

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

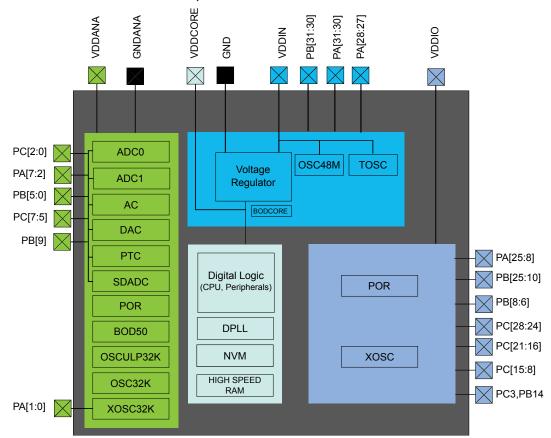
Details	
Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 105°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc20j16a-ant

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

• Drop in compatible with SAM D20 and SAM D21 (see Note)

Note: Only applicable for 32-, 48-, and 64-pin TQFP and QFN packages.


6. I/O Multiplexing and Considerations

6.1 Multiplexed Signals

Each pin is by default controlled by the PORT as a general purpose I/O and alternatively it can be assigned to one of the peripheral functions A, B, C, D, E, F, G, H, or I. To enable a peripheral function on a pin, the Peripheral Multiplexer Enable bit in the Pin Configuration register corresponding to that pin (PINCFGn.PMUXEN, n = 0.31) in the PORT must be written to one. The selection of peripheral function A to H is done by writing to the Peripheral Multiplexing Odd and Even bits in the Peripheral Multiplexing register (PMUXn.PMUXE/O) in the PORT.

Pin	I/O Pin	Supply	A		в	•		B(1)(2)	_		с	D	E	F	G	н	
		Cappij	EIC	REF	ADC0	ADC1	SDADC		РТС	DAC	SERCOM	SERCOM-ALT	тс	тсс	СОМ	AC/GCLK	CCL
1	PA00		EXTINT[0]		ADOU	ABOT	ODADO	70	110	DAG		SERCOM1/PAD[0]		100	0011	CMP[2]	UUL
2			EXTINT[1]									SERCOM1/PAD[1]				CMP[3]	
3	PC00		EXTINT[8]		AIN[8]							OEROOMIN AD[1]	102/110[1]			Oldin [0]	
4			EXTINT[9]		AIN[9]												
5	PC02		EXTINT[10]		AIN[10]	1											
6	PC03		EXTINT[11]		AIN[11]						SERCOM7/PAD[0]			TCC2/WO[0]			
7	PA02		EXTINT[2]		AIN[0]			AIN[4]	Y[0]	VOUT	OEROOMINI AD[0]			1002/110[0]			
8	PA03		EXTINT[2]	ADC/VREFA	AIN[1]			7414[4]	Y[1]	1001							
Ū	17100	V D D A WA	Extintio	DAC/VREFB	Andri				.[.]								
9	PB04	VDDANA	EXTINT[4]			AIN[6]		AIN[5]	Y[10]								
10	PB05	VDDANA	EXTINT[5]			AIN[7]		AIN[6]	Y[11]								
13	PB06	VDDIO	EXTINT[6]			AIN[8]	INN[2]	AIN[7]	Y[12]		SERCOM7/PAD[1]						CCL2/IN[6]
14	PB07	VDDIO	EXTINT[7]			AIN[9]	INP[2]		Y[13]		SERCOM7/PAD[3]	SERCOM7/PAD[2]					CCL2/IN[7]
15	PB08	VDDIO	EXTINT[8]		AIN[2]	AIN[4]	INN[1]		Y[14]		SERCOM7/PAD[2]	SERCOM7/PAD[3]	TC4/WO[0]				CCL2/IN[8]
16	PB09	VDDANA	EXTINT[9]		AIN[3]	AIN[5]	INP[1]		Y[15]			SERCOM4/PAD[1]	TC4/WO[1]				CCL2/OUT[2]
17	PA04	VDDANA	EXTINT[4]	SDADC/VREFB	AIN[4]			AIN[0]	Y[2]			SERCOM0/PAD[0]	TC0/WO[0]				CCL0/IN[0]
18	PA05	VDDANA	EXTINT[5]		AIN[5]			AIN[1]	Y[3]			SERCOM0/PAD[1]	TC0/WO[1]				CCL0/IN[1]
19	PA06	VDDANA	EXTINT[6]		AIN[6]		INN[0]	AIN[2]	Y[4]			SERCOM0/PAD[2]	TC1/WO[0]				CCL0/IN[2]
20	PA07	VDDANA	EXTINT[7]		AIN[7]		INP[0]	AIN[3]	Y[5]			SERCOM0/PAD[3]	TC1/WO[1]				CCL0/OUT[0]
21	PC05	VDDANA	EXTINT[13]								SERCOM6/PAD[3]			TCC2/WO[1]			
22	PC06	VDDANA	EXTINT[14]								SERCOM6/PAD[0]						
23	PC07	VDDANA	EXTINT[15]								SERCOM6/PAD[1]						
26	PA08	VDDIO	NMI			AIN[10]			X[0]/Y[16]		SERCOM0/PAD[0]	SERCOM2/PAD[0]	TC0/WO[0]	TCC0/WO[0]			CCL1/IN[3]
27	PA09	VDDIO	EXTINT[9]			AIN[11]			X[1]/Y[17]		SERCOM0/PAD[1]						CCL1/IN[4]
28	PA10		EXTINT[10]						X[2]/Y[18]			SERCOM2/PAD[2]				GCLK_IO[4]	
29	PA11	VDDIO	EXTINT[11]			-			X[3]/Y[19]			SERCOM2/PAD[3]					CCL1/OUT[1]
30	PB10		EXTINT[10]						1.1 1.1			SERCOM4/PAD[2]		TCC0_WO4		GCLK_IO[4]	
31	PB11	VDDIO	EXTINT[11]			-								TCC0_WO5			CCL1/OUT[1]
32	PB12		EXTINT[12]						X[12]/Y[28]		SERCOM4/PAD[0]			TCC0_WO6	CAN1/TX	GCLK_IO[6]	
33	PB13	VDDIO	EXTINT[13]			-			X[13]/Y[29]		SERCOM4/PAD[1]		TC4/WO[1]	_	CAN1/RX	GCLK_IO[7]	
34	PB14		EXTINT[14]						X[14]/Y[30]		SERCOM4/PAD[2]		TC5/WO[0]		CAN1/TX	GCLK_IO[0]	
35	PB15	VDDIO	EXTINT[15]						X[15]/Y[31]		SERCOM4/PAD[3]		TC5/WO[1]		CAN1/RX		CCL3/IN[10]
38	PC08	VDDIO	EXTINT[0]						,,(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		.,	SERCOM7/PAD[0]	100/110[1]		o, u i i i i i i i i i i i i i i i i i i	0021(_10[1]	0020/11[10]
39	PC09	VDDIO	EXTINT[1]			-	-				SERCOM6/PAD[1]						
40	PC10	VDDIO	EXTINT[2]								SERCOM6/PAD[2]						
40	PC11	VDDIO	EXTINT[2]									SERCOM7/PAD[3]					
42	PC12	VDDIO	EXTINT[4]								SERCOM7/PAD[0]	02.000111110[0]					
42	PC12	VDDIO	EXTINT[4]								SERCOM7/PAD[1]						
43	PC14	VDDIO	EXTINT[6]								SERCOM7/PAD[1]						
44	PC14 PC15	VDDIO	EXTINT[7]								SERCOM7/PAD[2]						
45	PA12		EXTINT[12]									SERCOM4/PAD[0]	TC2/MO[0]	TCC0 WOR		CMP[0]	
40	PA12 PA13		EXTINT[12] EXTINT[13]									SERCOM4/PAD[0]		_		CMP[0] CMP[1]	
47	PA13 PA14		EXTINT[13] EXTINT[14]											1000_007			
48 49	PA14 PA15		EXTINT[14] EXTINT[15]									SERCOM4/PAD[2] SERCOM4/PAD[3]				GCLK_IO[0] GCLK_IO[1]	
49 52	PA15 PA16	VDDIO	EXTINT[0]						VIAINI201					TOCIMUOIO			
	PA16 PA17	VDDIO							X[4]/Y[20]			SERCOM3/PAD[0]				GCLK_IO[2]	
53			EXTINT[1]						X[5]/Y[21]		SERCOM1/PAD[1]					GCLK_IO[3]	
54	PA18	VDDIO	EXTINT[2]						X[6]/Y[22]			SERCOM3/PAD[2]				CMP[0]	CCL0/IN[2]
55	PA19	VDDIO	EXTINT[3]						X[7]/Y[23]			SERCOM3/PAD[3]	1C3/WO[1]	TCC1/WO[3]		CMP[1]	CCL0/OUT[0]
56	PC16	VDDIO	EXTINT[8]								SERCOM6/PAD[0]						
57	PC17	VDDIO	EXTINT[9]								SERCOM6/PAD[1]						
58	PC18	VDDIO	EXTINT[10]								SERCOM6/PAD[2]						

Table 6-1. PORT Function Multiplexing for SAM C21 N

Figure 7-2. Power Domain Overview, SAM C20/C21 N

7.2 Power Supply Considerations

7.2.1 Power Supplies, SAM C21/SAM C20

The SAM C21 has the following power supply pins:

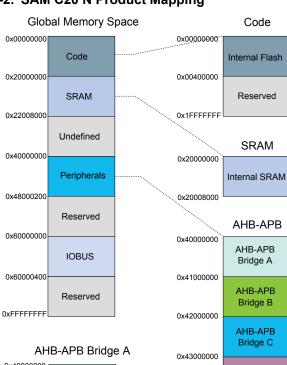
- VDDIO: Powers I/O lines and XOSC. Voltage is 2.70V to 5.50V.
- VDDIN: Powers I/O lines and the OSC48M, TOSC and internal regulator. Voltage is 2.70V to 5.50V.
- VDDANA: Powers I/O lines and the ADC, AC, DAC, PTC, SDADC, OSCULP32K, OSC32K, and XOSC32K. Voltage is 2.70V to 5.50V.
- VDDCORE: Internal regulated voltage output. Powers the core, memories, peripherals, and FDPLL96M. Voltage is 1.2V typical.

The same voltage must be applied to both the VDDIN and VDDANA pins. This common voltage is referred to as V_{DD} in the datasheet. VDDIO must always be less than or equal to VDDIN.

The ground pins, GND, are common to VDDCORE, VDDIO and VDDIN. The ground pin for VDDANA is GNDANA.

For decoupling recommendations for the different power supplies, refer to the schematic checklist.


The SAM C20 has the following power supply pins:


- VDDIO: Powers I/O lines and XOSC. Voltage is 2.70V to 5.50V.
- VDDIN: Powers I/O lines and the OSC48M, TOSC and internal regulator. Voltage is 2.70V to 5.50V.

AHB-APB Bridge C 0x42000000 EVSYS 0x42000400 SERCOM0 0x42000800 SERCOM1 0x42000C00 SERCOM2 0x42001000 SERCOM3 0x42001400 SERCOM4 0x42001800 SERCOM5 0x42001C00 Reserved 0x42002000 Reserved 0x42002400 TCC0 0x42002800 TCC1 0x42002C00 TCC2 0x42003000 TC0 0x42003400 TC1 0x42003800 TC2 0x42003C00 TC3 0x42004000 TC4 0x42004400 ADC0 0x42004800 Reserved 0x42004C00 Reserved 0x42005000 AC 0x42005400 Reserved 0x42005800 PTC 0x42005C00 CCL 0x42006000 Reserved 0x42FFFFFF

AHB-APB Bridge D

0	0
0x43000000 0x43000400	SERCOM6
	SERCOM7
0x43000800	TC5
0x43000C00	TC6
	TC7
0x43001400	Reserved
0x43001800	

0x40000000	PAC
0x40000400	PM
0x40000800	MCLK
0x40000C00	RSTC
0x40001000	OSCCTRL
0x40001400	OSC32KCTRL
0x40001800	SUPC
0x40001C00	GCLK
0x40002000	WDT
0x40002400	RTC
0x40002800	EIC
0x40002C00	FREQM
0x40003000	TSENS
0x40003400	
0x40FFFFFF	Reserved

AHB-APB

Bridge D

AHB

DIVAS

AHB-APB Bridge B

PORT

DSU

NVMCTRL

DMAC

MTB

Reserved

0x48000000

0x480001FF

0x41000000

0x41002000

0x41004000

0x41006000

0x41008000

0x41009000

0x41FFFFFF

cleared or locked at the user discretion. A set of Interrupt Flag and Status registers informs the user on the status of the violation in the peripherals. In addition, slaves bus errors can be also reported in the cases where reserved area is accessed by the application.

11.5.2 Basic Operation

11.5.2.1 Initialization

After reset, the PAC is enabled.

11.5.2.2 Initialization, Enabling and Resetting

The PAC is always enabled after reset.

Only a hardware reset will reset the PAC module.

11.5.2.3 Operations

The PAC module allows the user to set, clear or lock the write protection status of all peripherals on all Peripheral Bridges.

If a peripheral register violation occurs, the Peripheral Interrupt Flag n registers (INTFLAGn) are updated to inform the user on the status of the violation in the peripherals connected to the Peripheral Bridge n (n = A,B,C ...). The corresponding Peripheral Write Control Status n register (STATUSn) gives the state of the write protection for all peripherals connected to the corresponding Peripheral Bridge n. Refer to the Peripheral Access Errors for details.

The PAC module also report the errors occurring at slave bus level when an access to reserved area is detected. AHB Slave Bus Interrupt Flag register (INTFLAGAHB) informs the user on the status of the violation in the corresponding slave. Refer to the AHB Slave Bus Errors for details.

11.5.2.4 Peripheral Access Errors

The following events will generate a Peripheral Access Error:

- Protected write: To avoid unexpected writes to a peripheral's registers, each peripheral can be write
 protected. Only the registers denoted as "PAC Write-Protection" in the module's datasheet can be
 protected. If a peripheral is not write protected, write data accesses are performed normally. If a
 peripheral is write protected and if a write access is attempted, data will not be written and
 peripheral returns an access error. The corresponding interrupt flag bit in the INTFLAGn register
 will be set.
- Illegal access: Access to an unimplemented register within the module.
- Synchronized write error: For write-synchronized registers an error will be reported if the register is written while a synchronization is ongoing.

When any of the INTFLAGn registers bit are set, an interrupt will be requested if the PAC interrupt enable bit is set.

11.5.2.5 Write Access Protection Management

Peripheral access control can be enabled or disabled by writing to the WRCTRL register.

The data written to the WRCTRL register is composed of two fields; WRCTRL.PERID and WRCTRL.KEY. The WRCTRL.PERID is an unique identifier corresponding to a peripheral. The WRCTRL.KEY is a key value that defines the operation to be done on the control access bit. These operations can be "clear protection", "set protection" and "set and lock protection bit".

The "clear protection" operation will remove the write access protection for the peripheral selected by WRCTRL.PERID. Write accesses are allowed for the registers in this peripheral.

SAM C20/C21

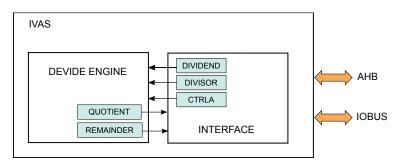
Peripheral Name	Base Address	IRQ Line	AHI	B Clock	API	B Clock	Generic Clock	F	PAC		Events	DMA	
			Index	Enabled at Reset		Enabled at Reset	Index	Index	Prot at Reset	User	Generator	Index	Sleep Walking
SERCOM7	0x43000400	10			1	N	42: CORE 18: SLOW	1	N			51: RX 52: TX	Y
TC5	0x43000800	20			2	N	43	2	N	47: EVU	87: OVF 88-89: MC0-1	53: OVF 54-55: MC0-1	Y
TC6	0x43000C00	21			3	Ν	44	3	N	48:EVU	90: OVF 91-92: MC0-1	56: OVF 57-58: MC0-1	Y
TC7	0x43001000	22			4	Ν	45	4	N	49:EVU	93: OVF 94-95: MC0-1	59: OVF 60-61: MC0-1	Y
DIVAS	0x48000000		12	Y									N/A

Table 12-2. Peripherals Configuration Summary SAM C20 N

Peripheral Name	Base Address	IRQ Line	AHI	B Clock	AP	B Clock	Generic Clock	F	PAC		Events	DMA	
			Index	Enabled at Reset	Index	Enabled at Reset	Index	Index	Prot at Reset	User	Generator	Index	Sleep Walkin
AHB-APB Bridge A	0x40000000		0	Y									N/A
PAC	0x40000000	0	10	Y	0	Y		0	N		85 : ACCERR		N/A
PM	0x40000400	0			1	Y		1	N				N/A
MCLK	0x40000800	0			2	Y		2	N				Y
RSTC	0x40000C00				3	Y		3	N				N/A
OSCCTRL	0x40001000	0			4	Y	0: FDPLL96M clk source 1: FDPLL96M 32kHz		N		0: XOSC_FAIL		Y
OSC32KCTRL	0x40001400	0			5	Y		5	N		1: XOSC32K_FAIL		Y
SUPC	0x40001800	0			6	Y		6	N				N/A
GCLK	0x40001C00				7	Y		7	N				N/A
WDT	0x40002000	1			8	Y		8	N				Y
RTC	0x40002400	2			9	Y		9	N		2: CMP0/ALARM0 3: CMP1 4: OVF5-1 5:12: PER0-7		Y
EIC	0x40002800	3, NMI			10	Y	2	10	N		13-28: EXTINT0-15		Y
FREQM	0x40002C00	4			11	Y	3: Measure 4: Reference	11	N				N/A
AHB-APB Bridge B	0x41000000		1	Y									N/A
PORT	0x41000000				0	Y		0	N	1-4 : EV0-3			Y
DSU	0x41002000		3	Y	1	Y		1	Y				N/A
NVMCTRL	0x41004000	6	5	Y	2	Y	39	2	N				Y
DMAC	0x41006000	7	7	Y				3	N	5-8: CH0-3	30-33: CH0-3		Y
MTB	0x41008000								N	45: START 46: STOP			N/A
AHB-APB Bridge C	0x42000000		2	Y									N/A
EVSYS	0x42000000	8			0	N	6-17: one per CHANNEL	0	N				Y

14. DIVAS – Divide and Square Root Accelerator

14.1 Overview


The Divide and Square Root Accelerator (DIVAS) is a programmable 32-bit signed or unsigned hardware divider and a 32-bit unsigned square root hardware engine. The DIVAS is connected to the high-speed bus matrix and may also be accessed using the low-latency CPU local bus (IOBUS; ARM[®] single-cycle I/O port). The DIVAS takes dividend and divisor values and returns the quotient and remainder when it is used as divider. The DIVAS takes unsigned input value and returns its square root and remainder when it is used as square root function.

14.2 Features

- Division accelerator for Cortex-M0+ systems
- 32-bit signed or unsigned integer division
- 32-bit unsigned square root
- 32-bit division in 2-16 cycles
- Programmable leading zero optimization
- Result includes quotient and remainder
- Result includes square root and remainder
- Busy and Divide-by-zero status
- Automatic start of operation when divisor or square root input is loaded

14.3 Block Diagram

Figure 14-1. DIVAS Block Diagram

14.4 Signal Description

Not applicable

14.5 Product Dependencies

In order to use this peripherial, other parts of the system must be configured correctly, as described below.

When the Run in Standby bit in the VREG register (VREG.RUNSTDBY) is written to '1', VDDCORE is supplied by the main voltage regulator. The VDDCORE level is set to the active mode voltage level.

Related Links

Sleep Mode Controller

22.6.2 Voltage Reference System Operation

The reference voltages are generated by a functional block DETREF inside of the SUPC. DETREF is providing a fixed-voltage source, BANDGAP=1V, and a variable voltage, INTREF.

22.6.2.1 Initialization

The voltage reference output and the temperature sensor are disabled after any Reset.

22.6.2.2 Enabling, Disabling, and Resetting

The voltage reference output is enabled/disabled by setting/clearing the Voltage Reference Output Enable bit in the Voltage Reference register (VREF.VREFOE).

The temperature sensor is enabled/disabled by setting/clearing the Temperature Sensor Enable bit in the Voltage Reference register (VREF.TSEN).

Note: When VREF.ONDEMAND=0, it is not recommended to enable both voltage reference output and temperature sensor at the same time - only the voltage reference output will be present at both ADC inputs.

22.6.2.3 Selecting a Voltage Reference

The Voltage Reference Selection bit field in the VREF register (VREF.SEL) selects the voltage of INTREF to be applied to analog modules, e.g. the ADC.

22.6.2.4 Sleep Mode Operation

The Voltage Reference output and the Temperature Sensor output behavior during sleep mode can be configured using the Run in Standby bit and the On Demand bit in the Voltage Reference register (VREF.RUNSTDBY, VREF.ONDEMAND), see the following table:

Table 22-1. VREF Sleep Mode Operation

VREF.ONDEMAND	VREF.RUNSTDBY	Voltage Reference Sleep behavior
-	-	Disable
0	0	Always run in all sleep modes except standby sleep mode
0	1	Always run in all sleep modes including standby sleep mode
1	0	Only run if requested by the ADC, in all sleep modes <i>except</i> standby sleep mode
1	1	Only run if requested by the ADC, in all sleep modes <i>including</i> standby sleep mode

22.6.3 Brown-Out Detectors

22.6.3.1 Initialization

Before a Brown-Out Detector (BODVDD) is enabled, it must be configured, as outlined by the following:

- Set the BOD threshold level (BODVDD.LEVEL)
- Set the configuration in active, standby (BODVDD.ACTCDG, BODVDD.STDBYCFG)
- Set the prescaling value if the BOD will run in sampling mode (BODVDD.PSEL)
- Set the action and hysteresis (BODVDD.ACTION and BODVDD.HYST)

Valu	Ie	Description
0		BODVDD is disabled.
1		BODVDD is enabled.

Related Links

Electrical Characteristics 85°C (SAM C20/C21 E/G/J) NVM User Row Mapping

22.8.6 Voltage Regulator System (VREG) Control

Name:VREGOffset:0x18 [ID-00001e33]Reset:0x00000000Property:PAC Write-Protection

Bit	31	30	29	28	27	26	25	24
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
Access	R	R	R	R	R	R	R	R
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
		RUNSTDBY					ENABLE	
Access	R	R/W	R	R	R	R	R/W	R
Reset	0	0	0	0	0	0	0	0

Bit 6 – RUNSTDBY: Run in Standby

Value	Description
0	The voltage regulator is in low power mode in Standby sleep mode.
1	The voltage regulator is in normal mode in Standby sleep mode.

Bit 1 – ENABLE: Enable

Value	Description
0	The voltage regulator is disabled.
1	The voltage regulator is enabled.

22.8.7 Voltage References System (VREF) Control

23.7 Register Summary

Offset	Name	Bit Pos.								
0x00	CTRLA	7:0	ALWAYSON					WEN	ENABLE	
0x01	CONFIG	7:0		WIND	OW[3:0]			PER	R[3:0]	
0x02	EWCTRL	7:0						EWOFF	SET[3:0]	
0x03	Reserved									
0x04	INTENCLR	7:0								EW
0x05	INTENSET	7:0								EW
0x06	INTFLAG	7:0								EW
0x07	Reserved									
0x08		7:0						WEN	ENABLE	
0x09	EXNODUEX	15:8								
0x0A	SYNCBUSY	23:16								
0x0B		31:24								
0x0C	CLEAR	7:0				CLEA	R[7:0]			

23.8 Register Description

Registers can be 8, 16, or 32 bits wide. Atomic 8-, 16- and 32-bit accesses are supported. In addition, the 8-bit quarters and 16-bit halves of a 32-bit register, and the 8-bit halves of a 16-bit register can be accessed directly.

Some registers are optionally write-protected by the Peripheral Access Controller (PAC). Optional PAC write-protection is denoted by the "PAC Write-Protection" property in each individual register description. For details, refer to Register Access Protection.

Some registers are synchronized when read and/or written. Synchronization is denoted by the "Write-Synchronized" or the "Read-Synchronized" property in each individual register description. For details, refer to Synchronization.

Some registers are enable-protected, meaning they can only be written when the peripheral is disabled. Enable-protection is denoted by the "Enable-Protected" property in each individual register description.

23.8.1 Control A

Name:CTRLAOffset:0x00Reset:X determined from NVM User RowProperty:PAC Write-Protection, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
	ALWAYSON					WEN	ENABLE	
Access	R/W					R/W	R/W	
Reset	х					х	х	

Bit 7 – ALWAYSON: Always-On

This bit allows the WDT to run continuously. After being set, this bit cannot be written to '0', and the WDT will remain enabled until a power-on Reset is received. When this bit is '1', the Control A register

Va	alue	Description
0		The EIC is clocked by GCLK_EIC.
1		The EIC is clocked by CLK_ULP32K.

Bit 1 – ENABLE: Enable

Due to synchronization there is a delay between writing to CTRLA.ENABLE until the peripheral is enabled/disabled. The value written to CTRLA.ENABLE will read back immediately and the Enable bit in the Synchronization Busy register will be set (SYNCBUSY.ENABLE=1). SYNCBUSY.ENABLE will be cleared when the operation is complete.

This bit is not Enable-Protected.

This bit is Write-Synchronized.

Value	Description
0	The EIC is disabled.
1	The EIC is enabled.

Bit 0 – SWRST: Software Reset

Writing a '0' to this bit has no effect.

Writing a '1' to this bit resets all registers in the EIC to their initial state, and the EIC will be disabled.

Writing a '1' to CTRLA.SWRST will always take precedence, meaning that all other writes in the same write operation will be discarded.

Due to synchronization there is a delay from writing CTRLA.SWRST until the Reset is complete. CTRLA.SWRST and SYNCBUSY.SWRST will both be cleared when the Reset is complete.

This bit is not Enable-Protected.

This bit is Write-Synchronized.

Value	Description
0	There is no ongoing reset operation.
1	The reset operation is ongoing.

26.8.2 Non-Maskable Interrupt Control

Name:NMICTRLOffset:0x01Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
				NMIASYNCH	NMIFILTEN		NMISENSE[2:0]]
Access				R/W	R/W	R/W	R/W	R/W
Reset				0	0	0	0	0

Bit 4 – NMIASYNCH: Asynchronous Edge Detection Mode

The NMI edge detection can be operated synchronously or asynchronously to the EIC clock.

SAM C20/C21

Value	Name	Description
0x0	SYNCHRONOUS	Synchronous path
0x1	RESYNCHRONIZED	Resynchronized path
0x2	ASYNCHRONOUS	Asynchronous path
0x3	-	Reserved

Bits 7:0 - EVGEN[7:0]: Event Generator

These bits are used to choose the event generator to connect to the selected channel.

Table 29-2. Event Generators

Value	Event Generator	Description
0x00	NONE	No event generator selected
0x01	OSCCTRL FAIL	XOSC Clock Failure
0x02	OSC32KCTRL FAIL	XOSC32K Clock Failure
0x03	RTC CMP0	Compare 0 (mode 0 and 1) or Alarm 0 (mode 2)
0x04	RTC CMP1	Compare 1
0x05	RTC OVF	Overflow
0x06	RTC PER0	Period 0
0x07	RTC PER1	Period 1
0x08	RTC PER2	Period 2
0x09	RTC PER3	Period 3
0x0A	RTC PER4	Period 4
0x0B	RTC PER5	Period 5
0x0C	RTC PER6	Period 6
0x0D	RTC PER7	Period 7
0x0E	EIC EXTINT0	External Interrupt 0
0x0F	EIC EXTINT1	External Interrupt 1
0x10	EIC EXTINT2	External Interrupt 2
0x11	EIC EXTINT3	External Interrupt 3
0x12	EIC EXTINT4	External Interrupt 4
0x13	EIC EXTINT5	External Interrupt 5
0x14	EIC EXTINT6	External Interrupt 6
0x15	EIC EXTINT7	External Interrupt 7
0x16	EIC EXTINT8	External Interrupt 8
0x17	EIC EXTINT9	External Interrupt 9
0x18	EIC EXTINT10	External Interrupt 10

Bit 1 – TXC: Transmit Complete

This flag is cleared by writing '1' to it or by writing new data to DATA.

In master mode, this flag is set when the data have been shifted out and there are no new data in DATA.

In slave mode, this flag is set when the _SS pin is pulled high. If address matching is enabled, this flag is only set if the transaction was initiated with an address match.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear the flag.

Bit 0 – DRE: Data Register Empty

This flag is cleared by writing new data to DATA.

This flag is set when DATA is empty and ready for new data to transmit.

Writing '0' to this bit has no effect.

Writing '1' to this bit has no effect.

32.8.7 Status

 Name:
 STATUS

 Offset:
 0x1A [ID-00000e74]

 Reset:
 0x0000

 Property:
 –

Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
						BUFOVF		
Access						R/W		
Reset						0		

Bit 2 – BUFOVF: Buffer Overflow

Reading this bit before reading DATA will indicate the error status of the next character to be read.

This bit is cleared by writing '1' to the bit or by disabling the receiver.

This bit is set when a buffer overflow condition is detected. See also CTRLA.IBON for overflow handling.

When set, the corresponding RxDATA will be zero.

Writing '0' to this bit has no effect.

Writing '1' to this bit will clear it.

Value	Description
0	No Buffer Overflow has occurred.
1	A Buffer Overflow has occurred.

32.8.8 Synchronization Busy

This register allows the user to clear bits in the CTRLB register without doing a read-modify-write operation. Changes in this register will also be reflected in the Control B Set register (CTRLBSET).

Name:CTRLBCLROffset:0x04Reset:0x00Property:PAC Write-Protection, Read-Synchronized, Write-Synchronized

Bit	7	6	5	4	3	2	1	0
[CMD[2:0]				ONESHOT	LUPD	DIR
Access	R/W	R/W	R/W			R/W	R/W	R/W
Reset	0	0	0			0	0	0

Bits 7:5 – CMD[2:0]: Command

These bits are used for software control of the TC. The commands are executed on the next prescaled GCLK_TC clock cycle. When a command has been executed, the CMD bit group will be read back as zero.

Writing 0x0 to these bits has no effect.

Writing a '1' to any of these bits will clear the pending command.

Bit 2 – ONESHOT: One-Shot on Counter

This bit controls one-shot operation of the TC.

Writing a '0' to this bit has no effect

Writing a '1' to this bit will disable one-shot operation.

Value	Description
0	The TC will wrap around and continue counting on an overflow/underflow condition.
1	The TC will wrap around and stop on the next underflow/overflow condition.

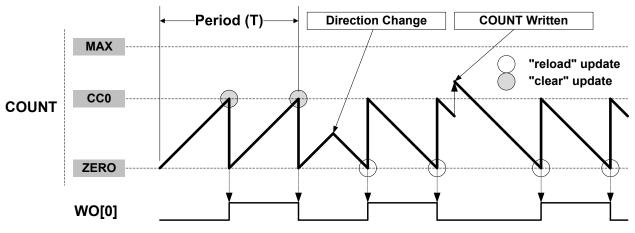
Bit 1 – LUPD: Lock Update

This bit controls the update operation of the TC buffered registers.

When CTRLB.LUPD is set, no any update of the registers with value of its buffered register is performed on hardware UPDATE condition. Locking the update ensures that all buffer registers are valid before an hardware update is performed. After all the buffer registers are loaded correctly, the buffered registers can be unlocked.

This bit has no effect when input capture operation is enabled.

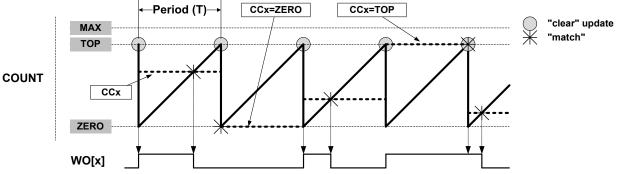
Writing a '0' to this bit has no effect.


Writing a '1' to this bit will clear the LUPD bit.

Value	Description
0	The CCBUFx and PERBUF buffer registers value are copied into CCx and PER registers on
	hardware update condition.
1	The CCBUFx and PERBUF buffer registers value are not copied into CCx and PER registers
	on hardware update condition.

Bit 0 – DIR: Counter Direction

This bit is used to change the direction of the counter.


Normal Pulse-Width Modulation (NPWM)

NPWM uses single-slope PWM generation.

Single-Slope PWM Operation

For single-slope PWM generation, the period time (T) is controlled by Top value, and CCx controls the duty cycle of the generated waveform output. When up-counting, the WO[x] is set at start or compare match between the COUNT and TOP values, and cleared on compare match between COUNT and CCx register values. When down-counting, the WO[x] is cleared at start or compare match between the COUNT and ZERO values, and set on compare match between COUNT and CCx register values.

The following equation calculates the exact resolution for a single-slope PWM (R_{PWM_SS}) waveform:

 $R_{\text{PWM}_\text{SS}} = \frac{\log(\text{TOP}+1)}{\log(2)}$

The PWM frequency depends on the Period register value (PER) and the peripheral clock frequency ($f_{GCLK TCC}$), and can be calculated by the following equation:

$$f_{\text{PWM}_\text{SS}} = \frac{f_{\text{GCLK}_\text{TCC}}}{\text{N}(\text{TOP}+1)}$$

Where N represents the prescaler divider used (1, 2, 4, 8, 16, 64, 256, 1024).

Dual-Slope PWM Generation

For dual-slope PWM generation, the period setting (TOP) is controlled by PER, while CCx control the duty cycle of the generated waveform output. The figure below shows how the counter repeatedly counts from ZERO to PER and then from PER to ZERO. The waveform generator output is set on compare match when up-counting, and cleared on compare match when down-counting. An interrupt and/or event is generated on TOP (when counting upwards) and/or ZERO (when counting up or down).

Value	Name	Description
0x2	FALL	Blanking applied from falling edge of the waveform output
0x3	BOTH	Blanking applied from each toggle of the waveform output

Bit 4 – QUAL: Recoverable Fault n Qualification

Setting this bit enables the recoverable Fault n input qualification.

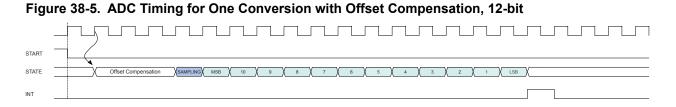
Value	Description
0	The recoverable Fault n input is not disabled on CMPx value condition.
1	The recoverable Fault n input is disabled when output signal is at inactive level (CMPx == 0).

Bit 3 – KEEP: Recoverable Fault n Keep

Setting this bit enables the Fault n keep action.

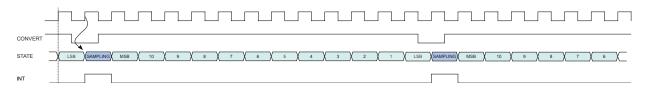
Value	Description
0	The Fault n state is released as soon as the recoverable Fault n is released.
1	The Fault n state is released at the end of TCC cycle.

Bits 1:0 – SRC[1:0]: Recoverable Fault n Source

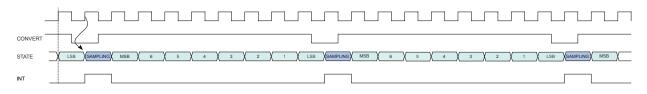

These bits select the TCC event input for recoverable Fault n.

Event system channel connected to MCEx event input, must be configured to route the event asynchronously, when used as a recoverable Fault n input.

Value	Name	Description
0x0	DISABLE	Fault input disabled
0x1	ENABLE	MCEx (x=0,1) event input
0x2	INVERT	Inverted MCEx (x=0,1) event input
0x3	ALTFAULT	Alternate fault (A or B) state at the end of the previous period.


36.8.6 Waveform Extension Control

Name:WEXCTRLOffset:0x14 [ID-00002e48]Reset:0x00000000Property:PAC Write-Protection, Enable-Protected



The impact of resolution on the sampling rate is seen in the next two figures, where free-running sampling in 12-bit and 8-bit resolution are compared.

Figure 38-6. ADC Timing for Free Running in 12-bit Resolution

Figure 38-7. ADC Timing for Free Running in 8-bit Resolution

The propagation delay of an ADC measurement is given by:

PropagationDelay = $\frac{1 + \text{Resolution}}{f_{\text{ADC}}}$

Example. In order to obtain 1MSPS in 12-bit resolution with a sampling time length of four CLK_ADC cycles, f_{CLK_ADC} must be 1MSPS * (4 + 12) = 16MHz. As the minimal division factor of the prescaler is 2, GCLK_ADC must be 32MHz.

38.6.2.9 Accumulation

The result from multiple consecutive conversions can be accumulated. The number of samples to be accumulated is specified by the Sample Number field in the Average Control register (AVGCTRL.SAMPLENUM). When accumulating more than 16 samples, the result will be too large to match the 16-bit RESULT register size. To avoid overflow, the result is right shifted automatically to fit within the available register size. The number of automatic right shifts is specified in the table below.

Note: To perform the accumulation of two or more samples, the Conversion Result Resolution field in the Control C register (CTRLC.RESSEL) must be set.

Number of Accumulated Samples		Number of Automatic Right Shifts	Final Result Precision	Automatic Division Factor
1	0x0	0	12 bits	0
2	0x1	0	13 bits	0

Table 38-1. Accumulation

Result Ready (RESRDY): the request is set when a measurement result is available, and cleared when the VALUE register is read. The request is generated independent of any Window Monitor condition.

Related Links

DMAC – Direct Memory Access Controller

43.6.4 Interrupts

The TSENS has the following interrupt sources:

- Result Ready (RESRDY): Indicates when a measurement result is available.
- Window Monitor (WINMON): Generated when the measurement result matches the window monitor condition. Refer to CTRLC for details.
- Overrun (OVERRUN): Indicates that a new result is ready before the previous result has been read.
- Overflow (OVF): Indicates that the result is invalid because the result required more than 16 bits and overflowed the VALUE register.

Each interrupt source has an interrupt flag associated with it. The interrupt flag in the Interrupt Flag Status and Clear (INTFLAG) register is set when the interrupt condition occurs. Each interrupt can be individually enabled by writing a one to the corresponding bit in the Interrupt Enable Set (INTENSET) register, and disabled by writing a one to the corresponding bit in the Interrupt Enable Clear (INTENCLR) register. An interrupt request is generated when the interrupt flag is set and the corresponding interrupt is enabled. The interrupt request remains active until the interrupt flag is cleared, the interrupt is disabled, or the TSENS is reset. See INTFLAG for details on how to clear interrupt flags. All interrupt requests from the peripheral are ORed together on system level to generate one combined interrupt request to the NVIC. The user must read the INTFLAG register to determine which interrupt condition is present.

Note that interrupts must be globally enabled for interrupt requests to be generated.

Related Links

Nested Vector Interrupt Controller

43.6.5 Events

The TSENS can generate the following output event:

• Window Monitor (WINMON): Generated when the measurement results matches the window monitor condition. Refer to CTRLC for details.

Writing a one to an Event Output bit in the Event Control Register (EVCTRL.WINEO) enables the corresponding output event. Writing a zero to this bit disables the corresponding output event. Refer to the Event System chapter for details on configuring the event system.

The TSENS can take the following action on an input event:

• Start measurement (START): Start a measurement. Refer to CTRLB for details.

Writing a one to an Event Input bit into the Event Control register (EVCTRL.STARTEI) enables the corresponding action on input event. Writing a zero to this bit disables the corresponding action on input event. Refer to the Event System chapter for details. By default, the TSENS will detect a rising edge on the incoming event. If the TSENS action must be performed on the falling edge of the incoming event, the event line must be inverted first, by writing to one the corresponding Event Invert Enable bit in Event Control register (EVCTRL.STARTINV).

Related Links

EVSYS – Event System

Conditions for VDD: VDD<=4.9V.

If Vpin is lower than GND-0.6V, then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R = $|(GND-0.6V - V_{PIN})/I_{INJ2}|$. If Vpin is greater than VDD+0.6V, then a current limiting resistor is required. The positive DC injection current limiting resistor is calculated as R = $|(V_{PIN}-(VDD+0.6))/I_{INJ2}|$.

45.5 Supply Characteristics

The following characteristics are applicable to the operating temperature range: $T_A = -40^{\circ}$ C to 105°C, unless otherwise specified and are valid for a junction temperature up to $T_J = 125^{\circ}$ C.

Symbol	Conditions	Voltage		
		Min.	Max.	Units
V _{DDIO} V _{DDIN}	Full Voltage Range	2.7	5.5	V
V _{DDANA}				

Table 45-4. Supply Characteristics

Table 45-5. Supply Rise Rates

Symbol	Parameter		Rise Rate	Units
		Max	Max.	
V _{DDIO}	DC supply peripheral I/Os, internal regulator and analog supply	0.05	0.1	V/µs
V _{DDIN}		0.05	0.1	
V _{DDANA}		0.05	0.1	

Table 45-6. Power Supply Current Requirement

Symbol	Conditions	Current	Units
		Мах	
I _{INPUT} ⁽¹⁾	Power up Maximum current	1.9	mA

1. I_{INPUT} is the minimum requirement for the power supply connected to the device.

Related Links

Power Supply and Start-Up Considerations

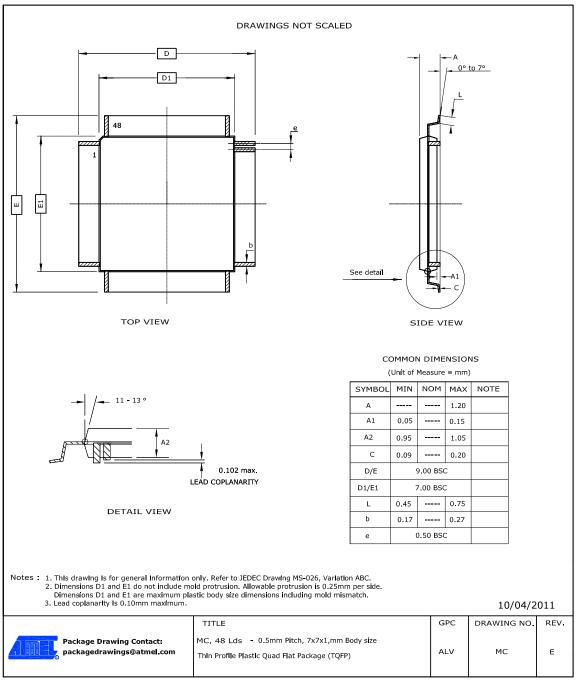

45.6 Maximum Clock Frequencies

Table 45-7. Maximum GCLK Generator Output Frequencies

Symbol	Condition	Max.	Units
fgclkgen0 / fgclk_main	Undivided	96	MHz
f _{GCLKGEN1}			
f _{GCLKGEN2}			

Table 48-12. Package Characteristics Moisture Sensitivity Level MSL1 Table 48-13. Package Reference JEDEC Drawing Reference N/A JESD97 Classification e1

48.2.5 48 pin TQFP

