E·XFL

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	26
Program Memory Size	128KB (128K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	16K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 10x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	32-VFQFN Exposed Pad
Supplier Device Package	32-VQFN (5x5)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc20e17a-mut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

Table of Contents

Fe	tures	. 1					
1.	Configuration Summary14						
2.	Ordering Information	19					
3.	Block Diagram	20					
4.	Pinout. 22 4.1. SAM C21E / SAM C20E. 22 4.2. SAM C21G / SAM C20G. 23 4.3. SAM C21J / SAM C20J. 24 4.4. SAM C21N / SAM C20N. 26						
5.	Signal Descriptions List	27					
6.	I/O Multiplexing and Considerations 6.1. Multiplexed Signals 6.2. Other Functions	29 29 .35					
7.	Power Supply and Start-Up Considerations. 7.1. Power Domain Overview. 7.2. Power Supply Considerations. 7.3. Power-Up. 7.4. Power-On Reset and Brown-Out Detector.	38 38 39 41 42					
8.	Product Mapping	43					
9.	Memories. 9.1. Embedded Memories. 9.2. Physical Memory Map. 9.3. NVM User Row Mapping. 9.4. NVM Software Calibration Area Mapping. 9.5. NVM Temperature Calibration Area Mapping, SAM C21. 9.6. Serial Number.	47 47 48 49 50 51					
10.	Processor and Architecture. 10.1. Cortex M0+ Processor. 10.2. Nested Vector Interrupt Controller. 10.3. Micro Trace Buffer. 10.4. High-Speed Bus System.	52 52 54 57 58					
11.	PAC - Peripheral Access Controller 11.1. Overview 11.2. Features 11.3. Block Diagram	61 61 61 61					

4.2 SAM C21G / SAM C20G

4.2.1 QFN48 / TQFP48

Writing a '1' to this bit has no effect.

This bit is set when Hot-Plugging is enabled.

This bit is cleared when Hot-Plugging is disabled. This is the case when the SWCLK function is changed. Only a power-reset or a external reset can set it again.

Bits 3,2 – DCCDx: Debug Communication Channel x Dirty [x=1..0]

Writing a '0' to this bit has no effect.

Writing a '1' to this bit has no effect.

This bit is set when DCCx is written.

This bit is cleared when DCCx is read.

Bit 1 – DBGPRES: Debugger Present

Writing a '0' to this bit has no effect.

Writing a '1' to this bit has no effect.

This bit is set when a debugger probe is detected.

This bit is never cleared.

Bit 0 – PROT: Protected

Writing a '0' to this bit has no effect.

Writing a '1' to this bit has no effect.

This bit is set at power-up when the device is protected.

This bit is never cleared.

13.13.4 Address

Name:ADDROffset:0x0004Reset:0x0000000Property:PAC Write-Protection

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
								SMEMP
Access								R
Reset								x

Bit 0 – SMEMP: System Memory Present

This bit indicates whether system memory is present on the bus that connects to the ROM table.

This bit is set at power-up if the device is not protected, indicating that the system memory is accessible from a debug adapter.

This bit is cleared at power-up if the device is protected, indicating that the system memory is not accessible from a debug adapter.

13.13.14 Peripheral Identification 4

 Name:
 PID4

 Offset:
 0x1FD0

 Reset:
 0x0000000

 Property:

Name: DIVIDEND Offset: 0x08 Reset: 0x0000 Property:

Bit	31	30	29	28	27	26	25	24
				DIVIDEN	ID[31:24]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DIVIDEN	ID[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				DIVIDE	ND[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				DIVIDE	ND[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – DIVIDEND[31:0]: Dividend Value

Holds the 32-bit dividend for the divide operation. If the Signed bit in Control A register (CTRLA.SIGNED) is zero, DIVIDEND is unsigned. If CTRLA.SIGNED = 1, DIVIDEND is signed two's complement. Refer to Performing Division, Operand Size and Signed Division.

14.8.4 Divisor

Name:DIVISOROffset:0x0CReset:0x0000Property:-

Offset	Name	Bit Pos.						
0x0107		31:24						
0x0108		7:0	WRTLOCK	CHEN		GEI	N[3:0]	
0x0109		15:8						
0x010A		23:16						
0x010B		31:24						
0x010C		7:0	WRTLOCK	CHEN		GEI	N[3:0]	1
0x010D		15:8						
0x010E	PUNUTRESS	23:16						
0x010F		31:24						
0x0110		7:0	WRTLOCK	CHEN		GEI	N[3:0]	
0x0111	PCHCTRI 36	15:8						
0x0112		23:16						
0x0113		31:24						
0x0114		7:0	WRTLOCK	CHEN		GEI	N[3:0]	1
0x0115	PCHCTRI 37	15:8						
0x0116		23:16						
0x0117		31:24						
0x0118	-	7:0	WRTLOCK	CHEN		GEI	N[3:0]	
0x0119	PCHCTRL38	15:8						
0x011A	T CHOTILESS	23:16						
0x011B		31:24						
0x011C	-	7:0	WRTLOCK	CHEN		GEI	N[3:0]	1
0x011D	PCHCTRL39	15:8						
0x011E	-	23:16						
0x011F		31:24						
0x0120	-	7:0	WRTLOCK	CHEN		GEI	N[3:0]	
0x0121	PCHCTRL40	15:8						
0x0122	-	23:16						
0x0123		31:24						
0x0124	-	7:0	WRILOCK	CHEN		GEI	N[3:0]	
0x0125	PCHCTRL41	15:8						
0x0126	-	23:16						
0x0127		31:24		CHEN		05	NI[3:0]	
0x0128	-	1.0	WRILUCK			GEI	v[3.0]	
0x0129	PCHCTRL42	23.16						
	-	31.24						
0x0120		7.0	WRTLOCK	CHEN		CEI	N[3:0]	
0x012D	-	15.8						
0x012F	PCHCTRL43	23.16						
0x012F	_	31.24						
0x0130		7:0	WRTLOCK	CHEN		GFI	N[3:0]	
0x0131	-	15:8						
0x0132	PCHCTRL44	23:16						
0x0133	-	31:24						
0x0134		7:0	WRTLOCK	CHEN		GEI	N[3:0]	
0x0135	PCHCTRL45	15:8						

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access		ł						
Reset								
Bit	15	14	13	12	11	10	9	8
					DPLLLDRTO	DPLLLTO	DPLLLCKF	DPLLLCKR
Access			•		R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
				OSC48MRDY			CLKFAIL	XOSCRDY
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 11 – DPLLLDRTO: DPLL Loop Divider Ratio Update Complete Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the DPLL Loop Ratio Update Complete Interrupt Enable bit, which enables the DPLL Loop Ratio Update Complete interrupt.

Value	Description
0	The DPLL Loop Divider Ratio Update Complete interrupt is disabled.
1	The DPLL Loop Ratio Update Complete interrupt is enabled, and an interrupt request will be
	generated when the DPLL Loop Ratio Update Complete Interrupt flag is set.

Bit 10 – DPLLLTO: DPLL Lock Timeout Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the DPLL Lock Timeout Interrupt Enable bit, which enables the DPLL Lock Timeout interrupt.

Value	Description
0	The DPLL Lock Timeout interrupt is disabled.
1	The DPLL Lock Timeout interrupt is enabled, and an interrupt request will be generated
	when the DPLL Lock Timeout Interrupt flag is set.

Bit 9 – DPLLLCKF: DPLL Lock Fall Interrupt Enable

Writing '0' to this bit has no effect.

Writing '1' to this bit will set the DPLL Lock Fall Interrupt Enable bit, which enables the DPLL Lock Fall interrupt.

Value	Description
0	The DPLL Lock Fall interrupt is disabled.
1	The DPLL Lock Fall interrupt is enabled, and an interrupt request will be generated when the
	DPLL Lock Fall Interrupt flag is set.

Bit	31	30	29	28	27	26	25	24
							DIV[10:8]	
Access						R/W	R/W	R/W
Reset						0	0	0
Bit	23	22	21	20	19	18	17	16
				DIV	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				LBYPASS			LTIME[2:0]	
Access				R/W		R/W	R/W	R/W
Reset				0		0	0	0
Bit	7	6	5	4	3	2	1	0
			REFCI	_K[1:0]	WUF	LPEN	FILTE	R[1:0]
Access			R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 26:16 – DIV[10:0]: Clock Divider

These bits set the XOSC clock division factor and can be calculated with following formula:

$$f_{DIV} = \frac{f_{XOSC}}{2x(DIV+1)}$$

Bit 12 – LBYPASS: Lock Bypass

Value	Description
0	DPLL Lock signal drives the DPLL controller internal logic.
1	DPLL Lock signal is always asserted.

Bits 10:8 – LTIME[2:0]: Lock Time

These bits select the lock time-out value:

Value	Name	Description
0x0	Default	No time-out. Automatic lock.
0x1	Reserved	
0x2	Reserved	
0x3	Reserved	
0x4	8MS	Time-out if no lock within 8ms
0x5	9MS	Time-out if no lock within 9ms
0x6	10MS	Time-out if no lock within 10ms
0x7	11MS	Time-out if no lock within 11ms

Bits 5:4 – REFCLK[1:0]: Reference Clock Selection

Write these bits to select the DPLL clock reference:

Value	Name	Description
0x0	XOSC32K	XOSC32K clock reference
0x1	XOSC	XOSC clock reference

21.5.3 Clocks

The OSC32KCTRL gathers controls for all 32KHz oscillators and provides clock sources to the Generic Clock Controller (GCLK), Real-Time Counter (RTC), and Watchdog Timer (WDT).

The available clock sources are: XOSC32K, OSC32K, and OSCULP32K.

The OSC32KCTRL bus clock (CLK_OSC32KCTRL_APB) can be enabled and disabled in the Main Clock module (MCLK).

Related Links

Peripheral Clock Masking

21.5.4 Interrupts

The interrupt request lines are connected to the interrupt controller. Using the OSC32KCTRL interrupts requires the interrupt controller to be configured first.

Related Links

Nested Vector Interrupt Controller

21.5.5 Events

The events of this peripheral are connected to the Event System.

Related Links

EVSYS - Event System

21.5.6 Debug Operation

When the CPU is halted in debug mode, OSC32KCTRL will continue normal operation. If OSC32KCTRL is configured in a way that requires it to be periodically serviced by the CPU through interrupts or similar, improper operation or data loss may result during debugging.

21.5.7 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

Interrupt Flag Status and Clear (INTFLAG) register

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

Related Links

PAC - Peripheral Access Controller

21.5.8 Analog Connections

The external 32.768kHz crystal must be connected between the XIN32 and XOUT32 pins, along with any required load capacitors. For details on recommended oscillator characteristics and capacitor load, refer to the related links.

Related Links

Electrical Characteristics 85°C (SAM C20/C21 E/G/J)

21.5.9 Calibration

The OSC32K calibration value from the production test must be loaded from the NVM Software Calibration Area into the OSC32K register (OSC32K.CALIB) by software to achieve specified accuracy.

21.7 Register Summary

Offset	Name	Bit Pos.								
0x00		7:0						CLKFAIL	OSC32KRDY	XOSC32KRD Y
0x01	INTENCLR	15:8								
0x02		23:16								
0x03		31:24								
0x04		7:0						CLKFAIL	OSC32KRDY	XOSC32KRD Y
0x05	INTENSET	15:8								
0x06		23:16								
0x07		31:24								
0x08		7:0						CLKFAIL	OSC32KRDY	XOSC32KRD Y
0x09	INTFLAG	15:8								
0x0A		23:16								
0x0B		31:24								
0x0C		7:0					CLKSW	CLKFAIL	OSC32KRDY	XOSC32KRD Y
0x0D	STATUS	15:8								
0x0E		23:16								
0x0F		31:24								
0x10										
	Reserved									
0x13										
0x14	XOSC32K	7:0	ONDEMAND	RUNSTDBY		EN1K	EN32K	XTALEN	ENABLE	
0x15		15:8				WRTLOCK			STARTUP[2:0]	
0x16	CFDCTRL	7:0						CFDPRESC	SWBACK	CFDEN
0x17	EVCTRL	7:0								CFDEO
0x18		7:0	ONDEMAND	RUNSTDBY			EN1K	EN32K	ENABLE	
0x19	OSC32K	15:8				WRTLOCK			STARTUP[2:0]	
0x1A		23:16			-		CALIB[6:0]		-	
0x1B		31:24								
0x1C		7:0								
0x1D		15:8	WRTLOCK					CALIB[4:0]		
0x1E	OCCULI SZR	23:16								
0x1F		31:24								

21.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register and the 8-bit halves of a 16-bit register can be accessed directly.

All registers with write-access can be write-protected optionally by the peripheral access controller (PAC). Optional Write-Protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-

24.11 Register Summary - CLOCK

Offset	Name	Bit Pos.								
0x00		7:0	MATCHCLR	CLKREP			MOD	E[1:0]	ENABLE	SWRST
0x01	CIRLA	15:8	CLOCKSYNC					PRESCA	LER[3:0]	
0x02										
	Reserved									
0x03										
0x04		7:0	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn
0x05	EVCTRI	15:8	OVFEO							ALARMO0
0x06	LVOINE	23:16								
0x07		31:24								
0x08		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x09	INTENCER	15:8	OVF							ALARM0
0x0A	INTENSET	7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0B	INTENSET	15:8	OVF							ALARM0
0x0C		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0D	INTELAG	15:8	OVF							ALARM0
0x0E	DBGCTRL	7:0								DBGRUN
0x0F	Reserved									
0x10		7:0			ALARM0		CLOCK	FREQCORR	ENABLE	SWRST
0x11	SYNCDUSY	15:8	CLOCKSYNC				MASK0			
0x12	STINCBUST	23:16								
0x13		31:24								
0x14	FREQCORR	7:0	SIGN		1	1	VALUE[6:0]			1
0x15										
	Reserved									
0x17										
0x18		7:0	MINUT	E[1:0]			SECOND[5:0]			
0x19	CLOCK	15:8		HOU	R[3:0]			MINUT	FE[5:2]	
0x1A	CLOCK	23:16	MONT	H[1:0]			DAY[4:0]			HOUR[4:4]
0x1B		31:24			YEAI	R[5:0]			MONT	[H[3:2]
0x1C										
	Reserved									
0x1F										
0x20		7:0	MINUT	E[1:0]			SECO	ND[5:0]		
0x21		15:8		HOU	R[3:0]			MINUT	FE[5:2]	
0x22		23:16	MONT	H[1:0]			DAY[4:0]			HOUR[4:4]
0x23		31:24			YEAI	R[5:0]			MONT	[H[3:2]
0x24	MASK	7:0							SEL[2:0]	

24.12 Register Description - CLOCK

This Register Description section is valid if the RTC is in Clock/Calendar mode (CTRLA.MODE=2).

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16-, and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

25.3 Block Diagram

Figure 25-1. DMAC Block Diagram

25.4 Signal Description

Not applicable.

25.5 **Product Dependencies**

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

25.5.1 I/O Lines

Not applicable.

25.5.2 Power Management

The DMAC will continue to operate in any sleep mode where the selected source clock is running. The DMAC's interrupts can be used to wake up the device from sleep modes. Events connected to the event system can trigger other operations in the system without exiting sleep modes. On hardware or software reset, all registers are set to their reset value.

Related Links

PM – Power Manager

25.5.3 Clocks

The DMAC bus clock (CLK_DMAC_APB) must be configured and enabled in the Main Clock module before using the DMAC.

Figure 33-14. I²C Pad Interface

33.6.3.4 Quick Command

Setting the Quick Command Enable bit in the Control B register (CTRLB.QCEN) enables quick command. When quick command is enabled, the corresponding interrupt flag (INTFLAG.SB or INTFLAG.MB) is set immediately after the slave acknowledges the address. At this point, the software can either issue a stop command or a repeated start by writing CTRLB.CMD or ADDR.ADDR.

33.6.4 DMA, Interrupts and Events

Each interrupt source has its own interrupt flag. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) will be set when the interrupt condition is meet. Each interrupt can be individually enabled by writing '1' to the corresponding bit in the Interrupt Enable Set register (INTENSET), and disabled by writing '1' to the corresponding bit in the Interrupt Enable Clear register (INTENCLR). An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request active until the interrupt flag is cleared, the interrupt is disabled or the I²C is reset. See INTFLAG register for details on how to clear interrupt flags.

Condition	Request						
	DMA	Interrupt	Event				
Data needed for transmit (TX) (Slave transmit mode)	Yes (request cleared when data is written)		NA				
Data received (RX) (Slave receive mode)	Yes (request cleared when data is read)						
Data Ready (DRDY)		Yes					
Address Match (AMATCH)		Yes					
Stop received (PREC)		Yes					
Error (ERROR)		Yes					

Table 33-1. Module Request for SERCOM I²C Slave

Bit	31	30	29	28	27	26	25	24
		REL	[3:0]			STER	P[3:0]	
Access	R	R	R	R	R	R	R	R
Reset	0	0	1	1	0	0	1	0
D :4	22	00	24	20	10	40	47	40
BIL	23	22	21	20	19	18	17	10
		SUBST	EP[3:0]					
Access	R	R	R	R				
Reset	0	0	0	1				
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
Access			1			1	1	

Reset

Bits 31:28 – REL[3:0]: Core Release

One digit, BCD-coded.

Bits 27:24 – STEP[3:0]: Step of Core Release One digit, BCD-coded.

Bits 23:20 – SUBSTEP[3:0]: Sub-step of Core Release

One digit, BCD-coded.

34.8.2 Endian

Name:ENDNOffset:0x04 [ID-0000a4bb]Reset:0x87654321Property:Read-only

Bit	15	14	13	12	11	10	9	8	
				COUN	T[15:8]				
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	
Bit	7	6	5	4	3	2	1	0	
COUNT[7:0]									
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	
Reset	0	0	0	0	0	0	0	0	

Bits 15:0 – COUNT[15:0]: Counter Value

These bits contain the current counter value.

35.7.2.14 Period Value, 16-bit Mode

Name:PEROffset:0x1AReset:0xFFFFProperty:Write-Synchronized

Bit	15	14	13	12	11	10	9	8			
	PER[15:8]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	0			
Bit	7	6	5	4	3	2	1	0			
	PER[7:0]										
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W			
Reset	0	0	0	0	0	0	0	1			

Bits 15:0 – PER[15:0]: Period Value

These bits hold the value of the Period Buffer register PERBUF. The value is copied to PER register on UPDATE condition.

35.7.2.15 Channel x Compare/Capture Value, 16-bit Mode

Name:CCxOffset:0x1C + x*0x02 [x=0..1]Reset:0x0000Property:Write-Synchronized

Value	Description
0	The SDADC is always on , if enabled.
1	The SDADC is enabled, when a peripheral is requesting the SDADC conversion. The
	SDADC is disabled if no peripheral is requesting it.

Bit 6 – RUNSTDBY: Run in Standby

This bit controls how the SDADC behaves during standby sleep mode:

This bit is not synchronized.

Value	Description
0	The SDADC is halted during standby sleep mode.
1	The SDADC is not stopped in standby sleep mode. If CTRLA.ONDEMAND is one, the
	SDADC will be running when a peripheral is requesting it. If CTRLA.ONDEMAND is zero, the
	SDADC will always be running in standby sleep mode.

Bit 1 – ENABLE: Enable

Due to synchronization there is delay from writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRL.ENABLE will read back immediately and the ENABLE bit in the SYNCBUSY register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared when the operation is complete.

Value	Description
0	The SDADC is disabled.
1	The SDADC is enabled.

Bit 0 – SWRST: Software Reset

Writing a zero to this bit has no effect.

Writing a one to this bit resets all registers in the SDADC, except SYNCBUSY, to their initial state, and the SDADC will be disabled.

Writing a one to CTRLA.SWRST will always take precedence, meaning that all other writes in the same write-operation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the reset is complete. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.

39.8.2 Reference Control

Name:REFCTRLOffset:0x01 [ID-0000243d]Reset:0x00Property:PAC Write-Protection, Enable-Protected

$$V_{\text{SCALE}} = \frac{V_{\text{DD}} \cdot (\text{VALUE}+1)}{64}$$

40.8.12 Comparator Control n

Name:COMPCTRLOffset:0x10 + n*0x04 [n=0..3]Reset:0x00000000Property:PAC Write-Protection, Write-Synchronized

Bit	31	30	29	28	27	26	25	24	
			OUT	[1:0]			FLEN[2:0]		
Access		•	R/W	R/W	L	R/W	R/W	R/W	
Reset			0	0		0	0	0	
Bit	23	22	21	20	19	18	17	16	
					HYSTEN		SPEE	D[1:0]	
Access					R/W		R/W	R/W	
Reset					0		0	0	
Bit	15	14	13	12	11	10	9	8	
	SWAP		MUXPOS[2:0]	MUXPOS[2:0]			MUXNEG[2:0]		
Access	R/W	R/W	R/W	R/W	1	R/W	R/W	R/W	
Reset	0	0	0	0		0	0	0	
Bit	7	6	5	4	3	2	1	0	
		RUNSTDBY		INTSEL[1:0]		SINGLE	ENABLE		
Access		R/W		R/W	R/W	R/W	R/W		
Reset		0		0	0	0	0		

Bits 29:28 – OUT[1:0]: Output

These bits configure the output selection for comparator n. COMPCTRLn.OUT can be written only while COMPCTRLn.ENABLE is zero.

Note: For internal use of the comparison results by the CCL, this bit must be 0x1 or 0x2.

These bits are not synchronized.

Value	Name	Description
0x0	OFF	The output of COMPn is not routed to the COMPn I/O port
0x1	ASYNC	The asynchronous output of COMPn is routed to the COMPn I/O port
0x2	SYNC	The synchronous output (including filtering) of COMPn is routed to the COMPn I/O port
0x3	N/A	Reserved

Bits 26:24 – FLEN[2:0]: Filter Length

These bits configure the filtering for comparator n. COMPCTRLn.FLEN can only be written while COMPCTRLn.ENABLE is zero.

These bits are not synchronized.

Conditions for VDD: VDD<=4.9V.

If Vpin is lower than GND-0.6V, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = $|(GND-0.6V - V_{PIN})/I_{INJ2}|$. If Vpin is greater than VDD+0.6V, then a current limiting resistor is required. The positive DC injection current limiting resistor is calculated as R = $|(V_{PIN}-(VDD+0.6))/I_{INJ2}|$.

45.5 Supply Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}$ C to 105°C, unless otherwise specified and are valid for a junction temperature up to $T_J = 125^{\circ}$ C.

Symbol	Conditions	Voltage			
		Min.	Max.	Units	
V _{DDIO} V _{DDIN}	Full Voltage Range	2.7	5.5	V	
V _{DDANA}					

Table 45-4. Supply Characteristics

Table 45-5. Supply Rise Rates

Symbol	Parameter	Fall Rate	Rise Rate	Units
		Max	Max.	
V _{DDIO}	DC supply peripheral I/Os, internal regulator and analog supply	0.05	0.1	V/µs
V _{DDIN}		0.05	0.1	
V _{DDANA}		0.05	0.1	

Table 45-6. Power Supply Current Requirement

Symbol	Conditions	Current	Units
		Мах	
I _{INPUT} ⁽¹⁾	Power up Maximum current	1.9	mA

1. I_{INPUT} is the minimum requirement for the power supply connected to the device.

Related Links

Power Supply and Start-Up Considerations

45.6 Maximum Clock Frequencies

Table 45-7. Maximum GCLK Generator Output Frequencies

Symbol	Condition	Max.	Units
f _{GCLKGEN0} / f _{GCLK_MAIN}	Undivided	96	MHz
f _{GCLKGEN1}			
f _{GCLKGEN2}			

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
Vcmin	Input common mode voltage	CTRLC.R2R=1	0.2	-	VREF-0.2	V
		CTRLC.R2R=0	VREF/2-0.2	-	VREF/2+0.2	V
CSAMPLE	Input sampling capacitance		-	1.6	4.5	pF
RSAMPLE	Input sampling on-resistance	For a sampling rate at 1 Msps	-	1000	1715	Ω
Rref	Reference input source resistance		0	-	1000	kΩ

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

Figure 45-4. ADC Analog Input AINx

The minimum sampling time $t_{\text{samplehold}}$ for a given R_{source} can be found using this formula:

 $t_{\text{samplehold}} \ge (R_{\text{sample}} + R_{\text{source}}) \times C_{\text{sample}} \times (n+2) \times \ln(2)$ For 12-bit accuracy:

$$t_{\text{samplehold}} \ge (R_{\text{sample}} + R_{\text{source}}) \times C_{\text{sample}} \times 9.7$$

where $t_{\text{samplehold}} \ge \frac{1}{2 \times f_{\text{ADC}}}$.

Table 45-19. Differential Mode⁽¹⁾

Symbol	Parameter	Cond	Conditions		Measurement		
				Min	Тур	Мах	
ENOB ⁽²⁾	Effective Number of bits	Fadc = 500 ksps	Vddana=5.0V Vref=Vddana	10.0	10.7	11	bits
			Vddana=2.7V Vref=2.0V	10.3	10.5	10.9	
		Fadc = 1 Msps	Vddana=5.0V Vref=Vddana	10.5	10.8	11.1	
			Vddana=2.7V Vref=2.0V	9.9	10.0	10.6	
TUE	Total Unadjusted Error	Fadc = 500 ksps	Vddana=5.0V Vref=Vddana	-	7.8	17.0	LSB

Refer to the SAM-ICE, JTAGICE3 or SAM C21 Xplained Pro user guides for details on debugging and programming connections and options. For connecting to any other programming or debugging tool, refer to that specific programmer or debugger's user guide.

The SAM C21 Xplained Pro evaluation board for the SAM C20/C21 supports programming and debugging through the onboard embedded debugger so no external programmer or debugger is needed.

Note that a pull-up resistor on the SWCLK pin is critical for reliable operations. Refer to related link for more information.

Figure 49-11. SWCLK Circuit Connections

Pin Name	Description	Recommended Pin Connection
SWCLK	Serial wire clock pin	Pull-up resistor 1kΩ

Related Links

Operation in Noisy Environment

49.8.1 Cortex Debug Connector (10-pin)

For debuggers and/or programmers that support the Cortex Debug Connector (10-pin) interface the signals should be connected as shown in Figure 49-12 with details described in Table 49-8.