

Welcome to E-XFL.COM

Understanding <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Embedded - DSP (Digital Signal Processors) are specialized microprocessors designed to perform complex mathematical computations on digital signals in real-time. Unlike general-purpose processors, DSPs are optimized for high-speed numeric processing tasks, making them ideal for applications that require efficient and precise manipulation of digital data. These processors are fundamental in converting and processing signals in various forms, including audio, video, and communication signals, ensuring that data is accurately interpreted and utilized in embedded systems.

Applications of <u>Embedded - DSP (Digital</u> <u>Signal Processors)</u>

Details

Product Status	Active
Туре	-
Interface	-
Clock Rate	-
Non-Volatile Memory	-
On-Chip RAM	-
Voltage - I/O	-
Voltage - Core	-
Operating Temperature	-
Mounting Type	-
Package / Case	-
Supplier Device Package	-
Purchase URL	https://www.e-xfl.com/pro/item?MUrl=&PartUrl=msc8157tag1000a

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

1 Block Diagram

Figure 1. MSC8157 Block Diagram

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
E13	NC	Non-user	N/A
E14	NC	Non-user	N/A
E15	INT_OUT/CP_TX_INT	0	QVDD
E16	HRESET	I/O	QVDD
E17	тск	I	QVDD
E18	VSS	Ground	N/A
E19	NVDD	Power	N/A
E20	GE2_RD3/CP_LOS2	I	NVDD
E21	VSS	Ground	N/A
E22	VSS	Non-user	N/A
E23	NVDD	Power	N/A
E24	GPIO27/TMR4/RCW_SRC0	I/O	NVDD
E25	VSS	Ground	N/A
E26	GPIO0/IRQ0/RC0/CP_SYNC1	I/O	NVDD
E27	GPIO17/SPI_SCK/CP_LOS3	I/O	NVDD
E28	GPIO1/IRQ1/RC1/CP_SYNC2	I/O	NVDD
F1	MDQ40	I/O	GVDD
F2	MDQ41	I/O	GVDD
F3	MDQS5	I/O	GVDD
F4	MDQS5	I/O	GVDD
F5	MDQ43	I/O	GVDD
F6	MDQ47	I/O	GVDD
F7	MDM6	0	GVDD
F8	VDD	Power	N/A
F9	VSS	Ground	N/A
F10	VDD	Power	N/A
F11	NC	Non-user	N/A
F12	NC	Non-user	N/A
F13	VSS	Ground	N/A
F14	NC	Non-user	N/A
F15	NMI_OUT/CP_RX_INT	0	QVDD
F16	VSS	Ground	N/A
F17	TDI	I	QVDD
F18	VSS	Ground	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
M21	NC	NC	N/A
M22	NC	NC	N/A
M23	SD_A_TX	0	SXPVDD
M24	SD_A_TX	0	SXPVDD
M25	SXPVDD	Power	N/A
M26	SXPVSS	Ground	N/A
M27	SD_A_RX	I	SXCVDD
M28	SD_A_RX	I	SXCVDD
N1	MRAS	0	GVDD
N2	VSS	Ground	N/A
N3	NC	Non-user	N/A
N4	GVDD	Power	N/A
N5	VSS	Ground	N/A
N6	MODT1	0	GVDD
N7	CRPEVDD	Power	N/A
N8	VSS	Ground	N/A
N9	CRPEVDD	Power	N/A
N10	VSS	Ground	N/A
N11	CRPEVDD	Power	N/A
N12	VSS	Ground	N/A
N13	VDD	Power	N/A
N14	VSS	Ground	N/A
N15	VDD	Power	N/A
N16	VSS	Ground	N/A
N17	VDD	Power	N/A
N18	VSS	Ground	N/A
N19	VDD	Power	N/A
N20	VSS	Ground	N/A
N21	NC	NC	N/A
N22	NC	NC	N/A
N23	SXPVDD	Power	N/A
N24	SXPVSS	Ground	N/A
N25	SD_B_TX	0	SXPVDD
N26	SD_B_TX	0	SXPVDD

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
N27	SXCVSS	Ground	N/A
N28	SXCVDD	Power	N/A
P1	MCK2	0	GVDD
P2	MA10	0	GVDD
P3	NC	Non-user	N/A
P4	MA4	0	GVDD
P5	NC	Non-user	N/A
P6	MODT0	0	GVDD
P7	VSS	Ground	N/A
P8	CRPEVDD	Power	N/A
P9	VSS	Ground	N/A
P10	CRPEVDD	Power	N/A
P11	VSS	Ground	N/A
P12	VDD	Power	N/A
P13	VSS	Ground	N/A
P14	VDD	Power	N/A
P15	VSS	Ground	N/A
P16	VDD	Power	N/A
P17	VSS	Ground	N/A
P18	VDD	Power	N/A
P19	VSS	Ground	N/A
P20	VDD	Power	N/A
P21	NC	NC	N/A
P22	SD_IMP_CAL_RX	I	SXCVDD
P23	NC	NC	N/A
P24	NC	NC	N/A
P25	SXPVDD	Power	N/A
P26	SXPVSS	Ground	N/A
P27	SD_B_RX	I	SXCVDD
P28	SD_B_RX	I	SXCVDD
R1	MCK2	0	GVDD
R2	GVDD	Power	N/A
R3	MAO	0	GVDD
R4	VSS	Ground	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
AA7	MCKE0	0	GVDD
AA8	VSS	Ground	N/A
AA9	GVDD	Power	N/A
AA10	VSS	Ground	N/A
AA11	M3VDD	Power	N/A
AA12	VSS	Ground	N/A
AA13	M3VDD	Power	N/A
AA14	VSS	Ground	N/A
AA15	CPRIVDD	Power	N/A
AA16	VSS	Ground	N/A
AA17	CPRIVDD	Power	N/A
AA18	VSS	Ground	N/A
AA19	CPRIVDD	Power	N/A
AA20	NC	NC	N/A
AA21	SD_IMP_CAL_TX	I	SXPVDD
AA22	NC	NC	N/A
AA23	NC	NC	N/A
AA24	NC	NC	N/A
AA25	SD_E_TX	0	SXPVDD
AA26	SD_E_TX	0	SXPVDD
AA27	SXCVSS	Ground	N/A
AA28	SXCVDD	Power	N/A
AB1	MDQS8	I/O	GVDD
AB2	MDM8	0	GVDD
AB3	MECC2	I/O	GVDD
AB4	MECC1	I/O	GVDD
AB5	NC	Non-user	N/A
AB6	MAPAR_IN	I	GVDD
AB7	MBA2	0	GVDD
AB8	MDQ2	I/O	GVDD
AB9	MDQ1	I/O	GVDD
AB10	MDQ0	I/O	GVDD
AB11	VSS	Ground	N/A
AB12	M3VDD	Power	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
AC19	NC	NC	N/A
AC20	NC	Non-user	N/A
AC21	NC	NC	N/A
AC22	NC	NC	N/A
AC23	NC	NC	N/A
AC24	NC	NC	N/A
AC25	SD_F_TX	0	SXPVDD
AC26	SD_F_TX	0	SXPVDD
AC27	SXCVSS	Ground	N/A
AC28	SXCVDD	Power	N/A
AD1	MECC7	I/O	GVDD
AD2	MECC6	I/O	GVDD
AD3	MECC0	I/O	GVDD
AD4	MECC5	I/O	GVDD
AD5	MECC3	I/O	GVDD
AD6	MDQ24	I/O	GVDD
AD7	MDM0	0	GVDD
AD8	MDQS0	I/O	GVDD
AD9	MDQS0	I/O	GVDD
AD10	MDQ4	I/O	GVDD
AD11	MDQ6	I/O	GVDD
AD12	VSS	Non-user	N/A
AD13	VSS	Non-user	N/A
AD14	VSS	Non-user	N/A
AD15	VSS	Ground	N/A
AD16	VSS	Ground	N/A
AD17	NC	NC	N/A
AD18	SD_PLL2_AVDD	Power	N/A
AD19	NC	NC	N/A
AD20	NC	NC	N/A
AD21	NC	NC	N/A
AD22	NC	NC	N/A
AD23	NC	NC	N/A
AD24	NC	NC	N/A

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
AD25	SXPVDD	Power	N/A
AD26	SXPVSS	Ground	N/A
AD27	SD_F_RX	I	SXCVDD
AD28	SD_F_RX	I	SXCVDD
AE1	MDQS2	I/O	GVDD
AE2	VSS	Ground	N/A
AE3	MDQ18	I/O	GVDD
AE4	GVDD	Power	N/A
AE5	VSS	Ground	N/A
AE6	MDQ29	I/O	GVDD
AE7	GVDD	Power	N/A
AE8	VSS	Ground	N/A
AE9	MDQ5	I/O	GVDD
AE10	GVDD	Power	N/A
AE11	VSS	Ground	N/A
AE12	MDQ9	I/O	GVDD
AE13	VSS	Non-user	N/A
AE14	VSS	Ground	N/A
AE15	VSS	Ground	N/A
AE16	VSS	Ground	N/A
AE17	NC	NC	N/A
AE18	SD_PLL2_AGND	Ground	N/A
AE19	NC	NC	N/A
AE20	SD_J_TX	0	SXPVDD
AE21	SXPVDD	Power	N/A
AE22	SD_I_TX	0	SXPVDD
AE23	SXPVDD	Power	N/A
AE24	NC	NC	N/A
AE25	SD_G_TX	0	SXPVDD
AE26	SD_G_TX	0	SXPVDD
AE27	SXCVSS	Ground	N/A
AE28	SXCVDD	Power	N/A
AF1	MDQS2	I/O	GVDD
AF2	MDQ17	I/O	GVDD

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail
			Name
AH15	PLL1_AVDD	Power	N/A
AH16	PLL2_AVDD	Power	N/A
AH17	NC	NC	N/A
AH18	SXCVDD	Power	N/A
AH19	SD_REF_CLK2	I	SXCVDD
AH20	SXCVDD	Power	N/A
AH21	SD_J_RX	I	SXCVDD
AH22	SXCVDD	Power	N/A
AH23	SD_I_RX	I	SXCVDD
AH24	SXCVDD	Power	N/A
AH25	SXPVDD	Power	N/A
AH26	SXPVSS	Ground	N/A
AH27	SD_H_RX	I	SXCVDD
AH28	SD_H_RX	I	SXCVDD

Table 1. Signal List by Ball Number (continued)

Signal function during power-on reset is determined by the RCW source type. Selection of RapidIO, SGMII, CPRI, and PCI Notes: 1. Express functionality during normal operation is configured by the RCW bit values. Selection of the GPIO function and other functions is done by GPIO register setup. For signals with GPIO functionality, the open-drain and internal 20 KΩ pull-up resistor can be configured by GPIO register programming. For configuration details, see the GPIO chapter in the MSC8157 Reference Manual.

NC signals should be disconnected for compatibility with future revisions of the device. Non-user signals are reserved for 2. manufacturing and test purposes only. The assigned signal name is used to indicate whether the signal must be unconnected (Reserved), pulled down (VSS or SXCVSS), or pulled up (VDD).

Pin types are: Ground = all VSS connections; Power = all VDD connections; I = Input; O = Output; I/O = Input/Output; NC = not 3. connected; non-user = connect as specified under Signal Name.

Connect power inputs to the power supplies via external filters. See the MSC8157 Design Checklist (AN4110) for details. 4.

Т _

Table 2. Signal List by Primary Signal Name

Ball Number	Signal Name ^{1,2}	Pin Type ³	Name
A18	CLKIN	Ι	QVDD
A13	CLKOUT	0	QVDD
AA15	CPRIVDD	Power	N/A
AA17	CPRIVDD	Power	N/A
AA19	CPRIVDD	Power	N/A
AB16	CPRIVDD	Power	N/A
AB18	CPRIVDD	Power	N/A
AC15	CPRIVDD	Power	N/A
W17	CPRIVDD	Power	N/A
Y16	CPRIVDD	Power	N/A

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

- ..

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
U1	MAVDD	Power	N/A
R6	MBA0	0	GVDD
U6	MBA1	0	GVDD
AB7	MBA2	0	GVDD
K1	MCAS	0	GVDD
M1	МСКО	0	GVDD
M2	МСКО	0	GVDD
Т3	MCK1	0	GVDD
U3	MCK1	0	GVDD
P1	MCK2	0	GVDD
R1	MCK2	0	GVDD
AA7	MCKE0	0	GVDD
V6	MCKE1	0	GVDD
A16	MCLKIN (optional)	I	QVDD
K2	MCSO	0	GVDD
К3	MCS1	0	GVDD
AD7	MDM0	0	GVDD
AH12	MDM1	0	GVDD
AH4	MDM2	0	GVDD
AH7	MDM3	0	GVDD
L6	MDM4	0	GVDD
G3	MDM5	0	GVDD
F7	MDM6	0	GVDD
C6	MDM7	0	GVDD
AB2	MDM8	0	GVDD
AB10	MDQ0	I/O	GVDD
AB9	MDQ1	I/O	GVDD
AF12	MDQ10	I/O	GVDD
AF10	MDQ11	I/O	GVDD
AG12	MDQ12	I/O	GVDD
AG9	MDQ13	I/O	GVDD
AF9	MDQ14	I/O	GVDD
AH11	MDQ15	I/O	GVDD
AF4	MDQ16	I/O	GVDD

Table 2.	Signal List b	v Primarv	Signal Na	me (continued)
		y i innaiy	Orginal Na	me (commuca)

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
E19	NVDD	Power	N/A
E23	NVDD	Power	N/A
G25	NVDD	Power	N/A
H20	NVDD	Power	N/A
H23	NVDD	Power	N/A
H27	NVDD	Power	N/A
J21	NVDD	Power	N/A
K25	NVDD	Power	N/A
L21	NVDD	Power	N/A
AH14	PLL0_AVDD	Power	N/A
AH15	PLL1_AVDD	Power	N/A
AH16	PLL2_AVDD	Power	N/A
C17	PORESET	I	QVDD
G15	QVDD	Power	N/A
H14	QVDD	Power	N/A
J27	RC21	I	NVDD
J24	RCW_LSEL0/RC17	I/O	NVDD
K24	RCW_LSEL1/RC18	I/O	NVDD
J26	RCW_LSEL2/RC19	I/O	NVDD
J25	RCW_LSEL3/RC20	I/O	NVDD
M27	SD_A_RX	I	SXCVDD
M28	SD_A_RX	I	SXCVDD
M23	SD_A_TX	0	SXPVDD
M24	SD_A_TX	0	SXPVDD
P27	SD_B_RX	I	SXCVDD
P28	SD_B_RX	I	SXCVDD
N25	SD_B_TX	0	SXPVDD
N26	SD_B_TX	0	SXPVDD
T27	SD_C_RX	I	SXCVDD
T28	SD_C_RX	I	SXCVDD
R25	SD_C_TX	0	SXPVDD
R26	SD_C_TX	0	SXPVDD
V27	SD_D_RX	I	SXCVDD
V28	SD_D_RX	I	SXCVDD

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3

Ball Number	Signal Name ^{1,2}	Pin Type ³	Power Rail Name
AG14	VSS	Ground	N/A
AG15	VSS	Ground	N/A
AG16	VSS	Ground	N/A
AG4	VSS	Ground	N/A
AG7	VSS	Ground	N/A
AH13	VSS	Ground	N/A
B11	VSS	Ground	N/A
B13	VSS	Ground	N/A
B16	VSS	Ground	N/A
B17	VSS	Ground	N/A
B18	VSS	Ground	N/A
B19	VSS	Ground	N/A
B21	VSS	Ground	N/A
B22	VSS	Non-user	N/A
B23	VSS	Ground	N/A
B25	VSS	Ground	N/A
B27	VSS	Ground	N/A
B9	VSS	Ground	N/A
C1	VSS	Ground	N/A
C18	VSS	Ground	N/A
C4	VSS	Ground	N/A
C7	VSS	Ground	N/A
D11	VSS	Ground	N/A
D13	VSS	Ground	N/A
D16	VSS	Ground	N/A
D18	VSS	Ground	N/A
D19	VSS	Non-user	N/A
D23	VSS	Ground	N/A
D9	VSS	Ground	N/A
E18	VSS	Ground	N/A
E2	VSS	Ground	N/A
E21	VSS	Ground	N/A
E22	VSS	Non-user	N/A
E25	VSS	Ground	N/A

Table 2. Signal List b	y Primary Signal Name	(continued)
------------------------	-----------------------	-------------

transmitter (Tx) and receiver (Rx) reference circuits. The data lane circuit specifications are specific for each supported interface, and they have individual subsections by protocol. The selection of individual data channel functionality is done via the Reset Configuration Word High Register (RCWHR) SerDes Protocol selection fields (S1P and S2P). Specific AC electrical characteristics are defined in Section 3.6.2, "HSSI AC Timing Specifications."

3.5.2.1 Signal Term Definitions

The SerDes interface uses differential signaling to transfer data across the serial link. This section defines terms used in the description and specification of differential signals. Figure 2 shows how the signals are defined in addition to the waveform for either a transmitter output (SD_[A–J]_TX and $\overline{SD_[A–J]_TX}$) or a receiver input (SD_[A–J]_RX and $\overline{SD_[A–J]_RX}$). Each signal swings between X volts and Y volts where X > Y.

Differential Peak-Peak Voltage, $V_{DIFFpp} = 2 \times V_{DIFFp}$ (not shown)

Figure 2. Differential Voltage Definitions for Transmitter/Receiver

Using this waveform, the definitions are listed in Table 10. To simplify the illustration, the definitions assume that the SerDes transmitter and receiver operate in a fully symmetrical differential signaling environment.

Term	Definition
Single-Ended Swing	The transmitter output signals and the receiver input signals $D[A-J]_TX$, $D[A-J]_TX$, $D[A-J]_TX$, $D[A-J]_RX$ and $D[A-J]_RX$ each have a peak-to-peak swing of $X - Y$ volts. This is also referred to as each signal wire's single-ended swing.
Differential Output Voltage, VOD (or Differential Output Swing)	The differential output voltage (or swing) of the transmitter, V_{OD} , is defined as the difference of the two complimentary output voltages: $V_{SD}[A-J]TX - V_{SD}[A-J]TX$. The V_{OD} value can be either positive or negative.
Differential Input Voltage, VID (or Differential Input Swing)	The differential input voltage (or swing) of the receiver, V_{ID} , is defined as the difference of the two complimentary input voltages: $V_{SD_{A-J]RX} - V_{SD_{A-J]RX}}$. The V_{ID} value can be either positive or negative.

Table 10. Differential Signal Definitions

2.0. The transmitter specifications for 2.5 Gbps are defined in Table 11 and the receiver specifications are defined in Table 12. For 5 Gbps, the transmitter specifications are defined in Table 13 and the receiver specifications are defined in Table 14.

Table 11. PCI Express (2.5 Gbps) Differential Transmitter (Tx) Output DC Specifications

At recommended operating conditions (see Table 4).

Parameter	Symbol	Min	Nom	Max	Units	Condition
Differential peak-to-peak output voltage swing	V _{TX-DIFFp-p}	800	1000	1200	mV	$V_{TX-DIFFp-p} = 2 \times V_{TX-D+} - V_{TX-D-} $, Measured at the package pins with a test load of 50 Ω to GND on each pin.
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATI} O	3.0	3.5	4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin.
DC differential Tx impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	Tx DC differential mode low Impedance
DC single-ended TX impedance	Z _{TX-DC}	40	50	60	Ω	Required Tx D+ as well as D– DC Impedance during all states

Table 12. PCI Express (2.5 Gbps) Differential Receiver (Rx) Input DC Specifications

At recommended operating conditions (see Table 4).

Parameter	Symbol	Min	Nom	Мах	Units	Notes
Differential input peak-to-peak voltage	V _{RX-DIFFp-p}	120	1000	1200	mV	1
DC differential Input Impedance	Z _{RX-DIFF-DC}	80	100	120	Ω	2
DC input impedance	Z _{RX-DC}	40	50	60	Ω	3
Powered down DC input impedance	Z _{RX-HIGH-IMP-DC}	50	—	—	ΚΩ	4
Electrical idle detect threshold	V _{RX-IDLE-DET-DIFFp-p}	65	—	175	mV	5

Notes: 1. $V_{RX-DIFFp-p} = 2 \times |V_{RX-D} - V_{RX-D}|$ Measured at the package pins with a test load of 50 Ω to GND on each pin.

2. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.

- 3. Required Rx D+ as well as D– DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.
- 4. Required Rx D+ as well as D– DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.

5. $V_{\text{RX-IDLE-DET-DIFED-D}} = 2 \times |V_{\text{RX-D+}} - V_{\text{RX-D-}}|$. Measured at the package pins of the receiver

Table 13. PCI Express (5 Gbps) Differential Transmitter (Tx) Output DC Specifications

At recommended operating conditions (see Table 4).

Parameter	Symbol	Min	Nom	Max	Units	Condition
Differential peak-to-peak output voltage swing	V _{TX-DIFFp-p}	800	1000	1200	mV	$V_{TX-DIFFp-p} = 2 \times V_{TX-D+} - V_{TX-D-} $, Measured at the package pins with a test load of 50 Ω to GND on each pin.
Low power differential peak-to-peak output voltage swing	V _{TX} -DIFFp-p_low	400	500	1200	mV	$V_{TX-DIFFp-p} = 2 \times IV_{TX-D+} - V_{TX-D-}I$, Measured at the package pins with a test load of 50 Ω to GND on each pin.
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO-3.5dB}	3.0	3.5	4.0	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin.
De-emphasized differential output voltage (ratio)	V _{TX-DE-RATIO-6.0dB}	5.5	6.0	6.5	dB	Ratio of the $V_{TX-DIFFp-p}$ of the second and following bits after a transition divided by the $V_{TX-DIFFp-p}$ of the first bit after a transition. Measured at the package pins with a test load of 50 Ω to GND on each pin.
DC differential Tx impedance	Z _{TX-DIFF-DC}	80	100	120	Ω	Tx DC differential mode low impedance
Transmitter DC impedance	Z _{TX-DC}	40	50	60	Ω	Required Tx D+ as well as D– DC impedance during all states

Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications

Parameter	Symbol	Min	Nom	Max	Units	Notes
Differential input peak-to-peak voltage	V _{RX-DIFFp-p}	120	1000	1200	mV	1
DC differential Input Impedance	Z _{RX-DIFF-DC}	80	100	120	Ω	2

Table 14. PCI Express (5 Gbps) Differential Receiver (Rx) Input DC Specifications (continued)

Parameter	Symbol	Min	Nom	Мах	Units	Notes
DC input impedance	Z _{RX-DC}	40	50	60	Ω	3
Powered down DC input impedance	Z _{RX-HIGH-IMP-DC}	50	—	_	KΩ	4
Electrical idle detect threshold	V _{RX-IDLE-DET-DIFFp-p}	65	—	175	mV	5

Notes: 1. $V_{RX-DIFFp-p} = 2 \times |V_{RX-D+} - V_{RX-D-}|$ Measured at the package pins with a test load of 50 Ω to GND on each pin.

2. Rx DC differential mode impedance. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.

3. Required Rx D+ as well as D- DC Impedance (50 ±20% tolerance). Measured at the package pins with a test load of 50 Ω to GND on each pin. Impedance during all LTSSM states. When transitioning from a fundamental reset to detect (the initial state of the LTSSM), there is a 5 ms transition time before the receiver termination values must be met on all unconfigured lanes of a port.

4. Required Rx D+ as well as D- DC Impedance when the receiver terminations do not have power. The Rx DC common mode impedance that exists when no power is present or fundamental reset is asserted. This helps ensure that the receiver detect circuit does not falsely assume a receiver is powered on when it is not. This term must be measured at 300 mV above the Rx ground.

5. $V_{RX-IDLE-DET-DIFFp-p} = 2 \times |V_{RX-D+} - V_{RX-D-}|$. Measured at the package pins of the receiver

3.5.3.3 DC Level Requirements for Serial RapidIO Configurations

Table 15. Serial RapidIO Transmitter DC Specifications for Transfer Rates \leq 3.125 Gbaud

At recommended operating conditions (see Table 4).

Parameter	Symbol	Min	Nom	Max	Units	Condition
Output voltage	V _O	-0.40	—	2.30	V	—
Long run differential output voltage	V _{DIFFPP}	800	—	1600	mVp-p	L[A–J]TECR0[AMP_RED] = 0b000000
Short run differential output voltage	V _{DIFFPP}	500	—	1000	mVp-p	L[A–J]TECR0[AMP_RED] = 0b001000
DC differential TX impedance	ZTX-DIFF-DC	80	100	120	Ω	—

Note: Voltage relative to COMMON of either signal comprising a differential pair.

Table 16. Serial RapidIO Receiver DC Specifications for Transfer Rates \leq 3.125 Gbaud

At recommended operating conditions (see Table 4).

Parameter	Symbol	Min	Nom	Max	Units
Differential input voltage	V _{IN}	200	_	1600	mVp-p
DC differential RX impedance	ZRX-DIFF-DC	80	100	120	Ω

Notes: 1. Voltage relative to COMMON of either signal comprising a differential pair.

2. Specifications are for Long and Short Run.

Figure 9 shows the DDR SDRAM output timing for the MCK to MDQS skew measurement (t_{DDKHMH}).

Figure 9. MCK to MDQS Timing

Figure 10. DDR SDRAM Output Timing

3.6.2.1 AC Requirements for SerDes Reference Clock

Table 32 lists AC requirements for the SerDes reference clocks.

Table 32. SD_REF_CLK[1-2] and SD_REF_CLK[1-2] Input Clock Requirements

At recommended operating conditions (see Table 4).

Parameter	Symbol	Min	Nom	Max	Units	Notes
SD_REF_CLK[1-2]/SD_REF_CLK[1-2] frequency range	t _{CLK_REF}	_	100/125 CPRI: 122.88	_	MHz	1
SD_REF_CLK[1-2]/SD_REF_CLK[1-2] clock frequency tolerance	t _{CLK_TOL}					_
Serial RapidIO, CPRI, SGMIIPCI Express interface		-100 -300	—	100 300	ppm ppm	
SD_REF_CLK[1–2]/SD_REF_CLK[1–2] reference clock duty cycle	^t CLK_DUTY	40	50	60	%	4
SD_REF_CLK[1–2]/SD_REF_CLK[1–2]max deterministic peak-peak jitter at 10 ⁻⁶ BER	t _{CLK_DJ}		—	42	ps	—
SD_REF_CLK[1–2]/SD_REF_CLK[1–2] total reference clock jitter at 10 ⁻⁶ BER (peak-to-peak jitter at ref_clk input)	^t CLK_TJ	_	_	86	ps	2
SD_REF_CLK/SD_REF_CLK rising/falling edge rate	t _{CLKRR} /t _{CLKFR}	1	—	4	V/ns	3
Differential input high voltage	V _{IH}	200	—	—	mV	4
Differential input low voltage	V _{IL}	—	—	-200	mV	4
Rising edge rate (SD_REF_CLKn to falling edge rate)	Rise-Fall	—	_	20	%	5, 6

Notes: 1. Only 100, 122.88, and 125 MHz have been tested. CPRI uses 122.88 MHz. The other interfaces use 100 or 125 MHz. Other values do not work correctly with the rest of the system.

2. Limits are from PCI Express CEM Rev 2.0.

 Measured from -200 mV to +200 mV on the differential waveform (derived from SD_REF_CLKn minus SD_REF_CLKn). The signal must be monotonic through the measurement region for rise and fall time. The 400 mV measurement window is centered on the differential zero crossing. See Figure 13.

4. Measurement taken from differential waveform.

5. Measurement taken from single-ended waveform.

6. Matching applies to rising edge for SD_REF_CLKn and falling edge rate for SD_REF_CLKn. It is measured using a 200 mV window centered on the median cross point where SD_REF_CLKn rising meets SD_REF_CLKn falling. The median cross point is used to calculate the voltage thresholds that the oscilloscope uses for the edge rate calculations. The rising edge rate of SD_RF_CLKn should be compared to the falling edge rate of SD_REF_CLKn; the maximum allowed difference should not exceed 20% of the slowest edge rate. See Figure 14.

7. REF_CLK jitter must be less than 0.05 UI when measured against a Golden PLL reference. The Golden PLL must have a maximum baud rate bandwidth greater than 1667, with a maximum 20 dB/dec rolloff down to a baud rate of 16.67 with no peaking around the corner frequency.

transmitter specifications are defined in Table 35 and the receiver specifications are defined in Table 36. The parameters are specified at the component pins. the AC timing specifications do not include REF_CLK jitter.

Table 33. PCI Express 2.0 (2.5 Gbps) Differential Transmitter (Tx) Output AC Specifications

At recommended operating conditions (see Table 4).

Parameter	Symbol	Min	Nom	Max	Units	Comments
Unit interval	UI	399.88	400.00	400.12	ps	Each UI is 400 ps ± 300 ppm. UI does not account for spread spectrum clock dictated variations. See note 1.
Tx eye width	T _{TX-EYE}	0.75	_	_	UI	The maximum transmitter jitter can be derived as $T_{TX-MAX-JITTER} = 1 - T_{TX-EYE} =$ 0.25 UI. This does not include spread spectrum or REF_CLK jitter. It includes device random jitter at 10 ⁻¹² . See notes 2 and 3.
Time between the jitter median and maximum deviation from the median.	T _{TX-EYE-MEDIAN-} to-MAX-JITTER			0.125	UI	Jitter is defined as the measurement variation of the crossing points ($V_{TX-DIFFp-p} = 0$ V) in relation to a recovered Tx UI. A recovered Tx UI is calculated over 3500 consecutive unit intervals of sample data. Jitter is measured using all edges of the 250 consecutive UI in the center of the 3500 UI used for calculating the Tx UI. See notes 2 and 3.
AC coupling capacitor	C _{TX}	75	—	200	nF	All transmitters must be AC coupled. The AC coupling is required either within the media or within the transmitting component itself. See note 4.

Notes: 1. No test load is necessarily associated with this value.

2. Specified at the measurement point into a timing and voltage test load as shown in Figure 15 and measured over any 250 consecutive Tx UIs.

3. A T_{TX-EYE} = 0.75 UI provides for a total sum of deterministic and random jitter budget of T_{TX-NAX-JITTER} = 0.25 UI for the transmitter collected over any 250 consecutive Tx UIs. The T_{TX-EYE-MEDIAN-to-MAX-JITTER} median is less than half of the total Tx jitter budget collected over any 250 consecutive Tx UIs. It should be noted that the median is not the same as the mean. The jitter median describes the point in time where the number of jitter points on either side is approximately equal as opposed to the averaged time value.

4. The DSP device SerDes transmitter does not have a built-in C_{TX}. An external AC coupling capacitor is required.

Table 49 lists the timer input AC timing specifications.

Table 49. Timers Input AC Timing Specifications

At recommended operating conditions (see Table 4).

Characteristics	Symbol	Minimum	Unit	Notes
Timers inputs—minimum pulse width	T _{TIWID}	8	ns	1, 2

Notes: 1. The maximum allowed frequency of timer outputs is 125 MHz. Configure the timer modules appropriately.
2. Timer inputs and outputs are asynchronous to any visible clock. Timer outputs should be synchronized before use by any

external synchronous logic. Timer inputs are required to be valid for at least t_{TIWID} ns to ensure proper operation.

Figure 21 shows the AC test load for the timers

Figure 21. Timer AC Test Load

3.6.4 Ethernet Timing

This section describes the AC electrical characteristics for the Ethernet interface.

There are three general configuration registers used to configure the timing: GCR4, UCC1_DELAY_HR, and UCC3_DELAY_HR. These registers configure the programmable delay units (PDU) that should be programmed differently for each Interface to meet timing requirements. For additional information, see the *MSC8157 Reference Manual*.

3.6.4.1 Management Interface Timing

Table 50. Ethernet Controller Management Interface Timing

Characteristics	Symbol	Min	Мах	Unit
GE_MDC frequency	f _{MDC}	—	2.5	MHz
GE_MDC period	t _{MDC}	400	—	ns
GE_MDC clock pulse width high	t _{MDC_H}	160	—	ns
GE_MDC clock pulse width low	t _{MDC_L}	160	—	ns
GE_MDC to GE_MDIO delay	t _{MDKHDX}	10	70	ns
GE_MDIO to GE_MDC rising edge setup time	t _{MDDVKH}	20	—	ns
GE_MDC rising edge to GE_MDIO hold time	t _{MDDXKH}	0	—	ns

3.6.5 SPI Timing

Table 52 lists the SPI input and output AC timing specifications.

	Table 52.	SPI AC	Timing	Specifications
--	-----------	--------	--------	----------------

Parameter	Symbol ¹	Min	Мах	Unit	Note
SPI outputs valid—Master mode (internal clock) delay	t _{NIKHOV}	—	7	ns	2
SPI outputs hold—Master mode (internal clock) delay	t _{NIKHOX}	0.5	_	ns	2
SPI outputs valid—Slave mode (external clock) delay	t _{NEKHOV}	—	13	ns	2
SPI outputs hold—Slave mode (external clock) delay	t _{NEKHOX}	2	_	ns	2
SPI inputs—Master mode (internal clock) input setup time	t _{NIIVKH}	13	_	ns	_
SPI inputs—Master mode (internal clock) input hold time	t _{NIIXKH}	0	_	ns	_
SPI inputs—Slave mode (external clock) input setup time	t _{NEIVKH}	4	_	ns	_
SPI inputs—Slave mode (external clock) input hold time	t _{NEIXKH}	2	—	ns	—

Notes: 1. The symbols used for timing specifications follow the pattern of t_{(first two letters of functional block)(signal)(state)} (reference)(state) for inputs and t_(first two letters of functional block)(reference)(state)(signal)(state) for outputs. For example, t_{NIKHOX} symbolizes the internal timing (NI) for the time SPICLK clock reference (K) goes to the high state (H) until outputs (O) are invalid (X).

2. Output specifications are measured from the 50% level of the rising edge of SPICLK to the 50% level of the signal. Timings are measured at the pin.

Figure 24 provides the AC test load for the SPI.

Figure 24. SPI AC Test Load

Figure 25 and Figure 26 represent the AC timings from Table 52. Note that although the specifications generally reference the rising edge of the clock, these AC timing diagrams also apply when the falling edge is the active edge.

Figure 25 shows the SPI timings in slave mode (external clock).

Note: measured with SPMODE[CI] = 0, SPMODE[CP] = 0

MSC8157 Six-Core Digital Signal Processor Data Sheet, Rev. 3