

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

E·XF

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	26
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K × 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-TQFP
Supplier Device Package	32-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc20e17a-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table 10-4. Interrupt Line Mapping, SAM C20

Peripheral Source	NVIC Line
EIC NMI – External Interrupt Controller	NMI
PM – Power Manager MCLK - Main Clock	0
OSCCTRL - Oscillators Controller	
OSC32KCTRL - 32kHz Oscillators Controller	
SUPC - Supply Controller	
PAC - Protection Access Controller	
WDT – Watchdog Timer	1
RTC – Real Time Clock	2
EIC – External Interrupt Controller	3
FREQM – Frequency Meter	4
Reserved	5
NVMCTRL – Non-Volatile Memory Controller	6
DMAC - Direct Memory Access Controller	7
EVSYS – Event System	8
SERCOM0 – Serial Communication Controller 0	9
SERCOM6 – Serial Communication Controller 6	
SERCOM1 – Serial Communication Controller 1	10
SERCOM7 – Serial Communication Controller 7	
SERCOM2 – Serial Communication Controller 2	11
SERCOM3 – Serial Communication Controller 3	12
SERCOM4 – Serial Communication Controller 4	13
SERCOM5 – Serial Communication Controller 5	14
Reserved	15
Reserved	16
TCC0 – Timer Counter for Control 0	17
TCC1 – Timer Counter for Control 1	18
TCC2 – Timer Counter for Control 2	19
TC0 – Timer Counter 0	20
TC5 – Timer Counter 5	
TC1 – Timer Counter 1	21

Value	Description
0	The APBA clock for the FREQM is stopped.
1	The APBA clock for the FREQM is enabled.

Bit 10 – EIC: EIC APBA Clock Enable

Value	Description
0	The APBA clock for the EIC is stopped.
1	The APBA clock for the EIC is enabled.

Bit 9 – RTC: RTC APBA Clock Enable

Value	Description
0	The APBA clock for the RTC is stopped.
1	The APBA clock for the RTC is enabled.

Bit 8 – WDT: WDT APBA Clock Enable

Value	Description
0	The APBA clock for the WDT is stopped.
1	The APBA clock for the WDT is enabled.

Bit 7 – GCLK: GCLK APBA Clock Enable

Value	Description
0	The APBA clock for the GCLK is stopped.
1	The APBA clock for the GCLK is enabled.

Bit 6 – SUPC: SUPC APBA Clock Enable

Value	Description
0	The APBA clock for the SUPC is stopped.
1	The APBA clock for the SUPC is enabled.

Bit 5 – OSC32KCTRL: OSC32KCTRL APBA Clock Enable

Value	Description
0	The APBA clock for the OSC32KCTRL is stopped.
1	The APBA clock for the OSC32KCTRL is enabled.

Bit 4 – OSCCTRL: OSCCTRL APBA Clock Enable

Value	Description
0	The APBA clock for the OSCCTRL is stopped.
1	The APBA clock for the OSCCTRL is enabled.

Bit 3 – RSTC: RSTC APBA Clock Enable

Value	Description
0	The APBA clock for the RSTC is stopped.
1	The APBA clock for the RSTC is enabled.

Bit 2 – MCLK: MCLK APBA Clock Enable

Value	Description
0	There is not reset operation ongoing
1	The reset operation is ongoing

24.12.2 Event Control in Clock/Calendar mode (CTRLA.MODE=2)

Name:	EVCTRL
Offset:	0x04
Reset:	0x0000000
Property:	PAC Write-Protection, Enable-Protected

Bit	31	30	29	28	27	26	25	24
[
Access								
Reset								
D:4	22	00	04	20	10	40	47	10
BIL	23	22	21	20	19	18	17	10
L								
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Γ	OVFEO							ALARMO0
Access	R/W	•	1				•	R/W
Reset	0							0
Bit	7	6	5	4	3	2	1	0
Γ	PEREOn							
Access	R/W							
Reset	0	0	0	0	0	0	0	0

Bit 15 – OVFEO: Overflow Event Output Enable

Value	Description
0	Overflow event is disabled and will not be generated.
1	Overflow event is enabled and will be generated for every overflow.

Bit 8 – ALARMO0: Alarm 0 Event Output Enable

Value	Description
0	Alarm 0 event is disabled and will not be generated.
1	Alarm 0 event is enabled and will be generated for every compare match.

Bits 7:0 – PEREOn: Periodic Interval n Event Output Enable [n = 7..0]

Value	Description
0	Periodic Interval n event is disabled and will not be generated.
1	Periodic Interval n event is enabled and will be generated.

24.12.3 Interrupt Enable Clear in Clock/Calendar mode (CTRLA.MODE=2)

Bit	31	30	29	28	27	26	25	24
[OUT[31:24]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
	20				23:16]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
[OUT	[15:8]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	•				[7:0]		· ·	
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – OUT[31:0]: PORT Data Output Value

For pins configured as outputs via the Data Direction register (DIR), these bits set the logical output drive level.

For pins configured as inputs via the Data Direction register (DIR) and with pull enabled via the Pull Enable bit in the Pin Configuration register (PINCFG.PULLEN), these bits will set the input pull direction.

Value	Description
0	The I/O pin output is driven low, or the input is connected to an internal pull-down.
1	The I/O pin output is driven high, or the input is connected to an internal pull-up.

28.9.6 Data Output Value Clear

This register allows the user to set one or more output I/O pin drive levels low, without doing a readmodify-write operation. Changes in this register will also be reflected in the Data Output Value (OUT), Data Output Value Toggle (OUTTGL) and Data Output Value Set (OUTSET) registers.

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

Name:OUTCLROffset:0x14Reset:0x00000000Property:PAC Write-Protection

- Interrupt Flag Clear and Status register (INTFLAG)
- Status register (STATUS)
- Data register (DATA)
- Address register (ADDR)

Optional PAC Write-Protection is denoted by the "PAC Write-Protection" property in each individual register description.

Write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

33.5.9 Analog Connections

Not applicable.

33.6 Functional Description

33.6.1 Principle of Operation

The I²C interface uses two physical lines for communication:

- Serial Data Line (SDA) for data transfer
- Serial Clock Line (SCL) for the bus clock

A transaction starts with the I²C master sending the start condition, followed by a 7-bit address and a direction bit (read or write to/from the slave).

The addressed I²C slave will then acknowledge (ACK) the address, and data packet transactions can begin. Every 9-bit data packet consists of 8 data bits followed by a one-bit reply indicating whether the data was acknowledged or not.

If a data packet is not acknowledged (NACK), whether by the I²C slave or master, the I²C master takes action by either terminating the transaction by sending the stop condition, or by sending a repeated start to transfer more data.

The figure below illustrates the possible transaction formats and Transaction Diagram Symbols explains the transaction symbols. These symbols will be used in the following descriptions.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

This bit is not write-synchronized.

33.10.8 Synchronization Busy

	Name: Offset: Reset:	SYNCBUSY 0x1C 0x00000000						
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
						SYSOP	ENABLE	SWRST
Access						R	R	R
Reset						0	0	0

Bit 2 – SYSOP: System Operation Synchronization Busy

Value	Description
0	System operation synchronization is not busy.
1	System operation synchronization is busy.

Bit 1 – ENABLE: SERCOM Enable Synchronization Busy

Enabling and disabling the SERCOM (CTRLA.ENABLE) requires synchronization. When written, the SYNCBUSY.ENABLE bit will be set until synchronization is complete.

Writes to any register (except for CTRLA.SWRST) while enable synchronization is on-going will be discarded and an APB error will be generated.

Value	Description
0	Enable synchronization is not busy.
1	Enable synchronization is busy.

Bit 0 – SWRST: Software Reset Synchronization Busy

Resetting the SERCOM (CTRLA.SWRST) requires synchronization. When written, the SYNCBUSY.SWRST bit will be set until synchronization is complete.

Value	Name	Description
0x3	UPDATE	Force update of double buffered registers
0x4	READSYNC	Force a read synchronization of COUNT

Bit 2 – ONESHOT: One-Shot on Counter

This bit controls one-shot operation of the TC.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will enable one-shot operation.

Value	Description
0	The TC will wrap around and continue counting on an overflow/underflow condition.
1	The TC will wrap around and stop on the next underflow/overflow condition.

Bit 1 – LUPD: Lock Update

This bit controls the update operation of the TC buffered registers.

When CTRLB.LUPD is set, no any update of the registers with value of its buffered register is performed on hardware UPDATE condition. Locking the update ensures that all buffer registers are valid before an hardware update is performed. After all the buffer registers are loaded correctly, the buffered registers can be unlocked.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will set the LUPD bit.

This bit has no effect when input capture operation is enabled.

Value	Description
0	The CCBUFx and PERBUF buffer registers value are copied into CCx and PER registers on
	hardware update condition.
1	The CCBUFx and PERBUF buffer registers value are not copied into CCx and PER registers
	on hardware update condition.

Bit 0 – DIR: Counter Direction

This bit is used to change the direction of the counter.

Writing a '0' to this bit has no effect

Writing a '1' to this bit will clear the bit and make the counter count up.

Value	Description
0	The timer/counter is counting up (incrementing).
1	The timer/counter is counting down (decrementing).

35.7.3.4 Event Control

Name:EVCTRLOffset:0x06Reset:0x0000Property:PAC Write-Protection, Enable-Protected

Bits 13:12 – PRESCYNC[1:0]: Prescaler and Counter Synchronization

These bits select if on re-trigger event, the Counter is cleared or reloaded on either the next GCLK_TCCx clock, or on the next prescaled GCLK_TCCx clock. It is also possible to reset the prescaler on re-trigger event.

These bits are not synchronized.

Value	Name	Description				
		Counter Reloaded	Prescaler			
0x0	GCLK	Reload or reset Counter on next GCLK	-			
0x1	PRESC	Reload or reset Counter on next prescaler clock	-			
0x2	RESYNC	Reload or reset Counter on next GCLK	Reset prescaler counter			
0x3	Reserved					

Bit 11 – RUNSTDBY: Run in Standby

This bit is used to keep the TCC running in standby mode.

This bit is not synchronized.

Value	Description
0	The TCC is halted in standby.
1	The TCC continues to run in standby.

Bits 10:8 – PRESCALER[2:0]: Prescaler

These bits select the Counter prescaler factor.

These bits are not synchronized.

Value	Name	Description
0x0	DIV1	Prescaler: GCLK_TCC
0x1	DIV2	Prescaler: GCLK_TCC/2
0x2	DIV4	Prescaler: GCLK_TCC/4
0x3	DIV8	Prescaler: GCLK_TCC/8
0x4	DIV16	Prescaler: GCLK_TCC/16
0x5	DIV64	Prescaler: GCLK_TCC/64
0x6	DIV256	Prescaler: GCLK_TCC/256
0x7	DIV1024	Prescaler: GCLK_TCC/1024

Bits 6:5 – RESOLUTION[1:0]: Dithering Resolution

These bits increase the TCC resolution by enabling the dithering options.

These bits are not synchronized.

Value	Description
0	The Non-Recoverable Fault x interrupt is disabled.
1	The Non-Recoverable Fault x interrupt is enabled.

Bit 13 – FAULTB: Recoverable Fault B Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Recoverable Fault B Interrupt Disable/Enable bit, which disables the Recoverable Fault B interrupt.

Value	Description
0	The Recoverable Fault B interrupt is disabled.
1	The Recoverable Fault B interrupt is enabled.

Bit 12 – FAULTA: Recoverable Fault A Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Recoverable Fault A Interrupt Disable/Enable bit, which disables the Recoverable Fault A interrupt.

Value	Description
0	The Recoverable Fault A interrupt is disabled.
1	The Recoverable Fault A interrupt is enabled.

Bit 11 – DFS: Non-Recoverable Debug Fault Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Debug Fault State Interrupt Disable/Enable bit, which disables the Debug Fault State interrupt.

Value	Description
0	The Debug Fault State interrupt is disabled.
1	The Debug Fault State interrupt is enabled.

Bit 10 – UFS: Non-Recoverable Update Fault Interrupt Enable

Writing a zero to this bit has no effect.

Writing a one to this bit will clear the Non-Recoverable Update Fault Interrupt Disable/Enable bit, which disables the Non-Recoverable Update Fault interrupt.

Value	Description
0	The Non-Recoverable Update Fault interrupt is disabled.
1	The Non-Recoverable Update Fault interrupt is enabled.

Bit 3 – ERR: Error Interrupt Enable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Error Interrupt Disable/Enable bit, which disables the Compare interrupt.

Value	Description
0	The Error interrupt is disabled.
1	The Error interrupt is enabled.

Number of Accumulated Samples	AVGCTRL. SAMPLENUM	Intermediate Result Precision	Number of Automatic Right Shifts	Division Factor	AVGCTRL.ADJRES	Total Number of Right Shifts	Final Result Precision	Automatic Division Factor
64	0x6	18	2	16	0x4	6	12 bits	4
128	0x7	19	3	16	0x4	7	12 bits	8
256	0x8	20	4	16	0x4	8	12 bits	16
512	0x9	21	5	16	0x4	9	12 bits	32
1024	0xA	22	6	16	0x4	10	12 bits	64
Reserved	0xB –0xF				0x0		12 bits	0

38.6.2.11 Oversampling and Decimation

By using oversampling and decimation, the ADC resolution can be increased from 12 bits up to 16 bits, for the cost of reduced effective sampling rate.

To increase the resolution by n bits, 4ⁿ samples must be accumulated. The result must then be rightshifted by n bits. This right-shift is a combination of the automatic right-shift and the value written to AVGCTRL.ADJRES. To obtain the correct resolution, the ADJRES must be configured as described in the table below. This method will result in n bit extra LSB resolution.

Result Resolution	Number of Samples to Average	AVGCTRL.SAMPLENUM[3:0]	Number of Automatic Right Shifts	AVGCTRL.ADJRES[2:0]
13 bits	4 ¹ = 4	0x2	0	0x1
14 bits	4 ² = 16	0x4	0	0x2
15 bits	4 ³ = 64	0x6	2	0x1
16 bits	4 ⁴ = 256	0x8	4	0x0

 Table 38-3. Configuration Required for Oversampling and Decimation

38.6.2.12 Automatic Sequences

The ADC has the ability to automatically sequence a series of conversions. This means that each time the ADC receives a start-of-conversion request, it can perform multiple conversions automatically. All of the 32 positive inputs can be included in a sequence by writing to corresponding bits in the Sequence Control register (SEQCTRL). The order of the conversion in a sequence is the lower positive MUX selection to upper positive MUX (AIN0, AIN1, AIN2 ...). In differential mode, the negative inputs selected by MUXNEG field, will be used for the entire sequence.

When a sequence starts, the Sequence Busy status bit in Sequence Status register (SEQSTATUS.SEQBUSY) will be set. When the sequence is complete, the Sequence Busy status bit will be cleared.

Each time a conversion is completed, the Sequence State bit in Sequence Status register (SEQSTATUS.SEQSTATE) will store the input number from which the conversion is done. The result will be stored in the RESULT register, and the Result Ready Interrupt Flag (INTFLAG.RESRDY) is set.

If additional inputs must be scanned, the ADC will automatically start a new conversion on the next input present in the sequence list.

Note that if SEQCTRL register has no bits set to '1', the conversion is done with the selected MUXPOS input.

Note: If several events are connected to the ADC, the enabled action will be taken on any of the incoming events. If FLUSH and START events are available at the same time, the FLUSH event has priority.

Related Links

EVSYS - Event System

38.6.7 Sleep Mode Operation

The ONDEMAND and RUNSTDBY bits in the Control A register (CTRLA) control the behavior of the ADC during standby sleep mode, in cases where the ADC is enabled (CTRLA.ENABLE = 1). For further details on available options, refer to Table 38-4.

Note: When CTRLA.ONDEMAND=1, the analog block is powered-off when the conversion is complete. When a start request is detected, the system returns from sleep and starts a new conversion after the start-up time delay.

CTRLA.RUNSTDBY	CTRLA.ONDEMAND	CTRLA.ENABLE	Description
x	x	0	Disabled
0	0	1	Run in all sleep modes except STANDBY.
0	1	1	Run in all sleep modes on request, except STANDBY.
1	0	1	Run in all sleep modes.
1	1	1	Run in all sleep modes on request.

Table 38-4. ADC Sleep Behavior

38.6.8 Synchronization

Due to asynchronicity between the main clock domain and the peripheral clock domains, some registers need to be synchronized when written or read.

The following bits are synchronized when written:

- Software Reset bit in Control A register (CTRLA.SWRST)
- Enable bit in Control A register (CTRLA.ENABLE)

The following registers are synchronized when written:

- Input Control register (INPUTCTRL)
- Control C register (CTRLC)
- Average control register (AVGCTRL)
- Sampling time control register (SAMPCTRL)
- Window Monitor Lower Threshold register (WINLT)
- Window Monitor Upper Threshold register (WINUT)
- Gain correction register (GAINCORR)
- Offset Correction register (OFFSETCORR)
- Software Trigger register (SWTRIG)

Required write-synchronization is denoted by the "Write-Synchronized" property in the register description.

Related Links

 Name:
 SEQSTATUS

 Offset:
 0x07 [ID-0000120e]

 Reset:
 0x00

 Property:

Bit	7	6	5	4	3	2	1	0
	SEQBUSY					SEQSTATE[4:0]		
Access	R			R	R	R	R	R
Reset	0			0	0	0	0	0

Bit 7 – SEQBUSY: Sequence busy

This bit is set when the sequence start.

This bit is clear when the last conversion in a sequence is done.

Bits 4:0 – SEQSTATE[4:0]: Sequence State

These bit fields are the pointer of sequence. This value identifies the last conversion done in the sequence.

38.8.9 Input Control

Name:INPUTCTRLOffset:0x08 [ID-0000120e]Reset:0x0000Property:PAC Write-Protection, Write-Synchronized

Bit	15	14	13	12	11	10	9	8			
				MUXNEG[4:0]							
Access				R/W	R/W	R/W	R/W	R/W			
Reset				0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
				MUXPOS[4:0]							
Access			•	R/W	R/W	R/W	R/W	R/W			
Reset				0	0	0	0	0			

Bits 12:8 – MUXNEG[4:0]: Negative MUX Input Selection

These bits define the MUX selection for the negative ADC input.

Value	Name	Description
0x00	AIN0	ADC AIN0 pin
0x01	AIN1	ADC AIN1 pin
0x02	AIN2	ADC AIN2 pin
0x03	AIN3	ADC AIN3 pin
0x04	AIN4	ADC AIN4 pin
0x05	AIN5	ADC AIN5 pin
0x06 -	-	Reserved
0x17		

Name:SHIFTCORROffset:0x1A [ID-0000243d]Reset:0x00Property:PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0	
[SHIFTCORR[3:0]				
Access					R/W	R/W	R/W	R/W	
Reset					0	0	0	0	

Bits 3:0 – SHIFTCORR[3:0]: Shift Correction

A specific offset, gain and shift can be applied to SDADC by performing the following operation:

(RESULT + OFFSETCORR) *GAINCORR/2^SHIFTCORR

39.8.17 Software Trigger

Name:SWTRIGOffset:0x1C [ID-0000243d]Reset:0x00Property:PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
							START	FLUSH
Access							W	W
Reset							0	0

Bit 1 – START: SDADC Start Conversion

Writing a one to this bit will start a conversion or sequence. The bit is cleared by hardware when the conversion has started. Setting this bit when it is already set has no effect.

Writing this bit to zero will have no effect.

Bit 0 – FLUSH: SDADC Conversion Flush

Writing a one to this bit will be flush the SDADC pipeline. A flush will restart the SDADC conversion and all conversions in progress will be aborted and lost. This bit is cleared until the SDADC has been flushed.

After the flush, the ADC will resume where it left off; i.e., if a conversion was pending, the ADC will start a new conversion.

Writing this bit to zero will have no effect.

39.8.18 Synchronization Busy

 Name:
 SYNCBUSY

 Offset:
 0x20 [ID-0000243d]

 Reset:
 0x0000000

 Property:

40.7 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0							ENABLE	SWRST
0x01	CTRLB	7:0					STARTx	STARTx	STARTx	STARTx
0x02	EVICEDI	7:0			WINEOx	WINEOx	COMPEOx	COMPEOx	COMPEOx	COMPEOx
0x03	EVUIRL	15:8	INVEIx	INVEIx	INVEIx	INVEIx	COMPEIx	COMPEIx	COMPEIx	COMPEIx
0x04	INTENCLR	7:0			WINx	WINx	COMPx	COMPx	COMPx	COMPx
0x05	INTENSET	7:0			WINx	WINx	COMPx	COMPx	COMPx	COMPx
0x06	INTFLAG	7:0			WINx	WINx	COMPx	COMPx	COMPx	COMPx
0x07	STATUSA	7:0	WSTAT	FE1[1:0]	WSTAT	E0[1:0]	STATEx	STATEx	STATEx	STATEx
0x08	STATUSB	7:0					READYx	READYx	READYx	READYx
0x09	DBGCTRL	7:0								DBGRUN
0x0A	WINCTRL	7:0		WINTS	EL1[1:0]	WEN1		WINTS	EL0[1:0]	WEN0
0x0B	Reserved									
0x0C	SCALERn0	7:0				VALUE[5:0]				
0x0D	SCALERn1	7:0			VALUE[5:0]					
0x0E	SCALERn2	7:0			VALUE[5:0]					
0x0F	SCALERn3	7:0			VALUE[5:0]					
0x10		7:0		RUNSTDBY		INTSE	EL[1:0]	SINGLE	ENABLE	
0x11	15:8 S		SWAP		MUXPOS[2:0]				MUXNEG[2:0]	
0x12		23:16					HYSTEN		SPEE	D[1:0]
0x13		31:24			OUT	[1:0]			FLEN[2:0]	
0x14		7:0		RUNSTDBY		INTSE	EL[1:0]	SINGLE	ENABLE	
0x15		15:8	SWAP		MUXPOS[2:0]				MUXNEG[2:0]	
0x16		23:16					HYSTEN		SPEE	D[1:0]
0x17		31:24			OUT	[1:0]			FLEN[2:0]	
0x18		7:0		RUNSTDBY		INTSE	EL[1:0]	SINGLE	ENABLE	
0x19		15:8	SWAP		MUXPOS[2:0]				MUXNEG[2:0]	
0x1A		23:16					HYSTEN		SPEE	D[1:0]
0x1B		31:24			OUT	[1:0]			FLEN[2:0]	
0x1C		7:0		RUNSTDBY		INTSE	EL[1:0]	SINGLE	ENABLE	
0x1D		15:8	SWAP		MUXPOS[2:0]				MUXNEG[2:0]	
0x1E		23:16					HYSTEN		SPEE	:D[1:0]
0x1F		31:24			OUT	[1:0]			FLEN[2:0]	
0x20		7:0		COMPCTRLx	COMPCTRLx	COMPCTRLx	COMPCTRLx	WINCTRL	ENABLE	SWRST
0x21	SYNCBUSY	15:8								
0x22	51100001	23:16								
0x23		31:24								

40.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Window x interrupt flag.

Bits 3,2,1,0 – COMPx: Comparator x

Reading this bit returns the status of the Comparator x interrupt flag. If comparator x is not implemented, COMPx always reads as zero.

This flag is set according to the Interrupt Selection bit group in the Comparator x Control register (COMPCTRLx.INTSEL) and will generate an interrupt if INTENCLR/SET.COMPx is also one.

Writing a '0' to this bit has no effect.

Writing a '1' to this bit clears the Comparator x interrupt flag.

40.8.7 Status A

Name:STATUSAOffset:0x07Reset:0x00Property:Read-Only

Bit	7	6	5	4	3	2	1	0
	WSTAT	E1[1:0]	WSTATE0[1:0]		STATEx	STATEx	STATEx	STATEx
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 7:6 – WSTATE1[1:0]: Window 1 Current State

These bits show the current state of the signal if the window 1 mode is enabled.

Value	Name	Description
0x0	ABOVE	Signal is above window
0x1	INSIDE	Signal is inside window
0x2	BELOW	Signal is below window
0x3		Reserved

Bits 5:4 – WSTATE0[1:0]: Window 0 Current State

These bits show the current state of the signal if the window 0 mode is enabled.

Value	Name	Description
0x0	ABOVE	Signal is above window
0x1	INSIDE	Signal is inside window
0x2	BELOW	Signal is below window
0x3		Reserved

Bits 3,2,1,0 – STATEx: Comparator x Current State

This bit shows the current state of the output signal from COMPx. STATEx is valid only when STATUSB.READYx is one.

40.8.8 Status B

Bit	7	6	5	4	3	2	1	0
		WINTSI	EL1[1:0]	WEN1		WINTSE	EL0[1:0]	WEN0
Access		R/W	R/W	R/W		R/W	R/W	R/W
Reset		0	0	0		0	0	0

Bits 6:5 – WINTSEL1[1:0]: Window 1 Interrupt Selection

These bits configure the interrupt mode for the comparator window 1 mode.

Value	Name	Description
0x0	ABOVE	Interrupt on signal above window
0x1	INSIDE	Interrupt on signal inside window
0x2	BELOW	Interrupt on signal below window
0x3	OUTSIDE	Interrupt on signal outside window

Bit 4 – WEN1: Window 1 Mode Enable

Value	Description
0	Window mode is disabled for comparators 2 and 3.
1	Window mode is enabled for comparators 2 and 3.

Bits 2:1 – WINTSEL0[1:0]: Window 0 Interrupt Selection

These bits configure the interrupt mode for the comparator window 0 mode.

Value	Name	Description
0x0	ABOVE	Interrupt on signal above window
0x1	INSIDE	Interrupt on signal inside window
0x2	BELOW	Interrupt on signal below window
0x3	OUTSIDE	Interrupt on signal outside window

Bit 0 – WEN0: Window 0 Mode Enable

Value	Description
0	Window mode is disabled for comparators 0 and 1.
1	Window mode is enabled for comparators 0 and 1.

40.8.11 Scaler n

Name:SCALERnOffset:0x0C + n*0x01 [n=0..3]Reset:0x00Property:Write-Protected

Bit	7	6	5	4	3	2	1	0	
					VALU	E[5:0]			
Access			R/W	R/W	R/W	R/W	R/W	R/W	
Reset			0	0	0	0	0	0	

Bits 5:0 – VALUE[5:0]: Scaler Value

These bits define the scaling factor for channel n of the V_{DD} voltage scaler. The output voltage, V_{SCALE} , is:

Bit 0 – SWRST: Synchronization Busy

This bit is cleared when the synchronization of CTRLA.SWRST is complete.

This bit is set when the synchronization of CTRLA.SWRST is started.

44.8.9 Value

 Name:
 VALUE

 Offset:
 0x10 [ID-00000e03]

 Reset:
 0x0000000

 Property:

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
				VALUE	[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				VALUE	E[15:8]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				VALU	E[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bits 23:0 – VALUE[23:0]: Measurement Value

Result from measurement.

SAM C20/C21

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
		XOSC.GAIN=2				
		F = 16MHz	-	10.8	18.1	
		CL=20pF				
		XOSC.GAIN=3				
		F = 32MHz	-	8.7	15.4	
		CL=18pF				
		XOSC.GAIN=4				

1. These are based on characterization.

Table 45-41. Power Consumption ⁽¹⁾

Symbol	Parameters	Conditions	Та	Тур.	Мах	Units
IDD	Current consumption	F = 2MHz	Max 85°C	150	202	μA
		CL=20pF	Typ 25°C			
		XOSC.GAIN=0				
		VDD = 5.0V				
		AGC=OFF				
		AGC=ON		138	192	
		F = 4MHz		220	288	
		CL=20pF				
		XOSC.GAIN=1				
		VDD = 5.0V				
		AGC=OFF				
		AGC=ON		175	260	
		F = 8MHz		350	416	
		CL=20pF				
		XOSC.GAIN=2				
		VDD = 5.0V				
		AGC=OFF				
		AGC=ON		247	321	
		F = 16MHz		663	843	
		CL=20pF				
		XOSC.GAIN=3				
		VDD = 5.0V				

Table 47-20. Digital Clock Characteristics⁽¹⁾

Symbol	Parameter	Condition	Тур	Units
f _{CPXIN32}	XIN32 clock frequency	Digital mode	32.768	kHz
DC _{XIN32}	XIN32 clock duty cycle	Digital mode	50	%

1. These are based on simulation. These values are not covered by test or characterization

The following table describes the characteristics for the oscillator when a crystal is connected between XIN32 and XOUT32.

Figure 47-6. Oscillator Connection

The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of CL can be found in the crystal datasheet. The capacitance of the external capacitors (CLEXT) can then be computed as follows:

 $C_{LEXT}=2 (C_{L}-C_{STRAY}-C_{SHUNT})$

where $\texttt{C}_{\texttt{STRAY}}$ is the capacitance of the pins and PCB and <code>CSHUNT</code> is the shunt capacitance of the <code>crystal</code>.

Table 47-21. 32kH	z Crystal Oscillator	Characteristics
-------------------	----------------------	------------------------

Symbol	Parameter	Conditions	Min.	Тур.	Max	Units
f _{OUT} ⁽¹⁾	Crystal oscillator frequency		-	32768	-	Hz
C _L ⁽¹⁾	Crystal load capacitance		-	-	12.5	pF
C _{SHUNT} ⁽¹⁾	Crystal shunt capacitance		-	-	1.75	
C _M ⁽¹⁾	Motional capacitance		-	1.25	-	fF
ESR	Crystal Equivalent Series Resistance - SF = 3	F = 32.768kHz, C _L =12.5 pF	-	-	70	kΩ
C _{XIN32K}	Parasitic capacitor load		-	3.8	-	pF

Table 48-6. Package Characteristics				
Moisture Sensitivity Level	MSL3			
Table 48-7. Package Reference				
JEDEC Drawing Reference	MS-026			
JESD97 Classification	E3			