

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

ĿХF

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	38
Program Memory Size	32KB (32K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	4K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	48-TQFP
Supplier Device Package	48-TQFP (7x7)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc20g15a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

- Two 24-bit Timer/Counters and one 16-bit Timer/Counter for Control (TCC), with extended functions:
 - Up to four compare channels with optional complementary output
 - Generation of synchronized pulse width modulation (PWM) pattern across port pins
 - Deterministic fault protection, fast decay and configurable dead-time between complementary output
 - Dithering that increase resolution with up to 5 bit and reduce quantization error
- Frequency Meter (The division reference clock is only available in the SAM C21N)
- 32-bit Real Time Counter (RTC) with clock/calendar function
- Watchdog Timer (WDT)
- CRC-32 generator
- Up to two Controller Area Network (CAN) interfaces:
 - CAN 2.0A/B
 - CAN-FD 1.0
 - Each CAN interface have two selectable pin locations to switch between two external CAN transceivers (without the need for an external switch)
- Up to eight Serial Communication Interfaces (SERCOM), each configurable to operate as either:
 - USART with full-duplex and single-wire half-duplex configuration
 - I²C up to 3.4 MHz (Except SERCOM6 and SERCOM7)
 - SPI
 - LIN master/slave
 - RS-485
 - PMBus
- One Configurable Custom Logic (CCL)
- Up to Two 12-bit, 1 Msps Analog-to-Digital Converter (ADC) with up to 12 channels each (20 unique channels)
 - Differential and single-ended input
 - Automatic offset and gain error compensation
 - Oversampling and decimation in hardware to support 13-, 14-, 15- or 16-bit resolution
 - One 16-bit Sigma-Delta Analog-to-Digital Converter (SDADC) with up to 3 differential channels
- 10-bit, 350 ksps Digital-to-Analog Converter (DAC)
- Up to four Analog Comparators (AC) with Window Compare function
- Integrated Temperature Sensor
- Peripheral Touch Controller (PTC)
 - 256-Channel capacitive touch and proximity sensing

I/O

•

• Up to 84 programmable I/O pins

Packages

- 100-pin TQFP
- 64-pin TQFP, QFN
- 56-pin WLCSP
- 48-pin TQFP, QFN
- 32-pin TQFP, QFN

General

35.2.	Features	701
35.3.	Block Diagram	702
35.4.	Signal Description	
35.5.	Product Dependencies	703
35.6.	Functional Description	704
35.7.	Register Description	720
36. TCC	C – Timer/Counter for Control Applications	
36.1.	Overview	
	Features	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
	Register Description	
37 CCI	_ – Configurable Custom Logic	849
	Overview	
	Features	
	Block Diagram	
	Signal Description	
	Product Dependencies	
	Functional Description	
	Register Summary	
37.8.	Register Description	
		863
38. ADC	C – Analog-to-Digital Converter	
38. ADC 38.1.	C – Analog-to-Digital Converter Overview	863 867 867
38. ADC 38.1. 38.2.	C – Analog-to-Digital Converter Overview Features	
38. ADC 38.1. 38.2. 38.3.	C – Analog-to-Digital Converter Overview Features Block Diagram	
38. ADC 38.1. 38.2. 38.3. 38.3.	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description	
38. ADC 38.1. 38.2. 38.3. 38.4. 38.5.	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies	
38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.5. 38.6.	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description.	
38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.6. 38.7.	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary	863 867 867 867 869 869 869 869 869
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 	C – Analog-to-Digital Converter. Overview. Features. Block Diagram. Signal Description. Product Dependencies. Functional Description. Register Summary. Register Description.	863 867 867 867 869 869 869 869 886 886
38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description ADC – Sigma-Delta Analog-to-Digital Converter	
38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.6. 38.7. 38.8. 39. SDA 39.1.	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description ADC – Sigma-Delta Analog-to-Digital Converter Overview	863 867 867 867 869 869 869 869 886 887
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 	C – Analog-to-Digital Converter Overview	863 867 867 867 869 869 869 869 887 886 887 906 906
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 39.3. 	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Summary Register Description ADC – Sigma-Delta Analog-to-Digital Converter Overview Features Block Diagram	
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 39.3. 39.4. 	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description ADC – Sigma-Delta Analog-to-Digital Converter Overview Features Block Diagram Signal Description.	863 867 867 867 869 869 869 869 871 886 887 906 906 907
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 39.3. 39.4. 39.5. 	C – Analog-to-Digital Converter Overview Features. Block Diagram Signal Description. Product Dependencies. Functional Description. Register Summary Register Description. ADC – Sigma-Delta Analog-to-Digital Converter Overview. Features Block Diagram. Signal Description. Product Dependencies.	863 867 867 867 869 869 869 869 887 886 887 906 906 907 907 908
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 39.3. 39.4. 39.5. 39.6. 	C – Analog-to-Digital Converter Overview Features. Block Diagram Signal Description. Product Dependencies. Functional Description. Register Summary Register Description. ADC – Sigma-Delta Analog-to-Digital Converter. Overview. Features. Block Diagram Signal Description. Product Dependencies. Functional Description.	863 867 867 867 869 869 869 869 871 886 887 906 906 906 907 907 908 909
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 39.3. 39.4. 39.5. 39.6. 39.7. 	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description ADC – Sigma-Delta Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Product Dependencies Functional Description Register Summary	863 867 867 867 869 869 869 869 887 906 906 906 907 907 907 909 917
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 39.3. 39.4. 39.5. 39.6. 39.7. 	C – Analog-to-Digital Converter Overview Features. Block Diagram Signal Description. Product Dependencies. Functional Description. Register Summary Register Description. ADC – Sigma-Delta Analog-to-Digital Converter. Overview. Features. Block Diagram Signal Description. Product Dependencies. Functional Description.	863 867 867 867 869 869 869 869 887 906 906 906 907 907 907 909 917
 38. ADC 38.1. 38.2. 38.3. 38.4. 38.5. 38.6. 38.7. 38.8. 39. SDA 39.1. 39.2. 39.3. 39.4. 39.5. 39.6. 39.7. 39.8. 	C – Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Register Summary Register Description ADC – Sigma-Delta Analog-to-Digital Converter Overview Features Block Diagram Signal Description Product Dependencies Functional Description Product Dependencies Functional Description Register Summary	863 867 867 867 869 869 869 880 887 906 906 906 907 907 907 907 908 909 917 918

PM – Power Manager

11.4.3 Clocks

The PAC bus clock (CLK_PAC_APB) can be enabled and disabled in the Main Clock module. The default state of CLK_PAC_APB can be found in the related links.

Related Links

MCLK – Main Clock Peripheral Clock Masking

11.4.4 DMA

Not applicable.

11.4.5 Interrupts

The interrupt request line is connected to the Interrupt Controller. Using the PAC interrupt requires the Interrupt Controller to be configured first.

Table 11-1. Interrupt Lines

Instances	NVIC Line
PAC	PACERR

Related Links

Nested Vector Interrupt Controller

11.4.6 Events

The events are connected to the Event System, which may need configuration.

Related Links

EVSYS – Event System

11.4.7 Debug Operation

When the CPU is halted in debug mode, write protection of all peripherals is disabled and the PAC continues normal operation.

11.4.8 Register Access Protection

All registers with write-access can be write-protected optionally by the Peripheral Access Controller (PAC), except for the following registers:

- Write Control (WRCTRL) register
- AHB Slave Bus Interrupt Flag Status and Clear (INTFLAGAHB) register
- Peripheral Interrupt Flag Status and Clear n (INTFLAG A/B/C...) registers

Optional write-protection by the Peripheral Access Controller (PAC) is denoted by the "PAC Write-Protection" property in each individual register description.

PAC write-protection does not apply to accesses through an external debugger.

11.5 Functional Description

11.5.1 Principle of Operation

The Peripheral Access Control module allows the user to set a write protection on peripheral modules and generate an interrupt in case of a peripheral access violation. The peripheral's protection can be set,

 Name:
 STATUSA

 Offset:
 0x34 [ID-00000a18]

 Reset:
 0x000000

 Property:
 –

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
				TSENS	FREQM	EIC	RTC	WDT
Access				R	R	R	R	R
Reset				0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
	GCLK	SUPC	OSC32KCTRL	OSCCTRL	RSTC	MCLK	PM	PAC
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0

Bit 12 – TSENS: Peripheral TSENS Write Protection Status

Bit 11 – FREQM: Peripheral FREQM Write Protection Status

Bit 10 – EIC: Peripheral EIC Write Protection Status

Bit 9 – RTC: Peripheral RTC Write Protection Status

- Bit 8 WDT: Peripheral WDT Write Protection Status
- Bit 7 GCLK: Peripheral GCLK Write Protection Status
- Bit 6 SUPC: Peripheral SUPC Write Protection Status
- Bit 5 OSC32KCTRL: Peripheral OSC32KCTRL Write Protection Status
- Bit 4 OSCCTRL: Peripheral OSCCTRL Write Protection Status
- Bit 3 RSTC: Peripheral RSTC Write Protection Status
- Bit 2 MCLK: Peripheral MCLK Write Protection Status
- Bit 1 PM: Peripheral PM Write Protection Status
- **Bit 0 PAC:** Peripheral PAC Write Protection Status

- CLKFAIL Clock Failure. A 0-to-1 transition on the STATUS.CLKFAIL bit is detected
- OSC48MRDY 48MHz Internal Oscillator Ready: A 0-to-1 transition on the STATUS.OSC48MRDY bit is detected
- DPLL-related:
 - DPLLLOCKR DPLL Lock Rise: A 0-to-1 transition of the STATUS.DPLLLOCKR bit is detected
 - DPLLLOCKF DPLL Lock Fall: A 0-to-1 transition of the STATUS.DPLLLOCKF bit is detected
 - DPLLLTTO DPLL Lock Timer Time-out: A 0-to-1 transition of the STATUS.DPLLLTTO bit is detected
 - DPLLLDRTO DPLL Loop Divider Ratio Update Complete. A 0-to-1 transition of the STATUS.DPLLLDRTO bit is detected

All these interrupts are synchronous wake-up source.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) is set when the interrupt condition occurs.

Each interrupt can be individually enabled by writing a '1' to the corresponding bit in the Interrupt Enable Set register (INTENSET), and disabled by writing a '1' to the corresponding bit in the Interrupt Enable Clear register (INTENCLR).

An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled, or the OSCCTRL is reset. See the INTFLAG register for details on how to clear interrupt flags.

The OSCCTRL has one common interrupt request line for all the interrupt sources. The user must read the INTFLAG register to determine which interrupt condition is present. Refer to the INTFLAG register for details.

Note: The interrupts must be globally enabled for interrupt requests to be generated.

20.6.8 Events

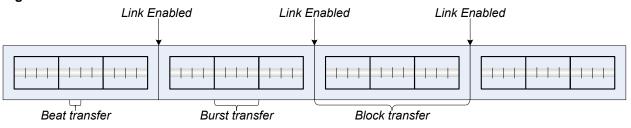
The CFD can generate the following output event:

 Clock Failure (CLKFAIL): Generated when the Clock Failure status bit is set in the Status register (STATUS.CLKFAIL). The CFD event is not generated when the Clock Switch bit (STATUS.CLKSW) in the Status register is set.

Writing a '1' to an Event Output bit in the Event Control register (EVCTRL.CFDEO) enables the CFD output event. Writing a '0' to this bit disables the CFD output event. Refer to the Event System chapter for details on configuring the event system.

20.6.9 Synchronization

OSC48M


Due to the multiple clock domains, values in the OSC48M control registers need to be synchronized to other clock domains.

When executing an operation that requires synchronization, the relevant synchronization bit in the Synchronization Busy register (OSC48MSYNCBUSY) will be set immediately, and cleared when synchronization is complete.

The following registers need synchronization when written:

OSC48M Divider register (OSC48MDIV)

Figure 25-2. DMA Transfer Sizes

DMA transaction

- Beat transfer: The size of one data transfer bus access, and the size is selected by writing the Beat Size bit group in the Block Transfer Control register (BTCTRL.BEATSIZE)
- Burst transfer: Defined as n beat transfers, where n will differ from one device family to another. A burst transfer is atomic, cannot be interrupted and the length of the burst is selected by writing the Burst Length bit group in each Channel n Control A register (CHCTRLA.BURSTLEN).
- Block transfer: The amount of data one transfer descriptor can transfer, and the amount can range from 1 to 64k beats. A block transfer can be interrupted, in contrast to the burst transfer.
- Transaction: The DMAC can link several transfer descriptors by having the first descriptor pointing to the second and so forth, as shown in the figure above. A DMA transaction is the complete transfer of all blocks within a linked list.

A transfer descriptor describes how a block transfer should be carried out by the DMAC, and it must remain in SRAM. For further details on the transfer descriptor refer to Transfer Descriptors.

The figure above shows several block transfers linked together, which are called linked descriptors. For further information about linked descriptors, refer to Linked Descriptors.

A DMA transfer is initiated by an incoming transfer trigger on one of the DMA channels. This trigger can be configured to be either a software trigger, an event trigger, or one of the dedicated peripheral triggers. The transfer trigger will result in a DMA transfer request from the specific channel to the arbiter. If there are several DMA channels with pending transfer requests, the arbiter chooses which channel is granted access to become the active channel. The DMA channel granted access as the active channel will carry out the transaction as configured in the transfer descriptor. A current transaction can be interrupted by a higher prioritized channel after each burst transfer, but will resume the block transfer when the according DMA channel is granted access as the active channel again.

For each beat transfer, an optional output event can be generated. For each block transfer, optional interrupts and an optional output event can be generated. When a transaction is completed, dependent of the configuration, the DMA channel will either be suspended or disabled.

25.6.1.2 CRC

The internal CRC engine supports two commonly used CRC polynomials: CRC-16 (CRC-CCITT) and CRC-32 (IEEE 802.3). It can be used on a selectable DMA channel, or on the I/O interface. Refer to CRC Operation for details.

25.6.2 Basic Operation

25.6.2.1 Initialization

The following DMAC registers are enable-protected, meaning that they can only be written when the DMAC is disabled (CTRL.DMAENABLE=0):

- Descriptor Base Memory Address register (BASEADDR)
- Write-Back Memory Base Address register (WRBADDR)

more transfer requests while one is already pending, the additional ones will be lost. All channels pending status flags are also available in the Pending Channels register (PENDCH).

When the transfer starts, the corresponding Channel Busy status flag is set in Channel Status register (CHSTATUS.BUSY). When the trigger action is complete, the Channel Busy status flag is cleared. All channel busy status flags are also available in the Busy Channels register (BUSYCH) in DMAC.

25.6.2.7 Addressing

Each block transfer needs to have both a source address and a destination address defined. The source address is set by writing the Transfer Source Address (SRCADDR) register, the destination address is set by writing the Transfer Destination Address (SRCADDR) register.

The addressing of this DMAC module can be static or incremental, for either source or destination of a block transfer, or both.

Incrementation for the source address of a block transfer is enabled by writing the Source Address Incrementation Enable bit in the Block Transfer Control register (BTCTRL.SRCINC=1). The step size of the incrementation is configurable and can be chosen by writing the Step Selection bit in the Block Transfer Control register (BTCTRL.STEPSEL=1) and writing the desired step size in the Address Increment Step Size bit group in the Block Transfer Control register (BTCTRL.STEPSIZE). If BTCTRL.STEPSEL=0, the step size for the source incrementation will be the size of one beat.

When source address incrementation is configured (BTCTRL.SRCINC=1), SRCADDR is calculated as follows:

If **BTCTRL**.STEPSEL=1:

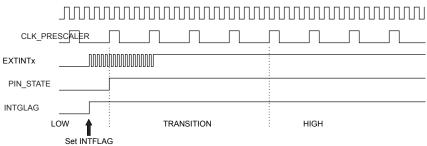
$SRCADDR = SRCADDR_{START} + BTCNT \cdot (BEATSIZE + 1) \cdot 2^{STEPSIZE}$

If **BTCTRL**.STEPSEL=0:

 $SRCADDR = SRCADDR_{START} + BTCNT \cdot (BEATSIZE + 1)$

- SRCADDR_{START} is the source address of the first beat transfer in the block transfer
- BTCNT is the initial number of beats remaining in the block transfer
- BEATSIZE is the configured number of bytes in a beat
- STEPSIZE is the configured number of beats for each incrementation

The following figure shows an example where DMA channel 0 is configured to increment the source address by one beat after each beat transfer (BTCTRL.SRCINC=1), and DMA channel 1 is configured to increment the source address by two beats (BTCTRL.SRCINC=1, BTCTRL.STEPSEL=1, and BTCTRL.STEPSIZE=0x1). As the destination address for both channels are peripherals, destination incrementation is disabled (BTCTRL.DSTINC=0).


Figure 26-3. EXTINT Pin Synchronous Debouncing (Rising Edge)

In the synchronous edge detection mode, the EIC clock is required. The synchronous edge detection mode can be used in Idle and Standby sleep modes.

Asynchronous edge detection In this mode, the external interrupt (EXTINT) pin directly drives an asynchronous edges detector which triggers any rising or falling edge on the pin:

- 1. Any edge detected that indicates a transition from the current valid pin state will immediately set the valid pin state PINSTATE.PINSTATE[x] to the detected level.
- 2. The external interrupt flag (INTFLAG.EXTINT[x] is immediately changed.
- 3. The edge detector will then be idle until no other rising or falling edge transition is detected during 4 consecutive ticks of the low frequency clock.
- 4. Any rising or falling edge transition detected during the idle state will return the transition counter to 0.
- 5. After 4 consecutive ticks of the low frequency clock without bounce detected, the edge detector is ready for a new detection.

Figure 26-4. EXTINT Pin Asynchronous Debouncing (Rising Edge)

In this mode, the EIC clock is requested. The asynchronous edge detection mode can be used in Idle and Standby sleep modes.

26.6.5 DMA Operation

Not applicable.

26.6.6 Interrupts

The EIC has the following interrupt sources:

- External interrupt pins (EXTINTx). See Basic Operation.
- Non-maskable interrupt pin (NMI). See Additional Features.

Each interrupt source has an associated interrupt flag. The interrupt flag in the Interrupt Flag Status and Clear register (INTFLAG) is set when an interrupt condition occurs (NMIFLAG for NMI). Each interrupt, except NMI, can be individually enabled by setting the corresponding bit in the Interrupt Enable Set register (INTENSET=1), and disabled by setting the corresponding bit in the Interrupt Enable Clear register (INTENCLR=1).

© 2017 Microchip Technology Inc.

Bit	31	30	29	28	27	26	25	24
	PBLDATA[31:24]							
Access	R	R	R	R	R	R	R	R
Reset	1	1	1	1	1	1	1	1
Bit	23	22	21	20	19	18	17	16
				PBLDAT	A[23:16]			
Access	R	R	R	R	R	R	R	R
Reset	1	1	1	1	1	1	1	1
Bit	15	14	13	12	11	10	9	8
	PBLDATA[15:8]							
Access	R	R	R	R	R	R	R	R
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
				PBLDA	TA[7:0]			
Access	R	R	R	R	R	R	R	R
Reset	1	1	1	1	1	1	1	1

Bits 31:0 – PBLDATA[31:0]: Page Buffer Load Data (Bits 63:32])Once the dimension element functions are supported the bit description must be updated to bit names becomes PBLDATA[63:32] in the register table.

The PBLDATA register is a holding register for partial AHB writes to the same 64-bit page buffer section. Page buffer loads are performed on a 64-bit basis.

This is a read only register.

Value	Name	Description
0x2	CLR	Clear output register of pin on event.
0x3	TGL	Toggle output register of pin on event.

Table 28-5. PORT Event x Pin Identifier (x = [3..0])

Value	Name	Description
0x0	PIN0	Event action to be executed on PIN 0.
0x1	PIN1	Event action to be executed on PIN 1.
0x31	PIN31	Event action to be executed on PIN 31.

28.9.13 Peripheral Multiplexing n

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

There are up to 16 Peripheral Multiplexing registers in each group, one for every set of two subsequent I/O lines. The n denotes the number of the set of I/O lines.

Name:PMUXOffset:0x30 + n*0x01 [n=0..15]Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
	PMUXO[3:0]					PMUX	Æ[3:0]	
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0

Bits 7:4 – PMUXO[3:0]: Peripheral Multiplexing for Odd-Numbered Pin

These bits select the peripheral function for odd-numbered pins $(2^n + 1)$ of a PORT group, if the corresponding PINCFGy.PMUXEN bit is '1'.

Not all possible values for this selection may be valid. For more details, refer to the *I/O Multiplexing and Considerations*.

These bits are not synchronized.

Value	Description
0x0	Standard-mode (Sm) up to 100 kHz and Fast-mode (Fm) up to 400 kHz
0x1	Fast-mode Plus (Fm+) up to 1 MHz
0x2	High-speed mode (Hs-mode) up to 3.4 MHz
0x3	Reserved

Bit 23 – SEXTTOEN: Slave SCL Low Extend Time-Out

This bit enables the slave SCL low extend time-out. If SCL is cumulatively held low for greater than 25ms from the initial START to a STOP, the slave will release its clock hold if enabled and reset the internal state machine. Any interrupt flags set at the time of time-out will remain set. If the address was recognized, PREC will be set when a STOP is received.

This bit is not synchronized.

Value	Description
0	Time-out disabled
1	Time-out enabled

Bits 21:20 – SDAHOLD[1:0]: SDA Hold Time

These bits define the SDA hold time with respect to the negative edge of SCL.

These bits are not synchronized.

Value	Name	Description
0x0	DIS	Disabled
0x1	75	50-100ns hold time
0x2	450	300-600ns hold time
0x3	600	400-800ns hold time

Bit 16 – PINOUT: Pin Usage

This bit sets the pin usage to either two- or four-wire operation:

This bit is not synchronized.

Value	Description
0	4-wire operation disabled
1	4-wire operation enabled

Bit 7 – RUNSTDBY: Run in Standby

This bit defines the functionality in standby sleep mode.

This bit is not synchronized.

Value	Description
0	Disabled – All reception is dropped.
1	Wake on address match, if enabled.

Bits 4:2 – MODE[2:0]: Operating Mode

These bits must be written to 0x04 to select the I²C slave serial communication interface of the SERCOM.

These bits are not synchronized.

34.4 Signal Description

Table 34-1. Signal Description

Signal	Description	Туре
CAN_TX	CAN transmit	Digital output
CAN_RX	CAN receive	Digital input

Refer to for details on the pin mapping for this peripheral. One signal can be mapped to one of several pins.

Related Links

I/O Multiplexing and Considerations

34.5 Product Dependencies

In order to use this peripheral, other parts of the system must be configured correctly, as described below.

34.5.1 I/O Lines

Using the CAN's I/O lines requires the I/O pins to be configured.

Related Links

PORT - I/O Pin Controller

34.5.2 Power Management

The CAN will continue to operate in any Idle sleep mode where the selected source clock is running. The CAN interrupts can be used to wake up the device from sleep modes. Refer to the Power Manager chapter for details on the different sleep modes.

The CAN module has its own low power mode. The clock sources cannot be halted while the CAN is enabled unless this mode is used. Refer to Sleep Mode Operation.

Related Links Sleep Mode Operation

34.5.3 Clocks

The CAN bus clock (CLK_CAN_APB) can be enabled and disabled in the Main Clock module, and the default state of CLK_CAN_APB can be found in the Peripheral Clock Masking section.

A generic clock (GCLK_CAN) is required to clock the CAN. This clock must be configured and enabled in the generic clock controller before using the CAN.

This generic clock is asynchronous to the bus clock (CLK_CAN_APB). Due to this asynchronicity, writes to certain registers will require synchronization between the clock domains.

Related Links

Peripheral Clock Masking GCLK - Generic Clock Controller

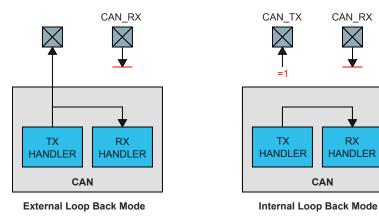
34.5.4 DMA

The CAN has a built-in Direct Memory Access (DMA) and will read/write data to/from the system RAM when a USB transaction takes place. No CPU or DMA Controller (DMAC) resources are required.

Due to the synchronization mechanism between GCLK_CAN and GCLK_CAN_APB domains, there may be a delay of several GCLK_CAN_APB periods between writing to TEST.TX until the new configuration is visible at output pin CAN_TX. This applies also when reading input pin CAN_RX via TEST.RX.

Note: Test modes should be used for production tests or self test only. The software control for pin CAN_TX interferes with all CAN protocol functions. It is not recommended to use test modes for application.

External Loop Back Mode


The CAN can be set in External Loop Back Mode by programming TEST.LBCK to '1'. In Loop Back Mode, the CAN treats its own transmitted messages as received messages and stores them (if they pass acceptance filtering) into an Rx Buffer or an Rx FIFO. The figure below shows the connection of signals CAN_TX and CAN_RX to the CAN in External Loop Back Mode.

This mode is provided for hardware self-test. To be independent from external stimulation, the CAN ignores acknowledge errors (recessive bit sampled in the acknowledge slot of a data/remote frame) in Loop Back Mode. In this mode the CAN performs an internal feedback from its Tx output to its Rx input. The actual value of the CAN_RX input pin is disregarded by the CAN. The transmitted messages can be monitored at the CAN_TX pin.

Internal Loop Back Mode

Internal Loop Back Mode is entered by programming bits TEST.LBCK and CCCR.MON to '1'. This mode can be used for a "Hot Selftest", meaning the CAN can be tested without affecting a running CAN system connected to the pins CAN_TX and CAN_RX. In this mode pin CAN_RX is disconnected from the CAN and pin CAN_TX is held recessive. The figure below shows the connection of CAN_TX and CAN_RX to the CAN in case of Internal Loop Back Mode.

Figure 34-4. Pin Control in Loop Back Modes

34.6.3 Timestamp Generation

For timestamp generation the CAN supplies a 16-bit wrap-around counter. A prescaler TSCC.TCP can be configured to clock the counter in multiples of CAN bit times (1...16). The counter is readable via TSCV.TSC. A write access to register TSCV resets the counter to zero. When the timestamp counter wraps around interrupt flag IR.TSW is set.

On start of frame reception / transmission the counter value is captured and stored into the timestamp section of an Rx Buffer / Rx FIFO (RXTS[15:0]) or Tx Event FIFO (TXTS[15:0]) element.

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access				L				
Reset								
Bit	15	14	13	12	11	10	9	8
[TOC	15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1
Bit	7	6	5	4	3	2	1	0
[TOC	[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	1	1	1	1	1	1	1	1

Bits 15:0 – TOC[15:0]: Timeout Counter

The Timeout Counter is decremented in multiples of CAN bit times [1...16] depending on the configuration of TSCC.TCP. When decremented to zero, interrupt flag IR.TOO is set and the Timeout Counter is stopped. Start and reset/restart conditions are configured via TOCC.TOS.

34.8.13 Error Counter

Note: When CCCR.ASM is set, the CAN protocol controller does not increment TECand REC when a CAN protocol error is detected, but CEL is still incremented.

 Name:
 ECR

 Offset:
 0x40 [ID-0000a4bb]

 Reset:
 0x00000000

 Property:
 Read-only

These bits are not synchronized.

Value	Name	Description
0x0	GCLK	Reload or reset the counter on next generic clock
0x1	PRESC	Reload or reset the counter on next prescaler clock
0x2	RESYNC	Reload or reset the counter on next generic clock. Reset the prescaler counter
0x3	-	Reserved

Bits 3:2 – MODE[1:0]: Timer Counter Mode

These bits select the counter mode.

These bits are not synchronized.

Value	Name	Description
0x0	COUNT16	Counter in 16-bit mode
0x1	COUNT8	Counter in 8-bit mode
0x2	COUNT32	Counter in 32-bit mode
0x3	-	Reserved

Bit 1 – ENABLE: Enable

Due to synchronization, there is delay from writing CTRLA.ENABLE until the peripheral is enabled/ disabled. The value written to CTRLA.ENABLE will read back immediately, and the ENABLE Synchronization Busy bit in the SYNCBUSY register (SYNCBUSY.ENABLE) will be set. SYNCBUSY.ENABLE will be cleared when the operation is complete.

This bit is not enable protected.

Value	Description
0	The peripheral is disabled.
1	The peripheral is enabled.

Bit 0 – SWRST: Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the TC, except DBGCTRL, to their initial state, and the TC will be disabled.

Writing a '1' to CTRLA.SWRST will always take precedence; all other writes in the same write-operation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the reset is complete. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the reset is complete.

This bit is not enable protected.

Value	Description
0	There is no reset operation ongoing.
1	The reset operation is ongoing.

35.7.1.2 Control B Clear

This register allows the user to clear bits in the CTRLB register without doing a read-modify-write operation. Changes in this register will also be reflected in the Control B Set register (CTRLBSET).

Value	Name	Description
0x6	PWP	Period captured in CC1, pulse width in CC0
0x7	PW	Pulse width capture

35.7.3.5 Interrupt Enable Clear

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Name:INTENCLROffset:0x08Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
				MCx			ERR	OVF
Access				R/W			R/W	R/W
Reset				0			0	0

Bit 4 – MCx: Match or Capture Channel x Interrupt Enable

Writing a '0' to these bits has no effect.

Writing a '1' to MCx will clear the corresponding Match or Capture Channel x Interrupt Enable bit, which disables the Match or Capture Channel x interrupt.

	/alue	Description
()	The Match or Capture Channel x interrupt is disabled.
•		The Match or Capture Channel x interrupt is enabled.

Bit 1 – ERR: Error Interrupt Disable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Error Interrupt Enable bit, which disables the Error interrupt.

Value	Description
0	The Error interrupt is disabled.
1	The Error interrupt is enabled.

Bit 0 – OVF: Overflow Interrupt Disable

Writing a '0' to this bit has no effect.

Writing a '1' to this bit will clear the Overflow Interrupt Enable bit, which disables the Overflow interrupt request.

Value	Description
0	The Overflow interrupt is disabled.
1	The Overflow interrupt is enabled.

35.7.3.6 Interrupt Enable Set

This register allows the user to enable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Clear register (INTENCLR).

Value	Name	Description
0x18	GND	Internal ground
0x19 -	-	Reserved
0x1F		

Bits 4:0 – MUXPOS[4:0]: Positive MUX Input Selection

These bits define the MUX selection for the positive ADC input. If the internal bandgap voltage input channel is selected, then the Sampling Time Length bit group in the Sampling Control register must be written with a corresponding value.

Value	Name	Description
0x00	AIN0	ADC AIN0 pin
0x01	AIN1	ADC AIN1 pin
0x02	AIN2	ADC AIN2 pin
0x03	AIN3	ADC AIN3 pin
0x04	AIN4	ADC AIN4 pin
0x05	AIN5	ADC AIN5 pin
0x06	AIN6	ADC AIN6 pin
0x07	AIN7	ADC AIN7 pin
0x08	AIN8	ADC AIN8 pin
0x09	AIN9	ADC AIN9 pin
0x0A	AIN10	ADC AIN10 pin
0x0B	AIN11	ADC AIN11 pin
0xC -	-	Reserved
0x17		
0x18	-	Reserved
0x19	BANDGAP	Bandgap Voltage
0x1C	DAC	DAC Output
0x1E	-	Reserved
0x1F	-	Reserved

38.8.10 Control C

Name:CTRLCOffset:0x0A [ID-0000120e]Reset:0x0000Property:PAC Write-Protection, Write-Synchronized

Name:CTRLBOffset:0x01Reset:0x00Property:PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
					STARTx	STARTx	STARTx	STARTx
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0

Bits 3,2,1,0 – STARTx: Comparator x Start Comparison

Writing a '0' to this field has no effect.

Writing a '1' to STARTx starts a single-shot comparison on COMPx if both the Single-Shot and Enable bits in the Comparator x Control Register are '1' (COMPCTRLx.SINGLE and COMPCTRLx.ENABLE). If comparator x is not implemented, or if it is not enabled in single-shot mode, Writing a '1' has no effect.

This bit always reads as zero.

40.8.3 Event Control

Name:EVCTRLOffset:0x02Reset:0x0000Property:PAC Write-Protection, Enable-Protected

Bit	15	14	13	12	11	10	9	8
	INVEIx	INVEIx	INVEIx	INVEIx	COMPEIx	COMPEIx	COMPEIx	COMPEIx
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
			WINEOx	WINEOx	COMPEOx	COMPEOx	COMPEOx	COMPEOx
Access		•	R/W	R/W	R/W	R/W	R/W	R/W
Reset			0	0	0	0	0	0

Bits 15,14,13,12 – INVEIx: Inverted Event Input Enable x

Value	Description
0	Incoming event is not inverted for comparator x.
1	Incoming event is inverted for comparator x.

Bits 11,10,9,8 – COMPEIx: Comparator x Event Input

Note that several actions can be enabled for incoming events. If several events are connected to the peripheral, the enabled action will be taken for any of the incoming events. There is no way to tell which of the incoming events caused the action.

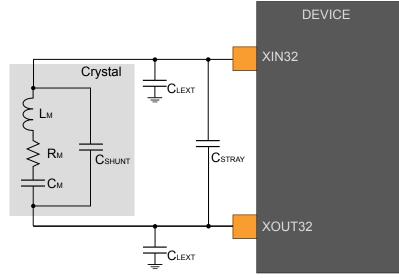
These bits indicate whether a comparison will start or not on any incoming event.

Symbol	Parameters	Conditions	Та	Тур.	Max	Units
		AGC=OFF				
		AGC=ON		429	699	
		F = 32MHz		1975	2329	
		CL=20pF				
		XOSC.GAIN=4				
		VDD = 5.0V				
		AGC=OFF				
		AGC=ON		874	1181	

45.12.2 External 32 kHz Crystal Oscillator (XOSC32K) Characteristics

45.12.2.1 Digital Clock Characteristics

The following table describes the characteristics for the oscillator when a digital clock is applied on XIN32 pin.


Table 45-42. Digital Clock Characteristics

Symbol	Parameter	Condition	Тур	Units
f _{CPXIN32}	XIN32 clock frequency	Digital mode	32.768	MHz
DC _{XIN32}	XIN32 clock duty cycle	Digital mode	50	%

45.12.2.2 Crystal Oscillator Characteristics

The following table describes the characteristics for the oscillator when a crystal is connected between XIN32 and XOUT32.

Figure 45-6. Oscillator Connection

The user must choose a crystal oscillator where the crystal load capacitance C_L is within the range given in the table. The exact value of CL can be found in the crystal datasheet. The capacitance of the external capacitors (CLEXT) can then be computed as follows:

Symbol	Parameters	Conditions (2)	Min	Тур	Max	Unit
		Int Ref = 5.5V	83	95.6	97	
SINAD	Signal to Noise + Distortion Ratio	Ext ref = 1.2V	71.1	90.7	91.7	dB
		Int Ref = 5.5V	77.1	78.6	83.2	
THD	Total Harmonic Distortion	Ext ref = 1.2V	-102.3	-94.6	-75.3	dB
		Int Ref = 5.5V	-99.9	-94.7	-85.4	

- 1. Values based on characterization.
- 2. OSR=256, Chopper OFF, Sampling Clock Speed at 6MHz.

47.4.5 Digital to Analog Converter (DAC) Characteristics

Table 47-12. Operating Conditions⁽¹⁾

Symbol	Parameters	Conditions	Min	Тур	Мах	Unit
RES	Input resolution		-	-	10	Bits
VDDANA	Analog supply voltage		2.7	-	5.5	V
AVREF	External reference voltage		1	-	VDDANA - 0.6	V
	Internal reference voltage 1	VREF.SEL = 0x0	-	1.024	-	V
		VREF.SEL = 0x2	-	2.048	-	
		VREF.SEL = 0x3	-	4.096 (2)	-	-
	Internal reference voltage 2		-	VDDANA	-	V
	Linear output voltage range		0.05	-	VDDANA - 0.05	V
	Minimum resistive load		5	-	-	kΩ
	Maximum capacitance load		-	-	100	pF

1. These are based on simulation. These values are not covered by test or characterization.

2. For VDDANA > 4.5V.

Table 47-13. Clock and Timing⁽¹⁾

Symbol	Parameter	Conditions	Max.	Units	
	Conversion rate Cload=100pF Rload > 5kΩ	Normal mode	350	ksps	
		Rload > $5k\Omega$	For DDATA=±1	1000	
	Startup time			3	μs

1. These values are based on simulation. These values are not covered by test limits in production or characterization.

Table 47-14. Accuracy Characteristics⁽¹⁾

Symbol	Parameter	Conditions	Conditions			Units
INL	Integral non-linearity	VREF= Ext 2.0V	VDD = 2.7V	+/-0.7	+/-2.4	LSB
			VDD = 5.5V	+/-0.5	+/-1.6	
		VREF = VDDANA	VDD = 2.7V	+/-0.6	+/-2.0	
			VDD = 5.5V	+/-0.4	+/-1.6	
		VREF= 1.024V INT REF	VDD = 2.7V	+/-1.0	+/-2.5	