

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	PIC
Core Size	8-Bit
Speed	32MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, POR, PWM, WDT
Number of I/O	6
Program Memory Size	3.5KB (2K x 14)
Program Memory Type	FLASH
EEPROM Size	256 x 8
RAM Size	256 x 8
Voltage - Supply (Vcc/Vdd)	2.3V ~ 5.5V
Data Converters	A/D 5x10b; D/A 1x5b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	8-SOIC (0.154", 3.90mm Width)
Supplier Device Package	8-SOIC
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/pic16f18313t-i-sn

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Pin Diagrams

1.0 DEVICE OVERVIEW

The PIC16(L)F18313/18323 are described within this data sheet. The PIC16(L)F18313 is available in 8-pin PDIP, SOIC and UDFN packages, and the PIC16(L)F18323 is available in 14-pin PDIP, SOIC and TSSOP packages and 16-pin UQFN packages.

Figure 1-1 shows a block diagram of the PIC16(L)F18313/18323 devices. Table 1-2 shows the pinout descriptions.

Reference Table 1-1 for peripherals available per device.

TABLE 1-1: DEVICE PERIPHERAL SUMMARY

Peripheral		PIC16(L)F18313	PIC16(L)F18323
Analog-to-Digital Converter (ADC)		•	•
Temperature Indicator		٠	٠
Digital-to-Analog Converter (DAC)			
	DAC1	•	٠
Fixed Voltage Reference (FVR)			
	ADCFVR	•	•
	CDAFVR	•	٠
Digital Signal Modulator (DSM)	•		
	DSM1	•	٠
Numerically Controlled Oscillator (NCO)		
	NCO1	•	•
Capture/Compare/PWM Modules (CCP)		1
	CCP1	•	٠
	CCP2	•	•
Comparators			
	C1	٠	٠
	C2		•
Complementary Waveform Genera	ator (CWG)		
	CWG1	•	•
Configurable Logic Cell (CLC)			
	CLC1	•	•
	CLC2	•	•
Enhanced Universal Synchronous/A Transmitter (EUSART)	Asynchronous R	eceiv	er/
	EUSART1	•	•
Master Synchronous Serial Port (M	ISSP)		1
	MSSP1	٠	٠
Pulse-Width Modulator (PWM)	1		
	PWM5	٠	٠
	PWM6	٠	٠
Timers (TMR)			
	TMR0	٠	٠
	TMR1	•	٠
	TMR2	•	٠

2.0 GUIDELINES FOR GETTING STARTED WITH PIC16(L)F183XX MICROCONTROLLERS

2.1 Basic Connection Requirements

Getting started with the PIC16(L)F183XX family of 8-bit microcontrollers requires attention to a minimal set of device pin connections before proceeding with development.

The following pins must always be connected:

All VDD and VSS pins

```
(see Section 2.2 "Power Supply Pins")
```

• MCLR pin (when configured for external operation)

(see Section 2.3 "Master Clear (MCLR) Pin")

These pins must also be connected if they are being used in the end application:

- ICSPCLK/ICSPDAT pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see **Section 2.4 "ICSP[™] Pins**")
- OSC1 and OSC2 pins when an external oscillator source is used

(see Section 2.5 "External Oscillator Pins")

Additionally, the following pins may be required:

• VREF+/VREF- pins are used when external voltage reference for analog modules is implemented

The minimum mandatory connections are shown in Figure 2-1.

2.2 Power Supply Pins

2.2.1 DECOUPLING CAPACITORS

The use of decoupling capacitors on every pair of power supply pins (VDD and Vss) is required. All VDD and Vss pins must be connected. None can be left floating.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: A 0.1 μ F (100 nF), 10-20V capacitor is recommended. The capacitor should be a low-ESR device, with a resonance frequency in the range of 200 MHz and higher. Ceramic capacitors are recommended.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is no greater than 0.25 inch (6 mm).
- Handling high-frequency noise: If the board is experiencing high-frequency noise (upward of tens of MHz), add a second ceramic type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to each primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible (e.g., 0.1 μ F in parallel with 0.001 μ F).
- Maximizing performance: On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum, thereby reducing PCB trace inductance.

2.2.2 TANK CAPACITORS

On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits, including microcontrollers, to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

^{© 2015-2016} Microchip Technology Inc.

IABLE 4	ABLE 4-4: SPECIAL FUNCTION REGISTER SUMMART BANKS 0-31 (CONTINUED)												
Address	Name	PIC16(L)F18313	PIC16(L)F18323	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on: POR, BOR	Value on all other Resets
Bank 29													
CPU CORE REGISTERS; see Table 4-2 for specifics													
E8Ch-E8Fh	_	-	- Unimplemented								—		
E90h	RA0PPS			—	_	—			0 0000	u uuuu			
E91h	RA1PPS			_	_	—			RA1PPS<4:0>			0 0000	u uuuu
E92h	RA2PPS			_	_			RA2PPS<4:0>					u uuuu
E93h	_	-	-				Unimpl	lemented				_	_
E94h	RA4PPS			_	—	—			RA4PPS<4:0>			0 0000	u uuuu
E95h	RA5PPS			_	_	—			RA5PPS<4:0>			0 0000	u uuuu
E96h-E9Fh	_	-	-				Unimpl	lemented				0 0000	u uuuu
EA0h	RC0PPS			—	_	—			RC0PPS<4:0>			0 0000	u uuuu
EA1h	RC1PPS			_	—	—			RC1PPS<4:0>			0 0000	u uuuu
EA2h	RC2PPS			_	_	_			RC2PPS<4:0>			0 0000	u uuuu
EA3h	RC3PPS			_	_	—			RC3PPS<4:0>			0 0000	u uuuu
EA4h	RC4PPS			_	_	—			RC4PPS<4:0>			0 0000	u uuuu
EA5h	RC5PPS			_	_	—			RC5PPS<4:0>			0 0000	u uuuu
E97h	_	-	_			•	Unimp	emented				0 0000	u uuuu

x = unknown, u = unchanged, q = depends on condition, - = unimplemented, read as '0', r = reserved. Shaded locations unimplemented, read as '0'. Only on PIC16F18313/18323. Legend:

Note 1:

4.3 PCL and PCLATH

The Program Counter (PC) is 15 bits wide. The low byte comes from the PCL register, which is a readable and writable register. The high byte (PC<14:8>) is not directly readable or writable and comes from PCLATH. On any Reset, the PC is cleared. Figure 4-3 shows the five situations for the loading of the PC.

FIGURE 4-3: LOADING OF PC IN DIFFERENT SITUATIONS

4.3.1 MODIFYING PCL

Executing any instruction with the PCL register as the destination simultaneously causes the Program Counter PC<14:8> bits (PCH) to be replaced by the contents of the PCLATH register. This allows the entire contents of the program counter to be changed by writing the desired upper seven bits to the PCLATH register. When the lower eight bits are written to the PCL register, all 15 bits of the program counter will change to the values contained in the PCLATH register.

4.3.2 COMPUTED GOTO

A computed GOTO is accomplished by adding an offset to the program counter (ADDWF PCL). When performing a table read using a computed GOTO method, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block). Refer to Application Note AN556, *"Implementing a Table Read"* (DS00556).

4.3.3 COMPUTED FUNCTION CALLS

A computed function CALL allows programs to maintain tables of functions and provide another way to execute state machines or look-up tables. When performing a table read using a computed function CALL, care should be exercised if the table location crosses a PCL memory boundary (each 256-byte block).

If using the CALL instruction, the PCH<2:0> and PCL registers are loaded with the operand of the CALL instruction.

The CALLW instruction enables computed calls by combining PCLATH and W to form the destination address. A computed CALLW is accomplished by loading the W register with the desired address and executing CALLW. The PCL register is loaded with the value of W and PCH is loaded with PCLATH.

4.3.4 BRANCHING

The branching instructions add an offset to the PC. This allows relocatable code and code that crosses page boundaries. There are two forms of branching, BRW and BRA. The PC will have incremented to fetch the next instruction in both cases. When using either branching instruction, a PCL memory boundary may be crossed.

If using BRW, load the W register with the desired unsigned address and execute BRW. The entire PC will be loaded with the address PC + 1 + W.

If using BRA, the signed 9-bit literal value ('k') of the operand of the BRA instruction is added to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + k.

REGISTER	5-3: CC	NFIGURATIO	ON WORD 3:	MEMORY			
		R/P-1	U-1	U-1	U-1	U-1	U-1
		LVP ⁽¹⁾	—	—	—	—	_
		bit 13	•	•	•		bit 8
U-1	U-1	U-1	U-1	U-1	U-1	R/P-1	R/P-1
	_	_				WRT1	WRT0
bit 7							bit 0
Legend:							
R = Readable I	oit	P = Programma	able bit	U = Unimpleme	ented bit, read as	'1'	
'0' = Bit is clear	red	'1' = Bit is set		n = Value when	blank or after Bu	ılk Erase	
bit 13	LVP: Low-Volta	age Programming	Enable bit		· · · · · · ·		6
	1 = ON Lo	ow-Voltage Progr	amming is enabl	ed. MCLR/VPP p	oin function is MC	CLR. MCLRE CO	nfiguration bit is
	0 = OFF H	V on MCLR/VPP	must be used for	programming.			
bit 12-2	Unimplemente	ed: Read as '1'					
bit 1-0 WRT<1:0>: User NVM Self-Write Protection bits 11 = OFF Write protection off 10 = BOOT 0000h to 01FFh write-protected, 0200h to 07FFh may be modified 01 = HALF 0000h to 03FFh write-protected, 0400h to 07FFh may be modified 00 = ALL 0000h to 07FFh write-protected, no addresses may be modified WRT applies only to the self-write feature of the device; writing through ICSP™ is never protected.							

Note 1: The LVP bit cannot be programmed to '0' when Programming mode is entered via LVP.

6.11 Determining the Cause of a Reset

Upon any Reset, multiple bits in the STATUS and PCON0 registers are updated to indicate the cause of the Reset. Table 6-3 and Table 6-4 show the Reset conditions of these registers.

STKOVF	STKUNF	RWDT	RMCLR	RI	POR	BOR	то	PD	Condition
0	0	1	1	1	0	x	1	1	Power-on Reset
0	0	1	1	1	0	x	0	x	Illegal, $\overline{\text{TO}}$ is set on $\overline{\text{POR}}$
0	0	1	1	1	0	x	x	0	Illegal, PD is set on POR
0	0	u	1	1	u	0	1	1	Brown-out Reset
u	u	0	u	u	u	u	0	u	WDT Reset
u	u	u	u	u	u	u	0	0	WDT Wake-up from Sleep
u	u	u	u	u	u	u	1	0	Interrupt Wake-up from Sleep
u	u	u	0	u	u	u	u	u	MCLR Reset during normal operation
u	u	u	0	u	u	u	1	0	MCLR Reset during Sleep
u	u	u	u	0	u	u	u	u	RESET Instruction Executed
1	u	u	u	u	u	u	u	u	Stack Overflow Reset (STVREN = 1)
u	1	u	u	u	u	u	u	u	Stack Underflow Reset (STVREN = 1)

TABLE 6-3: RESET STATUS BITS AND THEIR SIGNIFICANCE

TABLE 6-4: RESET CONDITION FOR SPECIAL REGISTERS

Condition	Program Counter	STATUS Register	PCON0 Register
Power-on Reset	0000h	1 1000	00 110x
MCLR Reset during normal operation	0000h	u uuuu	uu Ouuu
MCLR Reset during Sleep	0000h	1 Ouuu	uu Ouuu
WDT Reset	0000h	0 uuuu	uu-0 uuuu
WDT Wake-up from Sleep	PC + 1	0 Ouuu	uu-u uuuu
Brown-out Reset	0000h	1 1000	00-1 11u0
Interrupt Wake-up from Sleep	PC + 1 ⁽¹⁾	1 Ouuu	uu-u uuuu
RESET Instruction Executed	0000h	u uuuu	uu-u u0uu
Stack Overflow Reset (STVREN = 1)	0000h	u uuuu	lu-u uuuu
Stack Underflow Reset (STVREN = 1)	0000h	u uuuu	ul-u uuuu

Legend: u = unchanged, x = unknown, - = unimplemented bit, reads as '0'.

Note 1: When the wake-up is due to an interrupt and Global Enable bit (GIE) is set, the return address is pushed on the stack and PC is loaded with the interrupt vector (0004h) after execution of PC + 1.

REGISTER 7-	4: OSCS	TAT1: OSCIL	LATOR ST	ATUS REGIS	TER 1		
R-q/q	R-q/q	U-0	R-q/q	R-q/q	R-q/q	U-0	R-q/q
EXTOR	HFOR	_	LFOR	SOR	ADOR	_	PLLR
bit 7							bit 0
Legend:							
R = Readable bit	t	W = Writable b	it	U = Unimplem	ented bit, read as	s '0'	
u = Bit is unchanged x = Bit is unknown -n/n = Value at POR a						Value at all other	Resets
'1' = Bit is set		'0' = Bit is clear	ed	q = Reset valu	e is determined l	by hardware	
bit 7 bit 6 bit 5 bit 4	EXTOR: EXTO 1 = The oscil 0 = The oscil HFOR: HFINTO 1 = The oscil 0 = The oscil Unimplemente LFOR: LFINTO 1 = The oscil 0 = The oscill	SC (external) O lator is ready to lator is not enab DSC Oscillator R lator is ready to lator is not enab ed: Read as '0' DSC Oscillator R lator is ready to lator is not enab	scillator Ready I be used led, or is not ye eady bit be used led, or is not ye eady bit be used led, or is not yet	bit t ready to be use t ready to be use ready to be use	d. d.		
bit 3	SOR: Seconda 1 = The oscil 0 = The oscill	ry (Timer1) Osci lator is ready to lator is not enabl	llator Ready bit be used ed, or is not yet	ready to be use	d.		
bit 2	ADOR: ADCRO 1 = The oscil 0 = The oscill	C Oscillator Read lator is ready to lator is not enabl	dy bit be used led, or is not yet	ready to be use	d		
bit 1	Unimplemente	ed: Read as '0'					
bit 0	PLLR: PLL is F 1 = The PLL	Ready bit is ready to be us	sed				

0 = The PLL is not enabled, the required input source is not ready, or the PLL is not ready.

FIGURE 8-2:	INTERRUPT LA	TENCY				
						Rev. 10-000289E 8/31/2016
OSC1 ////	03 04 01 02 03 0	4 Q1 Q2 Q3 Q4				Q1 Q2 Q3 Q4
INT pin	Valid Interrupt	1 Cycle In	struction a	t PC		
Fetch PC	- 1 PC	PC + 1		PC = 0x0004	PC = 0x0005	PC = 0x0006
Execute PC	- 21 PC - 1	PC	NOP	NOP	PC = 0x0004	PC = 0x0005
	Indeterminate Laten cy ⁽²⁾	•	Latency			
Note 1: An inter 2: Since a	rupt may occur at any n interrupt may occur	time during the in any time during th	terrupt window e interrupt wind	dow, the actual lat	ency can vary.	

10.6 Register Definitions: Watchdog Control

REGISTER 10-1: WDTCON: WATCHDOG TIMER CONTROL REGISTER

U-0	U-0	R/W-0/0	R/W-1/1	R/W-0/0	R/W-1/1	R/W-1/1	R/W-0/0
	—			WDTPS<4:0>(1)		SWDTEN
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimplem	ented bit, read	d as '0'	
u = Bit is uncha	anged	x = Bit is unkr	iown	-m/n = Value a	at POR and BO	OR/Value at all	other Resets
'1' = Bit is set	•	'0' = Bit is clea	ared				
							,
bit 7-6	Unimplemen	ted: Read as '	o'				
bit 5-1	WDTPS<4:0>	: Watchdog Tir	mer Period S	elect bits ⁽¹⁾			
	Bit Value = P	Prescale Rate					
	11111 = Res	served. Results	s in minimum	interval (1:32)			
	•						
	•						
	• 10011 = Re	served Results	s in minimum	interval (1:32)			
	10011 100			(1.0 <u>2</u>)			
	10010 = 1:8	388608 (2 ²³) (I	nterval 256s	nominal)			
	10001 = 1:4	194304 (2 ²²) (I	nterval 128s	nominal)			
	10000 = 1:2	$097152(2^{-1})(1)$	nterval 64s r	iominal)			
	01111 = 1.1	048576 (2 ⁻²) (1 24288 (2 ¹⁹) (In	nterval 325 r	iominal)			
	01110 = 1.3	62144 (2 ¹⁸) (In	iterval 8s nor	ninal)			
	01101 = 1.2 01100 = 1.1	31072 (2 ¹⁷) (In	iterval 4s nor	ninal)			
	01011 = 1:6	5536 (Interval	2s nominal)	(Reset value)			
	01010 = 1:3	2768 (Interval	1s nominal)	(,			
	01001 = 1:1	6384 (Interval	512 ms nomi	nal)			
	01000 = 1:8	192 (Interval 2	56 ms nomin	al)			
	00111 = 1:4	096 (Interval 12	28 ms nomin	al)			
	00110 = 1:2	048 (Interval 64	4 ms nomina	l)			
	00101 = 1:1	024 (Interval 3	2 ms nomina	l)			
	00100 = 1:5	12 (Interval 16	ms nominal)				
	00011 = 1:2	56 (Interval 8 n	ns nominal)				
	00010 = 1.1	20 (Interval 4 I	ns nominal)				
	00001 = 1.0	2 (Interval 1 m	s nominal)				
bit 0	SWDTEN: So	ftware Enable/	Disable for V	Vatchdog Timer	hit		
Sit 0	If WDTF<1:0>	$> = 1x^{\circ}$		atonaog miler			
	This bit is iand	ored.					
	If WDTE<1:0>	> = 01:					
	1 = WDT is tu	urned on					
	0 = WDT is tu	urned off					
	<u>If WDTE<1:0></u>	<u>> = 00</u> :					
	This bit is igno	ored.					

EXAMPLE 11-3: ERASING ONE ROW OF PROGRAM FLASH MEMORY

; This sample row erase routine assumes the following: ; 1.A valid address within the erase row is loaded in variables ADDRH:ADDRL ; 2.ADDRH and ADDRL are located in common RAM (locations 0x70 - 0x7F) BANKSEL NVMADRL MOVF ADDRL,W MOVWF NVMADRL ; Load lower 8 bits of erase address boundary MOVF ADDRH,W MOVWF NVMADRH ; Load upper 6 bits of erase address boundary BCF NVMCON1,NVMREGS ; Choose Program Flash Memory area NVMCON1, FREE ; Specify an erase operation BSF NVMCON1,WREN ; Enable writes BSF BCF INTCON, GIE ; Disable interrupts during unlock sequence ; -----REQUIRED UNLOCK SEQUENCE:-----MOVIW 55h ; Load 55h to get ready for unlock sequence MOVWF NVMCON2 ; First step is to load 55h into NVMCON2 MOVLW AAh ; Second step is to load AAh into W MOVWF NVMCON2 ; Third step is to load AAh into NVMCON2 BSF NVMCON1,WR ; Final step is to set WR bit ; ------BSF INTCON,GIE ; Re-enable interrupts, erase is complete BCF NVMCON1,WREN ; Disable writes

TABLE 11-2: NVM ORGANIZATION AND ACCESS INFORMATION

Ν	laster Values		N	VMREG Acc	FSR Access			
Memory Function	Program Counter (PC), ICSP Address	Memory Type	NVMREGS bit (NVMCON1)	NVMADR <14:0>	Allowed Operations	FSR Address	FSR Programming Address	
Reset Vector	0000h		0	0000h		8000h		
User Memory	0001h		0	0001h		8001h		
	0003h	Program		0003h	READ	8003h	READ-ONLY	
INT Vector	0004h	Flash	0	0004h	WRITE	8004h		
User Memory	0005h	Memory	0	0005h		8005h		
	07FFh			07FFh		FFFFh		
User ID		Program	1	0000h	READ			
		Flash Memory		0003h				
Reserved]	—	—	0004h	—			
Rev ID	No PC		1	0005h		NO	ACCESS	
Device ID	Address		1	0006h			100200	
CONFIG1		Program	1	0007h	READ			
CONFIG2]	Flash	1	0008h				
CONFIG3		Memory	1	0009h				
CONFIG4]			000Ah				
User Memory		EEPROM	1	7000h	READ	7000h	READ-ONLY	
				70FFh	WRITE	70FFh		

19.1.1 PWM PERIOD

Referring to Figure 19-1, the PWM output has a period and a pulse width. The frequency of the PWM is the inverse of the period (1/period).

The PWM period is specified by writing to the PR2 register. The PWM period can be calculated using the following formula:

EQUATION 19-1: PWM PERIOD

 $PWM Period = [(PR2) + 1] \cdot 4 \cdot TOSC$ $\cdot (TMR2 Prescale Value)$

Note 1: Tosc = 1/Fosc

When TMR2 is equal to PR2, the following three events occur on the next increment cycle:

- TMR2 is cleared
- The PWMx pin is set (Exception: If the PWM duty cycle = 0%, the pin will not be set.)
- The PWM pulse width is latched from PWMxDC.

Note: If the pulse width value is greater than the period the assigned PWM pin(s) will remain unchanged.

19.1.2 PWM DUTY CYCLE

The PWM duty cycle is specified by writing a 10-bit value to the PWMxDC register. The PWMxDCH contains the eight MSbs and the PWMxDCL<7:6> bits contain the two LSbs.

The PWMDC register is double-buffered and can be updated at any time. This double buffering is essential for glitch-free PWM operation. New values take effect when TMR2 = PR2. Note that PWMDC is left-justified.

The 8-bit timer TMR2 register is concatenated with either the 2-bit internal system clock (Fosc), or two bits of the prescaler, to create the 10-bit time base. The system clock is used if the Timer2 prescaler is set to 1:1.

Equation 19-2 is used to calculate the PWM pulse width.

Equation 19-3 is used to calculate the PWM duty cycle ratio.

EQUATION 19-2: PULSE WIDTH

Pulse Width = (PWMxDC) · TOSC · (TMR2 Prescale Value)

EQUATION 19-3: DUTY CYCLE RATIO

 $Duty Cycle Ratio = \frac{(PWMxDC)}{4(PR2+1)}$

19.1.3 PWM RESOLUTION

PWM resolution, expressed in number of bits, defines the maximum number of discrete steps that can be present in a single PWM period. For example, a 10-bit resolution will result in 1024 discrete steps, whereas an 8-bit resolution will result in 256 discrete steps.

The maximum PWM resolution is ten bits when PR2 is 255. The resolution is a function of the PR2 register value as shown by Equation 19-4.

EQUATION 19-4: PWM RESOLUTION

```
Resolution = \frac{\log[4(PR2+1)]}{\log(2)} bits
```

Note: If the pulse-width value is greater than the period the assigned PWM pin(s) will remain unchanged.

19.1.4 OPERATION IN SLEEP MODE

In Sleep mode, the TMR2 register will not increment and the state of the module will not change. If the PWMx pin is driving a value, it will continue to drive that value. When the device wakes up, TMR2 will continue from its previous state.

19.1.5 CHANGES IN SYSTEM CLOCK FREQUENCY

The PWM frequency is derived from the system clock frequency. Any changes in the system clock frequency will result in changes to the PWM frequency. See **Section 7.0, Oscillator Module** for additional details.

R/W-0/0	U-0	U-0	U-0	R/W-x/u	R/W-x/u	R/W-x/u	R/W-x/u			
LCxPOL	—	—	_	LCxG4POL	LCxG3POL	LCxG2POL	LCxG1POL			
bit 7							bit 0			
Legend:										
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'						
u = Bit is unch	anged	x = Bit is unkr	nown	-n/n = Value at POR and BOR/Value at all other Resets						
'1' = Bit is set		'0' = Bit is clea	ared							
bit 7	LCxPOL: CLCxOUT Output Polarity Control bit									
	1 = The output of the logic cell is inverted									
	0 = The outp	ut of the logic of	cell is not inve	rted						
bit 6-4	Unimplemen	ted: Read as '	0'							
bit 3	LCxG4POL:	Gate 3 Output	Polarity Contr	ol bit						
	1 = The outp	ut of gate 3 is i	nverted when	applied to the	logic cell					
	0 = The outp	ut of gate 3 is r	not inverted							
bit 2	LCxG3POL:	Gate 2 Output	Polarity Contr	ol bit						
	1 = The outp	ut of gate 2 is i	nverted when	applied to the	logic cell					
	0 = The outp	ut of gate 2 is r	not inverted							
bit 1	LCxG2POL:	Gate 1 Output	Polarity Contr	ol bit						
	1 = The outp	ut of gate 1 is i	nverted when	applied to the	logic cell					
	0 = 1 he outp	ut of gate 1 is r	not inverted							
bit 0	LCxG1POL:	Gate 0 Output	Polarity Contr	ol bit						
	1 = The outp	ut of gate 0 is i	nverted when	applied to the	logic cell					
	0 = The outp	ut of gate 0 is i	not inverted							

REGISTER 21-2: CLCxPOL: SIGNAL POLARITY CONTROL REGISTER

TABLE 22-1: ADC CLOCK PERIOD (TAD) Vs. DEVICE OPERATING FREQUENCIES

ADC Clock P	eriod (TAD)	Device Frequency (Fosc)							
ADC Clock Source	ADCS<2:0>	32 MHz	20 MHz	16 MHz	8 MHz	4 MHz	1 MHz		
Fosc/2	000	62.5ns ⁽²⁾	100 ns ⁽²⁾	125 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	2.0 μs		
Fosc/4	100	125 ns ⁽²⁾	200 ns ⁽²⁾	250 ns ⁽²⁾	500 ns ⁽²⁾	1.0 μs	4.0 μs		
Fosc/8	001	0.5 μs ⁽²⁾	400 ns ⁽²⁾	0.5 μs ⁽²⁾	1.0 μs	2.0 μs	8.0 μs ⁽³⁾		
Fosc/16	101	800 ns	800 ns	1.0 μs	2.0 μs	4.0 μs	16.0 μs ⁽³⁾		
Fosc/32	010	1.0 μs	1.6 μs	2.0 μs	4.0 μs	8.0 μs ⁽³⁾	32.0 μs ⁽²⁾		
Fosc/64	110	2.0 μs	3.2 μs	4.0 μs	8.0 μs ⁽³⁾	16.0 μs (2)	64.0 μs ⁽²⁾		
ADCRC	x11	1.0-6.0 μs ^(1,4)							

Legend: Shaded cells are outside of recommended range.

Note 1: See TAD parameter for ADCRC source typical TAD value.

2: These values violate the required TAD time.

3: Outside the recommended TAD time.

4: The ADC clock period (TAD) and total ADC conversion time can be minimized when the ADC clock is derived from the system clock Fosc. However, the ADCRC oscillator source must be used when conversions are to be performed with the device in Sleep mode.

23.5 Interrupts

When the accumulator overflows (NCO_overflow), the NCO1 Interrupt Flag bit, NCO1IF, of the PIR2 register is set. To enable the interrupt event (NCO_interrupt), the following bits must be set:

- N1EN bit of the NCO1CON register
- NCO1IE bit of the PIE2 register
- · PEIE bit of the INTCON register
- GIE bit of the INTCON register

The interrupt must be cleared by software by clearing the NCO1IF bit in the Interrupt Service Routine.

23.6 Effects of a Reset

All of the NCO1 registers are cleared to zero as the result of a Reset.

23.7 Operation in Sleep

The NCO1 module operates independently from the system clock and will continue to run during Sleep, provided that the clock source selected remains active.

The HFINTOSC remains active during Sleep when the NCO1 module is enabled and the HFINTOSC is selected as the clock source, regardless of the system clock source selected.

In other words, if the HFINTOSC is simultaneously selected as the system clock and the NCO1 clock source, when the NCO1 is enabled, the CPU will go idle during Sleep, but the NCO1 will continue to operate and the HFINTOSC will remain active.

This will have a direct effect on the Sleep mode current

REGISTER 29-4: CCPRxH REGISTER: CCPx REGISTER HIGH BYTE

| R/W-x/x |
|---------|---------|---------|---------|---------|---------|---------|---------|
| | | | CCPRx | <15:8> | | | |
| bit 7 | | | | | | | bit 0 |
| | | | | | | | |
| Logondi | | | | | | | |

Legena:		
R = Readable bit	W = Writable bit	U = Unimplemented bit, read as '0'
u = Bit is unchanged	x = Bit is unknown	-n/n = Value at POR and BOR/Value at all other Reset
'1' = Bit is set	'0' = Bit is cleared	

bit 7-0	<u>CCPxMODE = Capture Mode</u>
	CCPRxH<7:0>: Captured value of TMR1H
	<u>CCPxMODE = Compare Mode</u>
	CCPRxH<7:0>: MS Byte compared to TMR1H
	CCPxMODE = PWM Modes when CCPxFMT = 0
	CCPRxH<7:2>: Not used
	CCPRxH<1:0>: Pulse-width Most Significant two bits
	CCPxMODE = PWM Modes when CCPxFMT = 1
	CCPRxH<7:0>: Pulse-width Most Significant eight bits

© 2015-2016 Microchip Technology Inc.

FIGURE 30-20: I²C SLAVE, 10-BIT ADDRESS, RECEPTION (SEN = 1, AHEN = 0, DHEN = 0)

PIC16(L)F18313/18323

30.6.2 CLOCK ARBITRATION

Clock arbitration occurs when the master, during any receive, transmit or Repeated Start/Stop condition, releases the SCL pin (SCL allowed to float high). When the SCL pin is allowed to float high, the Baud Rate Generator (BRG) is suspended from counting until the SCL pin is actually sampled high. When the SCL pin is sampled high, the Baud Rate Generator is reloaded with the contents of SSP1ADD<7:0> and begins counting. This ensures that the SCL high time will always be at least one BRG rollover count in the event that the clock is held low by an external device (Figure 30-25).

FIGURE 30-25: BAUD RATE GENERATOR TIMING WITH CLOCK ARBITRATION

30.6.3 WCOL STATUS FLAG

If the user writes the SSP1BUF when a Start, Restart, Stop, Receive or Transmit sequence is in progress, the WCOL is set and the contents of the buffer are unchanged (the write does not occur). Any time the WCOL bit is set it indicates that an action on SSP1BUF was attempted while the module was not idle.

Note:	Because queuing of events is not allowed,		
	writing to the lower five bits of SSP1CON2		
	is disabled until the Start condition is complete.		

BCF	Bit Clear f
Syntax:	[<i>label</i>]BCF f,b
Operands:	$0 \le f \le 127$ $0 \le b \le 7$
Operation:	$0 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is cleared.

BTFSC	Bit Test f, Skip if Clear
Syntax:	[label] BTFSC f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	skip if (f) = 0
Status Affected:	None
Description:	If bit 'b' in register 'f' is '1', the next instruction is executed. If bit 'b', in register 'f', is '0', the next instruction is discarded, and a NOP is executed instead, making this a 2-cycle instruction.

BRA	Relative Branch	BTFSS	Bit Test f, Skip if Set
Syntax:	[label] BRA label	Syntax:	[label] BTFSS f,b
	[<i>label</i>]BRA \$+k	Operands:	$0 \leq f \leq 127$
Operands:	-256 ≤ label - PC + 1 ≤ 255		$0 \le b < 7$
	$-256 \le k \le 255$	Operation:	skip if (f) = 1
Operation:	$(PC) + 1 + k \rightarrow PC$	Status Affected:	None
Status Affected:	None	Description:	If bit 'b' in register 'f' is '0', the next
Description:	Add the signed 9-bit literal 'k' to the PC. Since the PC will have incremented to fatch the next		instruction is executed. If bit 'b' is '1', then the next instruction is discarded and a NOP is executed
	instruction, the new address will be $PC + 1 + k$. This instruction is a		instead, making this a 2-cycle
	2-cycle instruction. This branch has a limited range.		

BRW	Relative Branch with W
Syntax:	[label] BRW
Operands:	None
Operation:	$(PC) + (W) \to PC$
Status Affected:	None
Description:	Add the contents of W (unsigned) to the PC. Since the PC will have incremented to fetch the next instruction, the new address will be PC + 1 + (W). This instruction is a 2-cycle instruction.

BSF	Bit Set f
Syntax:	[label]BSF f,b
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ 0 \leq b \leq 7 \end{array}$
Operation:	$1 \rightarrow (f \le b >)$
Status Affected:	None
Description:	Bit 'b' in register 'f' is set.

© 2015-2016 Microchip Technology Inc.

TRIS	Load TRIS Register with W
Syntax:	[label] TRIS f
Operands:	$5 \leq f \leq 7$
Operation:	(W) \rightarrow TRIS register 'f'
Status Affected:	None
Description:	Move data from W register to TRIS register. When 'f' = 5, TRISA is loaded. When 'f' = 6, TRISB is loaded. When 'f' = 7, TRISC is loaded.

XORLW	Exclusive OR literal with W
Syntax:	[<i>label</i>] XORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .XOR. $k \rightarrow (W)$
Status Affected:	Z
Description:	The contents of the W register are XOR'ed with the 8-bit literal 'k'. The result is placed in the W register.

XORWF	Exclusive OR W with f
Syntax:	[label] XORWF f,d
Operands:	$\begin{array}{l} 0 \leq f \leq 127 \\ d \in [0,1] \end{array}$
Operation:	(W) .XOR. (f) \rightarrow (destination)
Status Affected:	Z
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.

© 2015-2016 Microchip Technology Inc.