SS (DS91097)
 - AN1288, Design Practices for Low-Power External Oscillators (DS01288)

11.4.7 NVMREG EEPROM, USER ID, DEVICE ID AND CONFIGURATION WORD ACCESS

Instead of accessing Program Flash Memory, the EEPROM, the User ID's, Device ID/Revision ID and Configuration Words can be accessed when NVMREGS = 1 in the NVMCON1 register. This is the region that would be pointed to by PC<15> = 1, but not all addresses are accessible. Different access may exist for reads and writes. Refer to Table 11-3.

When read access is initiated on an address outside the parameters listed in Table 11-3, the NVMDATH: NVMDATL register pair is cleared, reading back '0's.

TABLE 11-3: EEPROM, USER ID, DEV/REV ID AND CONFIGURATION WORD ACCESS (NVMREGS = 1)

Address	Function	Read Access	Write Access
8000h-8003h	User IDs	Yes	Yes
8005h-8006h	Device ID/Revision ID	Yes	No
8007h-800Ah	Configuration Words 1-4	Yes	No
F000h-F0FFh	EEPROM	Yes	Yes

13.8 Register Definitions: PPS Input Selection

REGISTER 13-1: xxxPPS: PERIPHERAL xxx INPUT SELECTION

U-0	U-0	U-0	R/W-q/u	U-0	R/W-q/u	R/W-q/u	R/W-q/u				
_	—	—			xxxPPS<4:0>						
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value	at POR and BO	R/Value at all o	other Resets				
'1' = Bit is set		'0' = Bit is clea	ared	q = value de	pends on periph	eral					
	Unimplomen	ted. Dood oo '	o'								
bit 7-5	-	ted: Read as '									
bit 4-0		xxxPPS<4:0>: Peripheral xxx Input Selection bits									
	11xxx = Reserved. Do not use.										
	1011x = Reserved. Do not use.										
		pheral input is l									
		pheral input is									
		pheral input is l									
		pheral input is pheral input is									
		pheral input is									
	01xxx = Reserved. Do not use.										
	•••										
	0011x = Reserved. Do not use.										
		pheral input is									
		pheral input is pheral input is									
		pheral input is l									
		pheral input is									
		pheral input is									

Note 1: PIC16(L)F18323 only.

U-0	U-0	U-0	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u	R/W-0/u				
_		_			RxyPPS<4:0>						
bit 7							bit				
Legend:											
R = Readab		W = Writable	e bit	U = Unimplen	nented bit, read	l as '0'					
u = Bit is und	changed	x = Bit is un	known	-n/n = Value a	at POR and BO	R/Value at all c	other Resets				
'1' = Bit is se	et	ʻ0' = Bit is cl	eared								
bit 7-5	Unimplem	ented: Read as	ʻ0'								
bit 4-0	-	: 0>: Pin Rxy Ou		election bits							
	•	xy source is DS	•								
	11110 = R :	xy source is CL	KR								
		xy source is NC									
		xy source is TM	R0								
	11011 = R e										
	11010 = R										
		y source is SDO/SDA ⁽¹⁾ y source is SCK/SCL ⁽¹⁾									
		xy source is SC xy source is C2									
		xy source is C2									
		xy source is DT									
		xy source is TX									
		2									
	01101 = R :	xy source is CC	P2								
	01100 = R :	xy source is CC	P1								
		xy source is CW									
		xy source is CW									
		xy source is CW									
	01000 = R :	xy source is CW	/G1A ⁽¹⁾								
	•••										
	00111 = R										
	00110 = R										
		xy source is CL									
		xy source is CL									
		xy source is PW									
	00010 = R	xy source is PN	GINID								
	00001 - R										
Note 1: ⊺		overridden by th									

REGISTER 13-2: RxyPPS: PIN Rxy OUTPUT SOURCE SELECTION REGISTER

- **Note 1:** TRIS control is overridden by the peripheral as required.
 - 2: PIC16(L)F18323 only.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page
ANSELA	-	-	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	133
TRISA	_	_	TRISA5	TRISA4	_(2)	TRISA2	TRISA1	TRISA0	132
ANSELC ⁽¹⁾	_	_	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	139
TRISC ⁽¹⁾	-	_	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	138
INTCON	GIE	PEIE	_	—	-	-	_	INTEDG	90
PIR3	OSFIF	CSWIF	—	—	—	—	CLC2IF	CLC1IF	99
PIE3	OSFIE	CSWIE	—	—	—	—	CLC2IE	CLC1IE	94
CLC1CON	LC1EN	—	LC10UT	LC1INTP	LC1INTN		LC1MODE<2:0	>	203
CLC1POL	LC1POL	—	—	—	LC1G4POL	LC1G3POL	LC1G2POL	LC1G1POL	204
CLC1SEL0	-	—	—			LC1D1S<4:0	>		205
CLC1SEL1	-	_	_			LC1D2S<4:0	,		205
CLC1SEL2	_	—	—			LC1D3S<4:02	>		205
CLC1SEL3	-	—	—			LC1D4S<4:0	`		205
CLC1GLS0	LC1G1D4T	LC1G1D4N	LC1G1D3T	LC1G1D3N	LC1G1D2T	LC1G1D2N	LC1G1D1T	LC1G1D1N	206
CLC1GLS1	LC1G2D4T	LC1G2D4N	LC1G2D3T	LC1G2D3N	LC1G2D2T	LC1G2D2N	LC1G2D1T	LC1G2D1N	207
CLC1GLS2	LC1G3D4T	LC1G3D4N	LC1G3D3T	LC1G3D3N	LC1G3D2T	LC1G3D2N	LC1G3D1T	LC1G3D1N	208
CLC1GLS3	LC1G4D4T	LC1G4D4N	LC1G4D3T	LC1G4D3N	LC1G4D2T	LC1G4D2N	LC1G4D1T	LC1G4D1N	209
CLC2CON	LC2EN	—	LC2OUT	LC2INTP	LC2INTN		LC2MODE<2:0	>	203
CLC2POL	LC2POL	—	—	—	LC2G4POL	LC2G3POL	LC2G2POL	LC2G1POL	204
CLC2SEL0	-	—	—			LC2D1S<4:0	>		205
CLC2SEL1	_	—	—			LC2D2S<4:02	>		205
CLC2SEL2	_	—	—			LC2D3S<4:02	>		205
CLC2SEL3	-	—	—			LC2D4S<4:0	`		205
CLC2GLS0	LC2G1D4T	LC2G1D4N	LC2G1D3T	LC2G1D3N	LC2G1D2T	LC2G1D2N	LC2G1D1T	LC2G1D1N	206
CLC2GLS1	LC2G2D4T	LC2G2D4N	LC2G2D3T	LC2G2D3N	LC2G2D2T	LC2G2D2N	LC2G2D1T	LC2G2D1N	207
CLC2GLS2	LC2G3D4T	LC2G3D4N	LC2G3D3T	LC2G3D3N	LC2G3D2T	LC2G3D2N	LC2G3D1T	LC2G3D1N	208
CLC2GLS3	LC2G4D4T	LC2G4D4N	LC2G4D3T	LC2G4D3N	LC2G4D2T	LC2G4D2N	LC2G4D1T	LC2G4D1N	209
CLCDAT	-	—	—	—	—	—	MLC2OUT	MLC1OUT	210
CLCIN0PPS	-	—	—		. (CLCIN0PPS<4	0>		143
CLCIN1PPS	—	—	—		(CLCIN1PPS<4	0>		143
CLCIN2PPS	-	_	—		(CLCIN2PPS<4	0>		143
CLCIN3PPS	-	_	—		(CLCIN3PPS<4	0>		143
CLC10UTPPS	_	—	—		С	LC10UTPPS<	4:0>		143
CLC2OUTPPS	_	_	_		С	LC2OUTPPS<	4:0>		143

TABLE 21-3: SUMMARY OF REGISTERS ASSOCIATED WITH CLCx

Note 1: PIC16(L)F18323 only.

23.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCO1 Interrupt Flag bit, NCO1IF, of the PIR2 register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- N1EN bit of the NCO1CON register
- NCO1IE bit of the PIE2 register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCO1IF bit in the Interrupt Service Routine.

23.6 Effects of a Reset

All of the NCO1 registers are cleared to zero as the result of a Reset.

23.7 Operation in Sleep

The NCO1 module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO1 module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO1 clock source, when the NCO1 is enabled, the CPU will go idle during Sleep, but the NCO1 will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current

24.6 **Register Definitions: DAC Control**

REGISTER 24-1: DACCON0: VOLTAGE REFERENCE CONTROL REGISTER 0

			-			-	
R/W-0/0	U-0	R/W-0/0	U-0	R/W-0/0	R/W-0/0	U-0	R/W-0/0
DAC1EN	—	DAC10E	_	DAC1F	PSS<1:0>	_	DAC1NSS
bit 7		•		•			bit (
Legend:							
R = Readable	bit	W = Writable bi	t	U = Unimpleme	ented bit, read as '	ʻ0'	
u = Bit is unch	anged	x = Bit is unkno	wn	-n/n = Value at	POR and BOR/Va	alue at all othe	r Resets
'1' = Bit is set		'0' = Bit is clear	ed				
bit 7 bit 6 bit 5	1 = DAC volta	abled sabled ed: Read as '0' C1 Voltage Outpu ge level is outpu	t on the DAC1C	•			
bit 4	Unimplemente	ge level is discor	inected from the	e DACTOUT pin			
bit 3-2	•	>: DAC1 Positive d, do not use put	e Source Select	bits			
bit 1	Unimplemente	ed: Read as '0'					
bit 0	DAC1NSS: DA 1 = VREF- pin 0 = VSS	C1 Negative Sou	urce Select bits				

REGISTER 24-2: DACCON1: VOLTAGE REFERENCE CONTROL REGISTER 1

U-0	U-0	U-0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0			
—	—	—	DAC1R<4:0>							
bit 7										
Legend:										
R = Readable bit W = Writable bit				U = Unimpleme	ented bit, read as	'0'				
u = Bit is unchan	ged	x = Bit is unknow	n	-n/n = Value at POR and BOR/Value at all other Resets						

bit 7-5 Unimplemented: Read as '0'

'1' = Bit is set

bit 4-0 DAC1R<4:0>: DAC1 Voltage Output Select bits VOUT = (VSRC+ - VSRC-)*(DAC1R<4:0>/32) + VSRC

'0' = Bit is cleared

TABLE 24-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE DAC1 MODULE

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on page
DACCON0	DAC1EN		DAC10E	- DAC1PSS<1:0> - DAC1NSS				DAC1NSS	239
DACCON1	_	_	—			DAC1R<4	4:0>		239
CMxCON1	CxINTP	CxINTN	(CxPCH<2:0> CxNCH<2:0>					167
ADCON0			CHS<	CHS<5:0> GO/DONE ADON					220
Lonondi	- Unimpland	optod looptio	n read as ') Cheded	alla ara nat	upped with the	o DAC modulo		

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used with the DAC module.

U-0	R/W-x/u	R/W-x/u	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u
	MDCLPOL	MDCLSYNC	_		MDCL<	<3:0> ⁽¹⁾	
oit 7							bit 0
L egend: R = Readable I	nit	W = Writable bi	+	II – Unimplem	nented bit, read	l ac 'O'	
u = Bit is uncha		x = Bit is unkno	-	•	it POR and BO		thar Pacata
1' = Bit is set	angeu	'0' = Bit is clean					
I – DILIS SEL			eu				
oit 7	Unimplemen	nted: Read as '0'					
oit 6	MDCLPOL:	Modulator Low Ca	arrier Polar	ity Select bit			
	1 = Selected	l low carrier signa	l is inverte	d			
	0 = Selected	l low carrier signa	I is not inv	erted			
oit 5	MDCLSYNC	: Modulator Low	Carrier Syr	hchronization En	able bit		
	1 = Modulate	or waits for a fallin	g edge on	the low time carr	ier signal before	e allowing a sw	itch to the high
	time carr					1)	
		or Output is not s	ynchronize	d to the low time	carrier signal	")	
oit 4	-	nted: Read as '0'					
oit 3-0	MDCL<3:0>	Modulator Data H	ligh Carrie	r Selection bits (1)		
		erved. No channe					
		erved. No chann	el connecte	ed.			
	1101 = CLC						
	1100 = CLC 1011 = HFI						
	1010 = Fos						
		erved. No chann	el connecte	ed.			
	1000 = NCC	D1 output					
	0111 = PWI	•					
	0110 = PWI		_				
		P2 output (PWM (
		P1 output (PWM (•	• ·			
	0011 = Refe0010 = MD0	erence clock mod	ule signal	(ULKK)			
	0001 = MD0	CIN1PPS					

REGISTER 25-4: MDCARL: MODULATION LOW CARRIER CONTROL REGISTER

Note 1: Narrowed carrier pulse widths or spurs may occur in the signal stream if the carrier is not synchronized.

Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Register on Page	
TRISA	_	—	TRISA5	TRISA4	_(2)	TRISA2	TRISA1	TRISA0	132	
ANSELA	_	_	ANSA5	ANSA4	_	ANSA2	ANSA1	ANSA0	133	
TRISC ⁽¹⁾	-	—	TRISC5	TRISC4	TRISC3	TRISC2	TRISC1	TRISC0	138	
ANSELC ⁽¹⁾	_	_	ANSC5	ANSC4	ANSC3	ANSC2	ANSC1	ANSC0	139	
INTCON	GIE	PEIE	_	_	_	—	_	INTEDG	90	
PIR1	TMR1GIF	ADIF	RCIF	TXIF	SSP1IF	BCL1IF	TMR2IF	TMR1IF	97	
PIE1	TMR1GIE	ADIE	RCIE	TXIE	SSP1IE	BCL1IE	TMR2IE	TMR1IE	92	
T1CON	TMR1C	CS<1:0>	T1CKP	S<1:0>	T1SOSC	T1SYNC	—	TMR10N	266	
T1GCON	TMR1GE	T1GPOL	T1GTM	T1GSPM	T <u>1GGO</u> / DONE	T1GVAL	T1GS	S<1:0>	267	
TMR1L			1	TMR1	L<7:0>				268	
TMR1H				TMR1	H<7:0>				268	
T1CKIPPS	—	—	—			T1CKIPPS<4:0)>		143	
T1GPPS	—	—	—			T1GPPS<4:0>	`		143	
T0CON0	T0EN	—	TOOUT	T016BIT		TOOUT	PS<3:0>		255	
CMxCON0	CxON	CxOUT	—	CxPOL	_	CxSP	CxHYS	CxSYNC	281	
CCPTMRS	—	—	—	—	_	C2TSEL	—	C1TSEL	283	
CCPxCON	CCPxEN	—	CCPxOUT	CCPxFMT CCPxMODE<3:0>						
CLCxSELy	-	—	—		-	LCxDyS<4:0>			205	
ADACT	—	—	—	—	— ADACT<3:0>					

TABLE 27-5: SUMMARY OF REGISTERS ASSOCIATED WITH TIMER1

Legend: — = Unimplemented location, read as '0'. Shaded cells are not used by Timer1 module.

30.5.6 CLOCK STRETCHING

Clock stretching occurs when a device on the bus holds the SCL line low, effectively pausing communication. The slave may stretch the clock to allow more time to handle data or prepare a response for the master device. A master device is not concerned with stretching as anytime it is active on the bus and not transferring data it is stretching. Any stretching done by a slave is invisible to the master software and handled by the hardware that generates SCL.

The CKP bit of the SSP1CON1 register is used to control stretching in software. Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. Setting CKP will release SCL and allow more communication.

30.5.6.1 Normal Clock Stretching

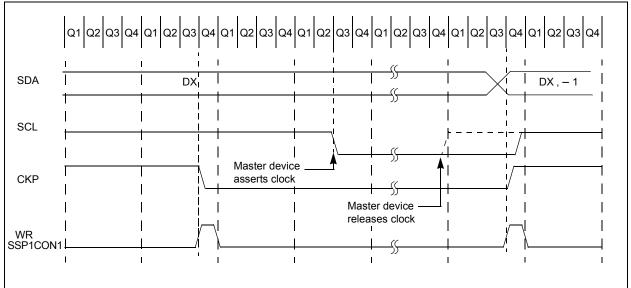
Following an ACK if the R/W bit of SSP1STAT is set, a read request, the slave hardware will clear CKP. This allows the slave time to update SSP1BUF with data to transfer to the master. If the SEN bit of SSP1CON2 is set, the slave hardware will always stretch the clock after the ACK sequence. Once the slave is ready; CKP is set by software and communication resumes.

30.5.6.2 10-bit Addressing Mode

In 10-bit Addressing mode, when the UA bit is set the clock is always stretched. This is the only time the SCL is stretched without CKP being cleared. SCL is released immediately after a write to SSP1ADD.

Note: Previous versions of the module did not stretch the clock if the second address byte did not match.

30.5.6.3 Byte NACKing


When AHEN bit of SSP1CON3 is set; CKP is cleared by hardware after the eighth falling edge of SCL for a received matching address byte. When DHEN bit of SSP1CON3 is set; CKP is cleared after the eighth falling edge of SCL for received data.

Stretching after the eighth falling edge of SCL allows the slave to look at the received address or data and decide if it wants to ACK the received data.

30.5.7 CLOCK SYNCHRONIZATION AND THE CKP BIT

Any time the CKP bit is cleared, the module will wait for the SCL line to go low and then hold it. However, clearing the CKP bit will not assert the SCL output low until the SCL output is already sampled low. Therefore, the CKP bit will not assert the SCL line until an external I^2C master device has already asserted the SCL line. The SCL output will remain low until the CKP bit is set and all other devices on the I^2C bus have released SCL. This ensures that a write to the CKP bit will not violate the minimum high time requirement for SCL (see Figure 30-23).

FIGURE 30-23: CLOCK SYNCHRONIZATION TIMING

30.8 Register Definitions: MSSP Control

REGISTER 30-1: SSP1STAT: SSP STATUS REGISTER

R/W-0/0	R/W-0/0	R/HS/HC-0/0	R/HS/HC-0/0	R/HS/HC-0/0	R/HS/HC-0/0	R/HS/HC-0/0	R/HS/HC-0/0
SMP	CKE ⁽¹⁾	D/A	P ⁽²⁾	S ⁽²⁾	R/W	UA	BF
bit 7							bit C
Legend:							
R = Readable bit	t	W = Writable bit		U = Unimplemen	ted bit, read as '0'		
u = Bit is unchan	nged	x = Bit is unknow	n	-n/n = Value at P	OR and BOR/Value	at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS/HC = Hardwa	are set/clear		
bit 7	0 = Input data sa SPI Slave mode SMP must be clo	e: ampled at end of dat ampled at middle of	data output time sed in Slave mode				
		ontrol disabled for Si ontrol enabled for Hi			I MHZ)		
bit 6	In SPI Master or 1 = Transmit occ 0 = Transmit occ In I ² C mode only 1 = Enable input	Edge Select bit (SP Slave mode: curs on transition fro curs on transition fro <u>c</u> togic so that thresh Bus specific inputs	m active to Idle cl m Idle to active cl	ock state	ification		
bit 5	 1 = Indicates that 	ess bit (I ² C mode on at the last byte receiv at the last byte receiv	ed or transmitted				
bit 4	1 = Indicates that	This bit is cleared w at a Stop bit has bee not detected last					
bit 3	 I = Indicates that 	This bit is cleared w at a Start bit has bee not detected last	hen the MSSP mo n detected last (th	odule is disabled, S his bit is '0' on Res	SPEN is cleared.) et)		
bit 2	This bit holds the bit, Stop bit, or n In I ² C Slave mor 1 = Read 0 = Write In I ² C Master m 1 = Transmit is 0 = Transmit is	<u>de:</u> ode: s in progress	following the last		·		ch to the next Star
bit 1	1 = Indicates that	Iress bit (10-bit I^2C r at the user needs to as not need to be up	update the addres	ss in the SSP1ADE) register		
bit 0	0 = Receive not <u>Transmit (I²C me</u> 1 = Data transm	<u>d I²C modes):</u> nplete, SSP1BUF is complete, SSP1BUI	F is empty not include th <u>e AC</u>				
	plarity of clock state in is bit is cleared on R			register.			

REGISTER 30-2: SSP1CON1: SSP CONTROL REGISTER 1

R/C/HS-0/0	R/C/HS-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0	R/W-0/0
WCOL	SSPOV ⁽¹⁾	SSPEN	CKP		SSPI	M<3:0>	
bit 7							bit
Legend: D = Doodoblo bit		\// = \//ritabla bit			ad hit road on '0'		
R = Readable bit		W = Writable bit		U = Unimplement			
u = Bit is unchan	ged	x = Bit is unknown				at all other Resets	
'1' = Bit is set		'0' = Bit is cleared		HS = Bit is set by	hardware	C = User cleared	
bit 7				y) smitting the previous	word (must be clear	ed in software)	
bit 6	In SPI mode: 1 = A new byte is Overflow cal setting overflow SSP1BUF ro 0 = No overflow In I ² C mode: 1 = A byte is re	n only occur in Slave low. In Master mode egister (must be clea / ceived while the St eared in software).	SSP1BUF registe e mode. In Slave e, the overflow bit i ared in software).	mode, the user must s not set since each r	read the SSP1BUF new reception (and t	of overflow, the data ; even if only transmi ransmission) is initiat OV is a "don't care"	tting data, to avoid ed by writing to the
bit 5	In both modes, wi In <u>SPI mode:</u> 1 = Enables seri 0 = Disables se <u>In I²C mode:</u> 1 = Enables the	ial port and configur rial port and config	Ilowing pins mus es SCK, SDO, SI ures these pins a gures the SDA ar	id SCL pins as the so	rce of the serial port	pins ⁽²⁾	
bit 4	0 = Idle state for o In I ² C Slave mode SCL release cont 1 = Enable clock	clock is a high level clock is a low level <u>e:</u> rol ww (clock stretch). (<u>de:</u>		lata setup time.)			
bit 3-0	1111 = I ² C Slave 1110 = I ² C Slave 1100 = Reserved 1010 = Reserved 1010 = SPI Maste 1010 = SPI Maste 1010 = I ² C Maste 0111 = I ² C Slave 0110 = SPI Slave 0100 = SPI Slave 0101 = SPI Maste 0010 = SPI Maste 0010 = SPI Maste	mode, 7-bit addres are controlled Mast er mode, clock = Fo mode, clock = Fo mode, 10-bit addres mode, 7-bit addres	ess with Start and ss with Start and er mode (slave i DSC/(4 * (SSP1A ess SS K pin, <u>SS</u> pin col K pin, <u>SS</u> pin col Z-match/2 DSC/64 DSC/16	d Stop bit interrupts e Stop bit interrupts e dle) DD+1)) ⁽⁵⁾ (DD+1)) ⁽⁴⁾ ntrol disabled, SS ca	nabled	in	
2: Wr Rx	Master mode, the ove nen enabled, these pi yPPS to select the pi	erflow bit is not set ns must be properly ns.	since each new ı y configured as i		SSP1SSPPS, SSP	1CLKPPS, SSP1DA	

- When enabled, the SDA and SCL pins must be configured as inputs. Use SSP1CLKPPS, SSP1DATPPS, and RxyPPS to select the pins. SSP1ADD values of 0, 1 or 2 are not supported for I²C mode. 3:
- 4:
- 5: SSP1ADD value of '0' is not supported. Use SSPM = 0000 instead.

TABLE 31-3: BAUD RATE FORMULAS

(Configuration Bits			Baud Rate Formula
SYNC	BRG16	BRGH	BRG/EUSART Mode	Baud Kate Formula
0	0	0	8-bit/Asynchronous	Fosc/[64 (n+1)]
0	0	1 8-bit/Asynchronous		
0	1	0	16-bit/Asynchronous	Fosc/[16 (n+1)]
0	1	1	16-bit/Asynchronous	
1	0	x	8-bit/Synchronous	Fosc/[4 (n+1)]
1	1	x	16-bit/Synchronous	

Legend: x = Don't care, n = value of SPBRGH, SPBRGL register pair.

TABLE 31-4: BAUD RATE FOR ASYNCHRONOUS MODES

					SYNC	C = 0, BRGH	l = 0, BRG	616 = 0				
BAUD	Foso	= 32.00	0 MHz	Fosc = 20.000 MHz			Fosc	= 18.43	2 MHz	Fosc = 11.0592 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)
300	_		_	_		_	_		_	_		
1200	—	_	—	1221	1.73	255	1200	0.00	239	1200	0.00	143
2400	2404	0.16	207	2404	0.16	129	2400	0.00	119	2400	0.00	71
9600	9615	0.16	51	9470	-1.36	32	9600	0.00	29	9600	0.00	17
10417	10417	0.00	47	10417	0.00	29	10286	-1.26	27	10165	-2.42	16
19.2k	19.23k	0.16	25	19.53k	1.73	15	19.20k	0.00	14	19.20k	0.00	8
57.6k	55.55k	-3.55	3	—	_	_	57.60k	0.00	7	57.60k	0.00	2
115.2k	—		—	—		—	_		—	—	_	—

		SYNC = 0, BRGH = 0, BRG16 = 0											
BAUD	Fos	c = 8.000) MHz	Fosc = 4.000 MHz			Fosc	; = 3.686	4 MHz	Fos	Fosc = 1.000 MHz		
RATE	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	Actual Rate	% Error	SPBRG value (decimal)	
300		_	_	300	0.16	207	300	0.00	191	300	0.16	51	
1200	1202	0.16	103	1202	0.16	51	1200	0.00	47	1202	0.16	12	
2400	2404	0.16	51	2404	0.16	25	2400	0.00	23	—	—	—	
9600	9615	0.16	12	_	_	_	9600	0.00	5	—	_	_	
10417	10417	0.00	11	10417	0.00	5	_	_	_	—	_	_	
19.2k	_	_	_	_	_	_	19.20k	0.00	2	—	_	_	
57.6k	—	_	_	_	_	_	57.60k	0.00	0	—	_	_	
115.2k	—	—	—	_	_	—	—	_	_	—	_	—	

34.0 INSTRUCTION SET SUMMARY

Each instruction is a 14-bit word containing the operation code (opcode) and all required operands. The opcodes are broken into three broad categories.

- · Byte-Oriented
- Bit-Oriented
- Literal and Control

The literal and control category contains the most varied instruction word format.

Table 34-3 lists the instructions recognized by the MPASM $^{\rm TM}$ assembler.

All instructions are executed within a single instruction cycle, with the following exceptions, which may take two or three cycles:

- Subroutine entry takes two cycles (CALL, CALLW)
- Returns from interrupts or subroutines take two cycles (RETURN, RETLW, RETFIE)
- Program branching takes two cycles (GOTO, BRA, BRW, BTFSS, BTFSC, DECFSZ, INCSFZ)
- One additional instruction cycle will be used when any instruction references an indirect file register and the file select register is pointing to program memory.

One instruction cycle consists of four oscillator cycles; for an oscillator frequency of 4 MHz, this gives a nominal instruction execution rate of 1 MHz.

All instruction examples use the format '0xhh' to represent a hexadecimal number, where 'h' signifies a hexadecimal digit.

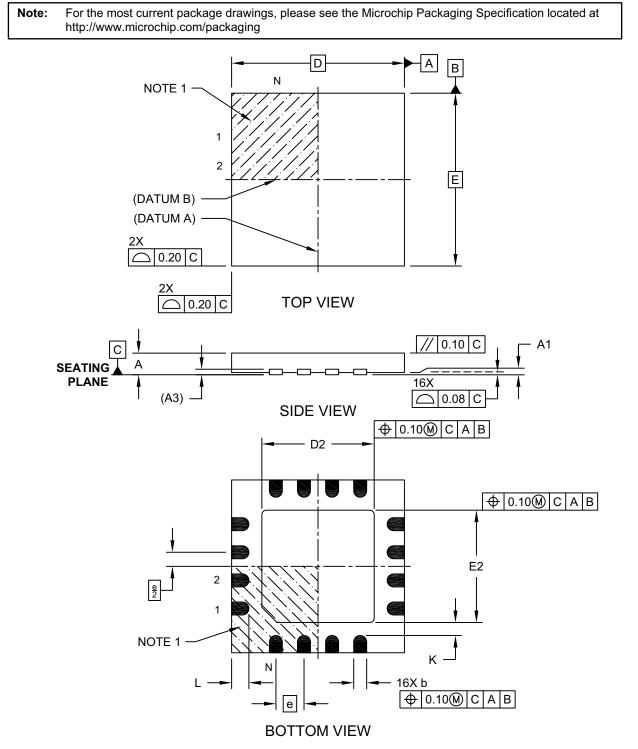
34.1 Read-Modify-Write Operations

Any write instruction that specifies a file register as part of the instruction performs a Read-Modify-Write (R-M-W) operation. The register is read, the data is modified, and the result is stored according to either the working (W) register, or the originating file register, depending on the state of the destination designator 'd' (see Table 34-1 for more information). A read operation is performed on a register even if the instruction writes to that register.

TABLE 34-1: OPCODE FIELD DESCRIPTIONS

Field	Description
f	Register file address (0x00 to 0x7F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1). The assembler will generate code with x = 0 . It is the recommended form of use for compatibility with all Microchip software tools.
d	Destination select; d = 0: store result in W, d = 1: store result in file register f.
n	FSR or INDF number. (0-1)
mm	Pre-post increment-decrement mode selection

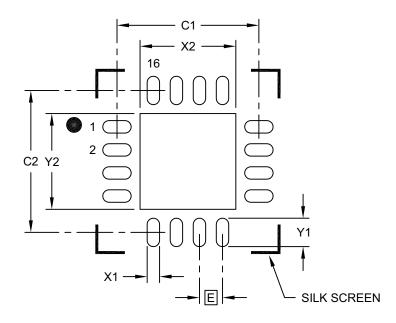
TABLE 34-2: ABBREVIATION DESCRIPTIONS


Field	Description						
PC	Program Counter						
TO	Time-Out bit						
С	Carry bit						
DC	Digit Carry bit						
Z	Zero bit						
PD	Power-Down bit						

PIC16(L)F18313/18323

FIGURE 34-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register op 13 8 7 6	
OPCODE d	f (FILE #)
d = 0 for destination W d = 1 for destination f f = 7-bit file register addr	
Bit-oriented file register ope	rations 7 6 0
OPCODE b (BIT	
b = 3-bit bit address f = 7-bit file register addr	ess
Literal and control operatior	IS
General	_
13 8 OPCODE	7 0 k (literal)
k = 8-bit immediate value	9
CALL and GOTO instructions or	nly
13 11 10	0
OPCODE	k (literal)
k = 11-bit immediate valu	le
MOVLP instruction only 13 7	6 0
OPCODE	k (literal)
k = 7-bit immediate value	; ;
MOVLB instruction only	
13	540
OPCODE	k (literal)
k = 5-bit immediate value	; ;
BRA instruction only	<u>_</u>
13 9 8 OPCODE	0 k (literal)
k = 9-bit immediate value	
	5
FSR Offset instructions	
13 7 0 OPCODE r	6 5 0 n k (literal)
n = appropriate FSR k = 6-bit immediate valu	e
FSR Increment instructions 13	3 2 1 0
OPCODE	n m (mode)
n = appropriate FSR m = 2-bit mode value	
OPCODE only 13	0
OPCOD	
L	


16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Microchip Technology Drawing C04-257A Sheet 1 of 2

16-Lead Ultra Thin Plastic Quad Flat, No Lead Package (JQ) - 4x4x0.5 mm Body [UQFN]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	MILLIMETERS				
	Units	11		3	
Dimensior	Limits	MIN	NOM	MAX	
Contact Pitch	E		0.65 BSC		
Optional Center Pad Width	X2			2.70	
Optional Center Pad Length	Y2			2.70	
Contact Pad Spacing	C1		4.00		
Contact Pad Spacing	C2		4.00		
Contact Pad Width (X16)			0.35		
Contact Pad Length (X16)	Y1			0.80	

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-2257A