

Welcome to E-XFL.COM

What is "Embedded - Microcontrollers"?

"Embedded - Microcontrollers" refer to small, integrated circuits designed to perform specific tasks within larger systems. These microcontrollers are essentially compact computers on a single chip, containing a processor core, memory, and programmable input/output peripherals. They are called "embedded" because they are embedded within electronic devices to control various functions, rather than serving as standalone computers. Microcontrollers are crucial in modern electronics, providing the intelligence and control needed for a wide range of applications.

Applications of "<u>Embedded -</u> <u>Microcontrollers</u>"

Details

Product Status	Active
Core Processor	ARM® Cortex®-M0+
Core Size	32-Bit Single-Core
Speed	48MHz
Connectivity	I ² C, LINbus, SPI, UART/USART
Peripherals	Brown-out Detect/Reset, DMA, POR, WDT
Number of I/O	52
Program Memory Size	64KB (64K x 8)
Program Memory Type	FLASH
EEPROM Size	-
RAM Size	8K x 8
Voltage - Supply (Vcc/Vdd)	2.7V ~ 5.5V
Data Converters	A/D 12x12b
Oscillator Type	Internal
Operating Temperature	-40°C ~ 85°C (TA)
Mounting Type	Surface Mount
Package / Case	64-TQFP
Supplier Device Package	64-TQFP (10x10)
Purchase URL	https://www.e-xfl.com/product-detail/microchip-technology/atsamc20j16a-aut

Email: info@E-XFL.COM

Address: Room A, 16/F, Full Win Commercial Centre, 573 Nathan Road, Mongkok, Hong Kong

45.3.	General Operating Ratings	1013
45.4.	Injection Current	
45.5.	Supply Characteristics	1015
45.6.	Maximum Clock Frequencies	
45.7.	Power Consumption	
45.8.	Wake-Up Time.	
45.9.	I/O Pin Characteristics	
45.10	Analog Characteristics	
45.11	. NVM Characteristics	
45.12	. Oscillator Characteristics	
45.13	. Timing Characteristics	
	5	
46. Elec	trical Characteristics 105°C (SAM C20/C21 E/G/J)	1046
46.1.	Disclaimer	1046
46.2.	General Operating Ratings	1046
46.3.	Power Consumption	
46.4.	Analog Characteristics	1047
46.5.	NVM Characteristics	
46.6.	Oscillator Characteristics	1051
47. Elec	trical Characteristics 105°C (SAM C20/C21 N)	
47.1.	Disclaimer	1054
47.2.	General Operating Ratings	1054
47.3.	Power Consumption	
47.4.	Analog Characteristics	1055
47.5.	NVM Characteristics	
47.6.	Oscillator Characteristics	
10 D		4070
48. Pac	kaging Information	
48.1.	Thermal Considerations	1070
48.2.	Package Drawings	1070
48.3.	Soldering Profile	
49 Sch	ematic Checklist	1082
40.001		1092
49.1.	Operation in Neiov Environment	1002
49.2.	Dever Supely	
49.3.	Power Supply	
49.4.	External Analog Reference Connections	
49.5.		
49.6.	Unused or Unconnected Pins	
49.7.		
49.8.	Programming and Debug Ports	
50. Rev	sion History	1094
50.1.	Revision B - 06/2017	
50.2	Revision A - 03/2017	
50.3.	Rev KJ - 11/2016	
50.4	Rev J - 10/2016	
50.5.	Rev I - 09/2016	
-		

Bit 2 – TC5: TC5 APBd Mask Clock Enable

Value	Description
0	The APBD clock for the TC5 is stopped.
1	The APBD clock for the TC5 is enabled.

Bit 1 – SERCOM7: SERCOM7 APBD Mask Clock Enable

Value	Description
0	The APBD clock for the SERCOM7 is stopped.
1	The APBD clock for the SERCOM7 is enabled.

Bit 0 – SERCOM6: SERCOM6 APBD Mask Clock Enable

Value	Description
0	The APBD clock for the SERCOM6 is stopped.
1	The APBD clock for the SERCOM6 is enabled.

SAM C20/C21

Bit	31	30	29	28	27	26	25	24
Access			·				•	
Reset								
Bit	23	22	21	20	19	18	17	16
Access		•	•	1		•	•	
Reset								
Bit	15	14	13	12	11	10	9	8
Access							•	
Reset								
Bit	7	6	5	4	3	2	1	0
						BVDDSRDY	BODVDDDET	BODVDDRDY
Access						R	R	R
Reset						0	0	У

Bit 2 – BVDDSRDY: BODVDD Synchronization Ready

Value	Description
0	BODVDD synchronization is ongoing.
1	BODVDD synchronization is complete.

Bit 1 – BODVDDDET: BODVDD Detection

Value	Description
0	No BODVDD detection.
1	BODVDD has detected that the I/O power supply is going below the BODVDD reference value.

Bit 0 – BODVDDRDY: BODVDD Ready

The BODVDD can be enabled at start-up from NVM User Row.

Value	Description
0	BODVDD is not ready.
1	BODVDD is ready.

Related Links

NVM User Row Mapping

22.8.5 VDD Brown-Out Detector (BODVDD) Control

Name:BODVDDOffset:0x10 [ID-00001e33]Reset:X determined from NVM User RowProperty:Write-Synchronized, Enable-Protected, PAC Write-Protection

Bit 2 – WEN: Window Enable Synchronization Busy

Value	Description
0	Write synchronization of the CTRLA.WEN bit is complete.
1	Write synchronization of the CTRLA.WEN bit is ongoing.

Bit 1 – ENABLE: Enable Synchronization Busy

Value	Description
0	Write synchronization of the CTRLA.ENABLE bit is complete.
1	Write synchronization of the CTRLA.ENABLE bit is ongoing.

23.8.8 Clear

Name:CLEAROffset:0x0C [ID-0000067a]Reset:0x00Property:Write-Synchronized

24.9 Register Summary - COUNT16

Offset	Name	Bit Pos.								
0x00		7:0					MOD	E[1:0]	ENABLE	SWRST
0x01	CIRLA	15:8	COUNTSYNC					PRESCA	LER[3:0]	
0x02										
	Reserved									
0x03										
0x04		7:0	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn	PEREOn
0x05	EVICTE	15:8	OVFEO						CMPEOn	CMPEOn
0x06	EVCIRE	23:16								
0x07		31:24								
0x08		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x09	INTENCLR	15:8	OVF						CMPn	CMPn
0x0A	INTENOET	7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0B	INTENSET	15:8	OVF						CMPn	CMPn
0x0C		7:0	PERn	PERn	PERn	PERn	PERn	PERn	PERn	PERn
0x0D	INTELAG	15:8	OVF						CMPn	CMPn
0x0E	DBGCTRL	7:0								DBGRUN
0x0F	Reserved									
0x10		7:0		COMPn	COMPn	PER	COUNT	FREQCORR	ENABLE	SWRST
0x11		15:8	COUNTSYNC							
0x12	SYNCBUSY	23:16								
0x13		31:24								
0x14	FREQCORR	7:0	SIGN				VALUE[6:0]			
0x15										
	Reserved									
0x17										
0x18		7:0				COUN	IT[7:0]			
0x19	COUNT	15:8				COUN	T[15:8]			
0x1A										
	Reserved									
0x1B										
0x1C		7:0				PER	[7:0]			
0x1D	PER	15:8				PER	[15:8]			
0x1E										
	Reserved									
0x1F										
0x20	COMPO	7:0				СОМ	P[7:0]			
0x21	COMPU	15:8				COMF	P[15:8]			
0x22	COMP1	7:0		COMP[7:0]						
0x23	COMP1	15:8				COMF	P[15:8]			

24.10 Register Description - COUNT16

This Register Description section is valid if the RTC is in COUNT16 mode (CTRLA.MODE=1).

Bit	31	30	29	28	27	26	25	24
				DEBOUN	CEN[31:24]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				DEBOUN	CEN[23:16]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
[DEBOUN	CEN[15:8]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0
Dit	7	0	_	4	0	0	4	0
BIT	1	6	5	4	3	2	1	0
				DEBOUN	ICEN[7:0]			
Access	RW	RW	RW	RW	RW	RW	RW	RW
Reset	0	0	0	0	0	0	0	0

Bits 31:0 – DEBOUNCEN[31:0]: Debouncer Enable

The bit x of DEBOUNCEN set the Debounce mode for the interrupt associated with the EXTINTx pin.

Value	Description
0	The EXTINT x edge input is not debounced.
1	The EXTINT x edge input is debounced.

26.8.12 Debouncer Prescaler

Name:DPRESCALEROffset:0x34Reset:0x0000000Property:PAC Write-Protection, Enable-Protected

Value	Description
0	The PMUXn registers of the selected pins will not be updated.
1	The PMUXn registers of the selected pins will be updated.

Bits 27:24 – PMUX[3:0]: Peripheral Multiplexing

These bits determine the new value written to the Peripheral Multiplexing register (PMUXn) for all pins selected by the WRCONFIG.PINMASK and WRCONFIG.HWSEL bits, when the WRCONFIG.WRPMUX bit is set.

These bits will always read as zero.

Bit 22 – DRVSTR: Output Driver Strength Selection

This bit determines the new value written to PINCFGy.DRVSTR for all pins selected by the WRCONFIG.PINMASK and WRCONFIG.HWSEL bits, when the WRCONFIG.WRPINCFG bit is set.

This bit will always read as zero.

Bit 18 – PULLEN: Pull Enable

This bit determines the new value written to PINCFGy.PULLEN for all pins selected by the WRCONFIG.PINMASK and WRCONFIG.HWSEL bits, when the WRCONFIG.WRPINCFG bit is set.

This bit will always read as zero.

Bit 17 – INEN: Input Enable

This bit determines the new value written to PINCFGy.INEN for all pins selected by the WRCONFIG.PINMASK and WRCONFIG.HWSEL bits, when the WRCONFIG.WRPINCFG bit is set.

This bit will always read as zero.

Bit 16 – PMUXEN: Peripheral Multiplexer Enable

This bit determines the new value written to PINCFGy.PMUXEN for all pins selected by the WRCONFIG.PINMASK and WRCONFIG.HWSEL bits, when the WRCONFIG.WRPINCFG bit is set.

This bit will always read as zero.

Bits 15:0 – PINMASK[15:0]: Pin Mask for Multiple Pin Configuration

These bits select the pins to be configured within the half-word group selected by the WRCONFIG.HWSEL bit.

These bits will always read as zero.

Value	Description
0	The configuration of the corresponding I/O pin in the half-word group will be left unchanged.
1	The configuration of the corresponding I/O pin in the half-word PORT group will be updated.

28.9.12 Event Input Control

Tip: The I/O pins are assembled in pin groups ("PORT groups") with up to 32 pins. Group 0 consists of the PA pins, group 1 is for the PB pins, etc. Each pin group has its own PORT registers. For example, the register address offset for the Data Direction (DIR) register for group 0 (PA00 to PA31) is 0x00, and the register address offset for the DIR register for group 1 (PB00 to PB31) is 0x80.

USERm	User Multiplexer	Description	Path Type
m = 41	CCL LUTIN 1	CCL input	Asynchronous path only
m = 42	CCL LUTIN 2	CCL input	Asynchronous path only
m = 43	CCL LUTIN 3	CCL input	Asynchronous path only
m=44 to 46	Reserved	-	Reserved
m=47	TC5	-	Asynchronous, synchronous, and resynchronized paths
m=48	TC6	-	Asynchronous, synchronous, and resynchronized paths
m=49	TC7	-	Asynchronous, synchronous, and resynchronized paths
others	Reserved	-	Reserved

SAM C20/C21

D .(0-	
Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access		I		I		Į	ļ	
Reset								
Bit	15	14	13	12	11	10	9	8
					HDRD	LY[1:0]	BRKLEN[1:0]	
Access					R/W	R/W	R/W	R/W
Reset					0	0	0	0
Bit	7	6	5	4	3	2	1	0
							GTIME[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 11:10 – HDRDLY[1:0]: LIN Master Header Delay

These bits define the delay between break and sync transmission in addition to the delay between the sync and identifier (ID) fields when in LIN master mode (CTRLA.FORM=0x2). This field is only valid when using the LIN header command (CTRLB.LINCMD=0x2).

Value	Description
0x0	Delay between break and sync transmission is 1 bit time.
	Delay between sync and ID transmission is 1 bit time.
0x1	Delay between break and sync transmission is 4 bit time.
	Delay between sync and ID transmission is 4 bit time.
0x2	Delay between break and sync transmission is 8 bit time.
	Delay between sync and ID transmission is 4 bit time.
0x3	Delay between break and sync transmission is 14 bit time.
	Delay between sync and ID transmission is 4 bit time.

Bits 9:8 – BRKLEN[1:0]: LIN Master Break Length

These bits define the length of the break field transmitted when in LIN master mode (CTRLA.FORM=0x2).

Value	Description
0x0	Break field transmission is 13 bit times
0x1	Break field transmission is 17 bit times
0x2	Break field transmission is 21 bit times
0x3	Break field transmission is 26 bit times

Bits 2:0 – GTIME[2:0]: Guard Time

These bits define the guard time when using RS485 mode (CTRLA.TXPO=0x3).

Bit 26 – WDIL: Watchdog Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 25 - BOL: Bus_Off Status Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 24 – EWL: Error Warning Status Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 23 – EPL: Error Passive Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 22 – ELOL: Error Logging Overflow Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 21 – BEUL: Bit Error Uncorrected Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 20 – BECL: Bit Error Corrected Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 19 – DRXL: Message stored to Dedicated Rx Buffer Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

Bit 18 – TOOL: Timeout Occurred Interrupt Line

Value	Description
0	Interrupt assigned to CAN interrupt line 0.
1	Interrupt assigned to CAN interrupt line 1.

SAM C20/C21

Bit	31	30	29	28	27	26	25	24
Access								
Reset								
Bit	23	22	21	20	19	18	17	16
Access								
Reset								
Bit	15	14	13	12	11	10	9	8
Access								
Reset								
Bit	7	6	5	4	3	2	1	0
							TBDS[2:0]	
Access						R/W	R/W	R/W
Reset						0	0	0

Bits 2:0 – TBDS[2:0]: Tx Buffer Data Field Size

In case the data length code DLC of a Tx Buffer element is configured to a value higher than the Tx Buffer data field size TXESC.TBDS, the bytes not defined by the Tx Buffer are transmitted as "0xCC" (padding bytes).

Value	Name	Description
0x0	DATA8	8 byte data field.
0x1	DATA12	12 byte data field.
0x2	DATA16	16 byte data field.
0x3	DATA20	20 byte data field.
0x4	DATA24	24 byte data field.
0x5	DATA32	32 byte data field.
0x6	DATA48	48 byte data field.
0x7	DATA64	64 byte data field.

34.8.38 Tx Buffer Request Pending

Note: TXBRP bits which are set while a Tx scan is in progress are not considered during this particular Tx scan. In case a cancellation is requested for such a Tx Buffer, this Add Request is canceled immediately, the corresponding TXBRP bit is reset.

Name:TXBRPOffset:0xCC [ID-0000a4bb]Reset:0x00000000Property:Read-only

Bit	31	30	29	28	27	26	25	24
	PERBUF[31:24]							
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	23	22	21	20	19	18	17	16
				PERBU	F[23:16]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8
				PERBL	JF[15:8]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	0
Bit	7	6	5	4	3	2	1	0
				PERB	JF[7:0]			
Access	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W
Reset	0	0	0	0	0	0	0	1

Bits 31:0 – PERBUF[31:0]: Period Buffer Value

These bits hold the value of the period buffer register. The value is copied to PER register on UPDATE condition.

35.7.3.17 Channel x Compare Buffer Value, 32-bit Mode

 Name:
 CCBUFx

 Offset:
 0x30 + x*0x04 [x=0..1]

 Reset:
 0x0000000

 Property:
 Write-Synchronized

The pattern generator unit produces a synchronized bit pattern across the port pins it is connected to. The pattern generation features are primarily intended for handling the commutation sequence in brushless DC motors (BLDC), stepper motors, and full bridge control. See also Figure 36-36.

Figure 36-36. Pattern Generator Block Diagram

As with other double-buffered timer/counter registers, the register update is synchronized to the UPDATE condition set by the timer/counter waveform generation operation. If synchronization is not required by the application, the software can simply access directly the PATT.PGE, PATT.PGV bits registers.

36.6.4 Master/Slave Operation

Two TCC instances sharing the same GCLK_TCC clock, can be linked to provide more synchronized CC channels. The operation is enabled by setting the Master Synchronization bit in Control A register (CTRLA.MSYNC) in the Slave instance. When the bit is set, the slave TCC instance will synchronize the CC channels to the Master counter.

Related Links

36.6.5 DMA, Interrupts, and Events Table 36-6. Module Requests for TCC

Condition	Interrupt request	Event output	Event input	DMA request	DMA request is cleared
Overflow / Underflow	Yes	Yes		Yes ⁽¹⁾	On DMA acknowledge
Channel Compare Match or Capture	Yes	Yes	Yes ⁽²⁾	Yes ⁽³⁾	For circular buffering: on DMA acknowledge For capture channel: when CCx register is read
Retrigger	Yes	Yes			
Count	Yes	Yes			

$$(\frac{V_{ADC} - V_{ADCR}}{temp - temp_{R}}) = (\frac{V_{ADCH} - V_{ADCR}}{temp_{H} - temp_{R}})$$

The voltages V_x are acquired as 12-bit ADC values ADC_x , with respect to an internal reference voltage INT1V_x:

[Equation 1]

$$V_{ADCx} = ADC_x \cdot \frac{\text{INT1V}_x}{2^{12} - 1}$$

For the measured value of the temperature sensor, ADC_m , the reference voltage is assumed to be perfect, i.e., INT1V_m=INT1V_c=1V. These substitutions yield a coarse value of the measured temperature $temp_C$:

[Equation 2]

$$temp_{C} = temp_{R} + \left[\frac{\left\{ \left(ADC_{m} \cdot \frac{\text{INT1V}_{C}}{\left(2^{12} - 1\right)} \right) - \left(ADC_{R} \cdot \frac{\text{INT1V}_{R}}{\left(2^{12} - 1\right)} \right) \right\} \cdot \left(temp_{H} - temp_{R} \right)}{\left(ADC_{H} \cdot \frac{\text{INT1V}_{H}}{\left(2^{12} - 1\right)} \right) - \left(ADC_{R} \cdot \frac{\text{INT1V}_{R}}{\left(2^{12} - 1\right)} \right)} \right]$$

Or, after eliminating the 12-bit scaling factor (2¹²-1):

[Equation 3]

$$temp_{C} = temp_{R} + \left[\frac{\left\{ADC_{m} \cdot \text{INT1V}_{c} - \left(ADC_{R} \cdot \text{INT1V}_{R}\right)\right\} \cdot \left(temp_{H} - temp_{R}\right)}{\left\{\left(ADC_{H} \cdot \text{INT1V}_{H}\right) - \left(ADC_{R} \cdot \text{INT1V}_{R}\right)\right\}}\right]$$

Equations 3 is a coarse value, because we assumed that $INT1V_c=1V$. To achieve a more accurate result, we replace $INT1V_c$ with an interpolated value $INT1V_m$. We use the two data pairs (*temp*_R, $INT1V_R$) and (*temp*_H, $INT1V_H$) and yield:

$$(\frac{\text{INT1V}_m - \text{INT1V}_R}{temp_m - temp_R}) = (\frac{\text{INT1V}_H - \text{INT1VV}_R}{temp_H - temp_R})$$

Using the coarse temperature value $temp_c$, we can infer a more precise INT1V_m value during the ADC conversion as:

[Equation 4]

$$\text{INT1V}_{m} = \text{INT1V}_{R} + (\frac{(\text{INT1V}_{H} - \text{INT1V}_{R}) \cdot (temp_{C} - temp_{R})}{(temp_{H} - temp_{R})})$$

Back to Equation 3, we replace the simple $INT1V_c=1V$ by the more precise $INT1V_m$ of Equation 4, and find a more accurate temperature value *temp*_f.

[Equation 5]

$$temp_{f} = temp_{R} + \left[\frac{\left\{ ADC_{m} \cdot \text{INT1V}_{m} - \left(ADC_{R} \cdot \text{INT1V}_{R} \right) \right\} \cdot \left(temp_{H} - temp_{R} \right)}{\left\{ \left(ADC_{H} \cdot \text{INT1V}_{H} \right) - \left(ADC_{R} \cdot \text{INT1V}_{R} \right) \right\}} \right]$$

38.6.4 DMA Operation

The ADC generates the following DMA request:

• Result Conversion Ready (RESRDY): the request is set when a conversion result is available and cleared when the RESULT register is read. When the averaging operation is enabled, the DMA request is set when the averaging is completed and result is available.

Bit	7	6	5	4	3	2	1	0
	ONREFBUF		REFRAM	NGE[1:0]			REFS	EL[1:0]
Access	R/W		R/W	R/W			R/W	R/W
Reset	0		0	0			0	0

Bit 7 – ONREFBUF: Reference Buffer On

Turning on the buffer increases the impedance seen on the external reference, so that the current load reduces from 5μ A to 0.10μ A. This needs to be matched with whatever type of reference circuit is used.

Value	Description
0	Reference Buffer Off
1	Reference Buffer On

Bits 5:4 – REFRANGE[1:0]: Reference Range

REFRANGE[1:0]	Reference Voltage
0x0	Vref < 1.4V
0x1	1.4V < Vref < 2.4V
0x2	2.4 < Vref < 3.6V
0x3	Vref > 3.6V

Bits 1:0 – REFSEL[1:0]: Reference Selection

These bits select the reference for the ADC.

Note: The reference buffer should be enabled (ONREFBUF=1) when using the internal bandgap or DAC output as reference.

Value	Name	Description
0x0	Internal bandgap	Internal 1.024V, 2.048V, 4.096V
0x1	VREFB pin	External 1-5.5V
0x2	DAC output	Internal 1-5.5V
0x3	VDDANA	Supply 2.7-5.5V

39.8.3 Control B

Name:CTRLBOffset:0x02 [ID-0000243d]Reset:0x0000Property:PAC Write-Protection, Enable-Protected

For low-power operation, comparisons can be performed during sleep modes without a clock. The comparator is enabled continuously, and changes of the comparator state are detected asynchronously. When a toggle occurs, the Power Manager will start GCLK_AC to register the appropriate peripheral events and interrupts. The GCLK_AC clock is then disabled again automatically, unless configured to wake up the system from sleep.

Related Links

Electrical Characteristics 85°C (SAM C20/C21 E/G/J)

Single-Shot

Single-shot operation is selected by writing COMPCTRLx.SINGLE to '1'. During single-shot operation, the comparator is normally idle. The user starts a single comparison by writing '1' to the respective Start Comparison bit in the write-only Control B register (CTRLB.STARTx). The comparator is enabled, and after the start-up time has passed, a single comparison is done and STATUSA is updated. Appropriate peripheral events and interrupts are also generated. No new comparisons will be performed.

Writing '1' to CTRLB.STARTx also clears the Comparator x Ready bit in the Status B register (STATUSB.READYx). STATUSB.READYx is set automatically by hardware when the single comparison has completed.

A single-shot measurement can also be triggered by the Event System. Setting the Comparator x Event Input bit in the Event Control Register (EVCTRL.COMPEIx) enables triggering on incoming peripheral events. Each comparator can be triggered independently by separate events. Event-triggered operation is similar to user-triggered operation; the difference is that a peripheral event from another hardware module causes the hardware to automatically start the comparison and clear STATUSB.READYx.

To detect an edge of the comparator output in single-shot operation for the purpose of interrupts, the result of the current measurement is compared with the result of the previous measurement (one sampling period earlier). An example of single-shot operation is shown in Figure 40-4.

Figure 40-4. Single-Shot Example

For low-power operation, event-triggered measurements can be performed during sleep modes. When the event occurs, the Power Manager will start GCLK_AC. The comparator is enabled, and after the startup time has passed, a comparison is done and appropriate peripheral events and interrupts are also generated. The comparator and GCLK_AC are then disabled again automatically, unless configured to wake up the system from sleep.

Related Links

Electrical Characteristics 85°C (SAM C20/C21 E/G/J)

40.6.3 Selecting Comparator Inputs

Each comparator has one positive and one negative input. The positive input is one of the external input pins (AINx). The negative input can be fed either from an external input pin (AINx) or from one of the several internal reference voltage sources common to all comparators. The user selects the input source as follows:

 The positive input is selected by the Positive Input MUX Select bit group in the Comparator Control register (COMPCTRLx.MUXPOS)

- Enable bit in the Control A register (CTRLA.ENABLE)
- All bits in the Data register (DATA)
- All bits in the Data Buffer register (DATABUF)

Write-synchronization is denoted by the Write-Synchronized property in the register description.

No bits need synchronization when read.

41.6.8 Additional Features

41.6.8.1 DAC as an Internal Reference

The DAC output can be internally enabled as input to the analog comparator. This is enabled by writing a one to the Internal Output Enable bit in the Control B register (CTRLB.IOEN). It is possible to have the internal and external output enabled simultaneously.

The DAC output can also be enabled as input to the Analog-to-Digital Converter. In this case, the output buffer must be enabled.

41.6.8.2 Data Buffer

The Data Buffer register (DATABUF) and the Data register (DATA) are linked together to form a two-stage FIFO. The DAC uses the Start Conversion event to load data from DATABUF into DATA and start a new conversion. The Start Conversion event is enabled by writing a one to the Start Event Input bit in the Event Control register (EVCTRL.STARTEI). If a Start Conversion event occurs when DATABUF is empty, an Underrun interrupt request is generated if the Underrun interrupt is enabled.

The DAC can generate a Data Buffer Empty event when DATABUF becomes empty and new data can be loaded to the buffer. The Data Buffer Empty event is enabled by writing a one to the Empty Event Output bit in the Event Control register (EVCTRL.EMPTYEO). A Data Buffer Empty interrupt request is generated if the Data Buffer Empty interrupt is enabled.

41.6.8.3 Voltage Pump

When the DAC is used at operating voltages lower than 2.5V, the voltage pump must be enabled. This enabling is done automatically, depending on operating voltage.

The voltage pump can be disabled by writing a one to the Voltage Pump Disable bit in the Control B register (CTRLB.VPD). This can be used to reduce power consumption when the operating voltage is above 2.5V.

The voltage pump uses the asynchronous GCLK_DAC clock, and requires that the clock frequency be at least four times higher than the sampling period.

41.6.8.4 Dithering mode

In dithering mode, DATA is a 14-bit signed value where DATA[13:4] is the 10-bit data converted by DAC and DATA[3:0] the dither bits, used to minimize the quantization error.

The principle is to make 16 sub-conversions of DATA[13:4] value or (DATA[13:4] + 1) value so that by averaging those 2 values, the 14-bit value (DATA[13:0]) conversion is accurate.

To operate, START event must be configured to generate 16 events for each DATA[15:0] conversion and DATABUF must be loaded every 16 DAC conversions. EMPTY event and DMA request are therefore generated every 16 DATABUF to DATA transfer.

Writing a one to the Left Adjust bit in Control B register (CTRLB.LEFTADJ) change the data to DATA[15:6] and the dithering bits to DATA[5:2]. Refer to DATA description for further details.

Following timing diagram shows examples with DATA[15:0] = 0x1210 then DATA[15:0] = 0x12E0 and CTRLB.LEFTADJ=1.

© 2017 Microchip Technology Inc.

Name:EVCTRLOffset:0x02 [ID-00000bc7]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0
						INVEI	EMPTYEO	STARTEI
Access						R/W	R/W	R/W
Reset						0	0	0

Bit 2 – INVEI: Enable Inversion Data Buffer Empty Event Output

This bit defines the edge detection of the input event for STARTEI.

Value	Description
0	Rising edge.
1	Falling edge.

Bit 1 – EMPTYEO: Data Buffer Empty Event Output

This bit indicates whether or not the Data Buffer Empty event is enabled and will be generated when the Data Buffer register is empty.

Value	Description
0	Data Buffer Empty event is disabled and will not be generated.
1	Data Buffer Empty event is enabled and will be generated.

Bit 0 – STARTEI: Start Conversion Event Input

This bit indicates whether or not the Start Conversion event is enabled and data are loaded from the Data Buffer register to the Data register upon event reception.

Value	Description
0	A new conversion will not be triggered on any incoming event.
1	A new conversion will be triggered on any incoming event.

41.8.4 Interrupt Enable Clear

This register allows the user to disable an interrupt without doing a read-modify-write operation. Changes in this register will also be reflected in the Interrupt Enable Set register (INTENSET).

Name:INTENCLROffset:0x04 [ID-00000bc7]Reset:0x00Property:PAC Write-Protection

Bit	7	6	5	4	3	2	1	0	
							EMPTY	UNDERRUN	
Access							R/W	R/W	
Reset							0	0	

Bit 1 – EMPTY: Data Buffer Empty Interrupt Enable

Writing a '0' to this bit has no effect.

42. PTC - Peripheral Touch Controller

42.1 Overview

The Peripheral Touch Controller (PTC) acquires signals in order to detect touch on capacitive sensors. The external capacitive touch sensor is typically formed on a PCB, and the sensor electrodes are connected to the analog front end of the PTC through the I/O pins in the device. The PTC supports both self- and mutual-capacitance sensors.

In mutual-capacitance mode, sensing is done using capacitive touch matrices in various X-Y configurations, including indium tin oxide (ITO) sensor grids. The PTC requires one pin per X-line and one pin per Y-line.

In self-capacitance mode, the PTC requires only one pin (Y-line) for each touch sensor.

The number of available pins and the assignment of X- and Y-lines is depending on both package type and device configuration. Refer to the Configuration Summary and I/O Multiplexing table for details.

Related Links

Configuration Summary I/O Multiplexing and Considerations

42.2 Features

- Low-power, high-sensitivity, environmentally robust capacitive touch buttons, sliders, wheels
- Supports wake-up on touch from standby sleep mode
- Supports mutual capacitance and self-capacitance sensing
 - Mix-and-match mutual-and self-capacitance sensors
- One pin per electrode no external components
- Load compensating charge sensing
 - Parasitic capacitance compensation and adjustable gain for superior sensitivity
- Zero drift over the temperature and V_{DD} range
 - Auto calibration and re-calibration of sensors
- Single-shot charge measurement
- · Hardware noise filtering and noise signal de-synchronization for high conducted immunity
- Driven shield for better noise immunity and moisture tolerance
- · Selectable channel change delay allows choosing the settling time on a new channel, as required
- · Acquisition-start triggered by command or through auto-triggering feature
- · Low CPU utilization through interrupt on acquisition-complete
- Using ADC peripheral for signal conversion and acquisition
- Supported by the QTouch[®] Composer development tools. See also Atmel|START and Atmel Studio documentation.

Related Links

Configuration Summary I/O Multiplexing and Considerations

Table 45-9. Wake-up Timings

Sleep Mode	Тур	Unit
IDLE	15.2	μs
STANDBY	48	μs

45.9 I/O Pin Characteristics

There are two different pin types with two different speeds: Normal and High Sink⁽²⁾. The Drive Strengh bit is located in the Pin Configuration register PORT (PORT.PINCFG.DRVSTR).

The pins with I²C alternative mode available are compliant with I²C specifications. All I²C pins support Standard (Sm), Fast (Fm), Fast plus (Fm+) and High speed (Hs) modes. The available I²C pins are listed in the I/O Multiplexing section.

 Table 45-10.
 I/O Pins Common Characteristics

Symbol	Parameter	Conditions	Min.	Тур.	Max.	Units
V _{IL}	Input low-level voltage	VDD=2.7-4.5V	-	-	0.3*VDD	V
		VDD=4.5-5.5V	-	-	0.3*VDD	
V _{IH}	Input high-level voltage	VDD=2.7-4.5V	0.7*VDD	-	-	
		VDD=4.5-5.5V	0.7*VDD	-	-	
V _{OL}	Output low-level voltage	VDD>2.7V, I _{OL} max	-	0.1*VDD	0.2*VDD	
V _{OH}	Output high-level voltage	VDD>2.7V, I _{OH} max	0.8*VDD	0.9*VDD	-	
R _{PULL}	Pull-up - Pull-down resistance	All pins	20	40	60	kΩ
I _{LEAK}	Input leakage current	Pull-up resistors disabled	-1	-	1	μA

Table 45-11. I/O Pins Maximum Output Current

Symbol	Parameter	Conditions	Normal pins	High Sink pins	Normal pins	High Sink pins	Units
			DRVS	「R=0	DRVS1	[R=1	
I _{OL}	Maximum output low-level current	VDD=2.7V-4.5V	2.5	5	5	10	mA
		VDD=4.5V-5.5V	5	10	10	20	
I _{OH}	Maximum output high-level current	VDD=2.7V-4.5V	1.5	3	3	6	
		VDD=4.5V-5.5V	3	6	6	12	